summaryrefslogtreecommitdiff
path: root/basic_electrical_engineering_by_nagsarkar_and_sukhija/Chapter5_8YQCBnu.ipynb
diff options
context:
space:
mode:
authorkinitrupti2017-05-12 18:40:35 +0530
committerkinitrupti2017-05-12 18:40:35 +0530
commit64d949698432e05f2a372d9edc859c5b9df1f438 (patch)
tree012fd5b4ac9102cdcf5bc56305e49d6714fa5951 /basic_electrical_engineering_by_nagsarkar_and_sukhija/Chapter5_8YQCBnu.ipynb
parent9c6ab8cbf3e1a84c780386abf4852d84cdd32d56 (diff)
downloadPython-Textbook-Companions-64d949698432e05f2a372d9edc859c5b9df1f438.tar.gz
Python-Textbook-Companions-64d949698432e05f2a372d9edc859c5b9df1f438.tar.bz2
Python-Textbook-Companions-64d949698432e05f2a372d9edc859c5b9df1f438.zip
Revised list of TBCs
Diffstat (limited to 'basic_electrical_engineering_by_nagsarkar_and_sukhija/Chapter5_8YQCBnu.ipynb')
-rw-r--r--basic_electrical_engineering_by_nagsarkar_and_sukhija/Chapter5_8YQCBnu.ipynb505
1 files changed, 0 insertions, 505 deletions
diff --git a/basic_electrical_engineering_by_nagsarkar_and_sukhija/Chapter5_8YQCBnu.ipynb b/basic_electrical_engineering_by_nagsarkar_and_sukhija/Chapter5_8YQCBnu.ipynb
deleted file mode 100644
index dfdf53ef..00000000
--- a/basic_electrical_engineering_by_nagsarkar_and_sukhija/Chapter5_8YQCBnu.ipynb
+++ /dev/null
@@ -1,505 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# Chapter 5: Three Phase Systems"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example 5.1: Page number-317"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "ia= 51.962 A\n",
- "ib= 43.30129 A\n",
- "ic= 34.64103 A\n",
- "IN= 15.0 A\n"
- ]
- }
- ],
- "source": [
- "import math\n",
- "\n",
- "#given\n",
- "vl=400 #line voltage\n",
- "\n",
- "va=vl/math.sqrt(3)\n",
- "vb=230.94 #angle(-120)\n",
- "vc=230.94 #angle(-240)\n",
- "\n",
- "#case a\n",
- "\n",
- "#the line currents are given by\n",
- "\n",
- "ia=12000/230.94 #with angle 0\n",
- "\n",
- "ib=10000/230.94 #with angle 120\n",
- "\n",
- "ic=8000/230.94 #with angle 240\n",
- "\n",
- "print\"ia=\",round(ia,3),\"A\"\n",
- "print \"ib=\",round(ib,5),\"A\"\n",
- "print \"ic=\",round(ic,5),\"A\"\n",
- "\n",
- "#case b\n",
- "\n",
- "#IN=ia+ib+ic\n",
- "\n",
- "#ia,ib and ic are phase currents hence contain with angles they are in the form sin(angle)+icos(angle)\n",
- "\n",
- "#IN=51.96*(sin(0)+i*cos(0))+43.3*(sin(120)+i*cos(120))+34.64*(sin(240)+i*cos(240))\n",
- "\n",
- "#IN=51.96+(-21.65+i*37.5)+34.64*(-0.5-i*0.866)\n",
- "\n",
- "#12.99+i*7.5 on which the sin+icos=sin**2+cos**2 operation is performed\n",
- "#therefore \n",
- "\n",
- "IN=15 #at angle 30\n",
- "print \"IN=\",round(IN,10),\"A\"\n",
- "\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example 5.2:Page number-320 "
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "iab= 2.0 A\n",
- "ibc=5.4414-j3.1416 A\n",
- "ica=3.1463+j4.2056 A\n",
- "ia=4.2328 with an angle of -96.51 A\n",
- "ib=4.1915 with angle of -48.55 A\n",
- "ic=7.6973 with an angle of 107.35 A\n"
- ]
- }
- ],
- "source": [
- "import math\n",
- "\n",
- "#case a\n",
- "\n",
- "vab=400 #phase angle of 0\n",
- "vbc=400 #phase angle of 120\n",
- "vca=400 #phase angle of 240\n",
- "\n",
- "#the phase currents are given by iab,ibc,ica\n",
- "\n",
- "iab=400/150 #from the diagram \n",
- "\n",
- "print \"iab=\",round(iab,5),\"A\"\n",
- "#ibc=(400*314*50)/10**6 numerator with an angle of -120 and denominator angle of -90 which amounts to -30 in numerator\n",
- "#this leads to simplifying with the formula as the value obtained for ibc after simplification from above mutiplied by values of cos(-30)+jsin(-30)\n",
- "#therefore print as below\n",
- "\n",
- "print\"ibc=5.4414-j3.1416\",\"A\"\n",
- "\n",
- "#same method for ica\n",
- "\n",
- "\n",
- "print \"ica=3.1463+j4.2056\",\"A\"\n",
- "\n",
- "#case b\n",
- "\n",
- "#ia=iab-ica\n",
- "\n",
- "#ia=2.667-(3.1463+j4.2056)\n",
- "\n",
- "#leads to 4.2328 with an angle of -96.51\n",
- "#angle calculated using tan formula\n",
- "print \"ia=4.2328 with an angle of -96.51\",\"A\"\n",
- "\n",
- "#same for ib and ic\n",
- "\n",
- "print \"ib=4.1915 with angle of -48.55\",\"A\"\n",
- "\n",
- "print \"ic=7.6973 with an angle of 107.35\",\"A\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example 5.3:Page number:321"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "power factor =0.8\n",
- "p= 25601.1 KW\n",
- "q= 19200.82 Kvar\n",
- "t= 32001.0 KVA\n"
- ]
- }
- ],
- "source": [
- "import math\n",
- "\n",
- "#case a\n",
- "\n",
- "#given\n",
- "zl=5 #load impedanc with an angle of 36.87 degrees\n",
- "vl=400 #line voltage\n",
- "il=46.19\n",
- "va=400/3**0.5 #phase voltage\n",
- "\n",
- "ia=va/zl #line current with an angle of -36.87 degrees\n",
- "\n",
- "#ib and ic are also the same values with changes in in their angles\n",
- "\n",
- "#case b\n",
- "#cos(-36.87)=0.8 lagging\n",
- "\n",
- "print \"power factor =0.8\"\n",
- "\n",
- "#case c\n",
- "\n",
- "p=3**0.5*vl*il*0.8 #power where 0.8 is power factor\n",
- "\n",
- "print\"p=\",round(p,2),\"KW\"\n",
- "\n",
- "#case d\n",
- "\n",
- "q=3**0.5*vl*il*0.6 #where 0.6 is sin(36.87) and q is reactive volt ampere\n",
- "\n",
- "print\"q=\",round(q,2),\"Kvar\"\n",
- "\n",
- "#case e\n",
- "\n",
- "t=3**0.5*vl*il #total volt ampere\n",
- "\n",
- "print \"t=\",round(t,0),\"KVA\"\n",
- "\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example 5.4: Page number-321"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "ia=29.33A\n",
- "ib=73.83A\n",
- "ic=73.82A\n",
- "vr=1466.5V\n",
- "vl=73.83V\n",
- "vc=73.83V\n",
- "vn=1212.45V\n"
- ]
- }
- ],
- "source": [
- "import math\n",
- "\n",
- "#given\n",
- "\n",
- "za=50\n",
- "zb=15 #j15\n",
- "zc=-15 #-j15\n",
- "\n",
- "vl=440\n",
- "\n",
- "vab=440 #with an angle of 0\n",
- "\n",
- "vbc=440 #with an angle of -120\n",
- "\n",
- "vca=440 #with an angle of -240\n",
- "\n",
- "#applying kvl to meshes as in the diagram we get the following equations\n",
- "\n",
- "#50i1+j15(i1-i2)-440(angle 0)=0,j15(i2-i1)+(-j15)i2-440(angle 120)=0\n",
- "\n",
- "#solving the above 2 eqns we get the values of ia,ib and ic as follows\n",
- "\n",
- "print \"ia=29.33A\" #at angle -30\n",
- "print \"ib=73.83A\" #at angle -131.45\n",
- "print \"ic=73.82A\" #at angle 71.5\n",
- "\n",
- "#the voltage drops across vr,vl and vc which are voltages across resistance ,inducctance and capacitance are given as follows\n",
- "\n",
- "print \"vr=1466.5V\" #at angle -30\n",
- "print \"vl=73.83V\" #at angle -41.45\n",
- "print \"vc=73.83V\" #at angle -18.5\n",
- "\n",
- "#the potential of neutral point\n",
- "\n",
- "print \"vn=1212.45V\" #at angle 150\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example 5.5:Page number-323"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "il= 42.88104 A\n",
- "ip= 24.75738 A\n"
- ]
- }
- ],
- "source": [
- "import math\n",
- "\n",
- "#given\n",
- "\n",
- "v=440 #voltage\n",
- "o=25000 #output power\n",
- "e=0.9 #efficiency\n",
- "p=0.85 #poer factor\n",
- "\n",
- "#case a\n",
- "\n",
- "il=o/(3**0.5*v*p*e) #line current\n",
- "\n",
- "print \"il=\",round(il,5),\"A\"\n",
- "\n",
- "#case b\n",
- "\n",
- "ip=o/(3*v*e*p) #phase current for delta current winding\n",
- "\n",
- "print \"ip=\",round(ip,5),\"A\"\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "collapsed": true
- },
- "source": [
- "## Example 5.7:Page number-329"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "iab= 34.78 A\n",
- "ibc= 55.648 A\n",
- "ica= 41.736 A\n",
- "ia=76.38A\n",
- "ib=87.85A\n",
- "ic=32.21A\n",
- "w1=31.63KW\n",
- "w2=12.827KW\n"
- ]
- }
- ],
- "source": [
- "import math\n",
- "\n",
- "#given\n",
- "\n",
- "#25kW at power factor 1 for branch AB\n",
- "#40KVA at power factor 0.85 for branch BC\n",
- "#30KVA at power factor 0.6 for branch CA\n",
- "\n",
- "#line voltages with vab as reference phasor\n",
- "\n",
- "vab=415 #at angle 0\n",
- "vbc=415 #at angle -120\n",
- "vca=415 #at angle -240\n",
- "\n",
- "#phase currents are given with x+jy form of an imaginary number and vary according to angles.The values below are only the values of the currents without conversion into imaginary form\n",
- "\n",
- "iab=(25*10**3)/(3**0.5*415*1)\n",
- "\n",
- "print \"iab=\",round(iab,3),\"A\"\n",
- "\n",
- "ibc=(40*10**3)/(3**0.5*415)\n",
- "\n",
- "print \"ibc=\",round(ibc,3),\"A\"\n",
- "\n",
- "ica=(30*10**3)/(3**0.5*415)\n",
- "\n",
- "print \"ica=\",round(ica,3),\"A\"\n",
- "\n",
- "#the line currents are as below.The following values can also be converted to x+iy form where x is real and y is imaginary\n",
- "\n",
- "#ia=iab-ibc and subtraction is done of x+iy forms where the value of the term varies as obtained by sqrt(x**2+y**2)\n",
- "\n",
- "print \"ia=76.38A\" #at angle -3.75\n",
- "\n",
- "#ib=ibc-iab\n",
- "\n",
- "print \"ib=87.85A\"\n",
- "\n",
- "#ic=ica-ibc\n",
- "\n",
- "print \"ic=32.21A\"\n",
- "\n",
- "#wattmeter readings on phase A\n",
- "\n",
- "#w1=vab*ia*cos(-3.35) where the cos angle is given by phase angle between ia and vab\n",
- "\n",
- "print \"w1=31.63KW\"\n",
- "\n",
- "#same formula for wattmeter readings in phase c where the angle is 16.35\n",
- "\n",
- "print \"w2=12.827KW\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example 5.8:Page number-331"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "the total input power= 700.0 KW\n",
- "power factor=0.803\n",
- "il= 0.22877 A\n",
- "output= 0.845 hp\n"
- ]
- }
- ],
- "source": [
- "import math\n",
- "\n",
- "#given\n",
- "\n",
- "w1=500\n",
- "w2=200\n",
- "w=w1+w2\n",
- "\n",
- "#case a\n",
- "\n",
- "print \"the total input power=\",round(w,0),\"KW\"\n",
- "\n",
- "#case b\n",
- "\n",
- "#tan(angle)=3**0.5*(w1-w2)/(w1+w2) where the angle=36.58 and cos(36.58)=0.803 which is the power factor\n",
- "\n",
- "print \"power factor=0.803\"\n",
- "\n",
- "#case c\n",
- "\n",
- "#given\n",
- "\n",
- "vl=2200\n",
- "\n",
- "il=w/(3**0.5*vl*0.803) #0.803 is the value of the cos angle and il is the line current\n",
- "\n",
- "print \"il=\",round(il,5),\"A\"\n",
- "\n",
- "#case d\n",
- "\n",
- "#efficiency=o/i #i is input and o is output\n",
- "\n",
- "hp=746 #horse power\n",
- "o=0.9*w/hp #0.9 is efficiency\n",
- "\n",
- "print \"output=\",round(o,3),\"hp\"\n",
- "\n",
- "\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "collapsed": true
- },
- "outputs": [],
- "source": []
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.9"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}