summaryrefslogtreecommitdiff
path: root/backup/Principles_of_Physics_by_F.J.Bueche_version_backup/Chapter4.ipynb
diff options
context:
space:
mode:
authorkinitrupti2017-05-12 18:53:46 +0530
committerkinitrupti2017-05-12 18:53:46 +0530
commit6279fa19ac6e2a4087df2e6fe985430ecc2c2d5d (patch)
tree22789c9dbe468dae6697dcd12d8e97de4bcf94a2 /backup/Principles_of_Physics_by_F.J.Bueche_version_backup/Chapter4.ipynb
parentd36fc3b8f88cc3108ffff6151e376b619b9abb01 (diff)
downloadPython-Textbook-Companions-6279fa19ac6e2a4087df2e6fe985430ecc2c2d5d.tar.gz
Python-Textbook-Companions-6279fa19ac6e2a4087df2e6fe985430ecc2c2d5d.tar.bz2
Python-Textbook-Companions-6279fa19ac6e2a4087df2e6fe985430ecc2c2d5d.zip
Removed duplicates
Diffstat (limited to 'backup/Principles_of_Physics_by_F.J.Bueche_version_backup/Chapter4.ipynb')
-rwxr-xr-xbackup/Principles_of_Physics_by_F.J.Bueche_version_backup/Chapter4.ipynb396
1 files changed, 0 insertions, 396 deletions
diff --git a/backup/Principles_of_Physics_by_F.J.Bueche_version_backup/Chapter4.ipynb b/backup/Principles_of_Physics_by_F.J.Bueche_version_backup/Chapter4.ipynb
deleted file mode 100755
index 750b65e7..00000000
--- a/backup/Principles_of_Physics_by_F.J.Bueche_version_backup/Chapter4.ipynb
+++ /dev/null
@@ -1,396 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:5482cd080863a0bf132cc69662813c918cd153651feccebbb960c53549f6ef87"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "Chapter04: Newtons Law"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex4.1:pg-147"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- " #Example 4_1\n",
- " \n",
- " \n",
- " #To calculate the force required\n",
- "vf=12 #units in meters/sec\n",
- "v0=0 #units in meters/sec\n",
- "t=8 #units in sec\n",
- "a=(vf-v0)/t #units in meters/sec**2\n",
- "m=900 #units in Kg\n",
- "F=m*a #units in Newtons\n",
- "print \"The force required is F=\",round(F),\" N\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The force required is F= 900.0 N\n"
- ]
- }
- ],
- "prompt_number": 1
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex4.2:pg-147"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- " #Example 4_2\n",
- " \n",
- " \n",
- " #To find the friction force that opposes the motion\n",
- "F1=500 #units in Newtons\n",
- "F2=800 #units in Newtons\n",
- "theta=30 #units in degrees\n",
- "Fn=F1+(F2*math.sin(theta*math.pi/180)) #units in Newtons\n",
- "u=0.6\n",
- "f=u*Fn #units in Newtons\n",
- "print \"The Frictional force that is required is f=\",round(f),\" N\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The Frictional force that is required is f= 540.0 N\n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex4.3:pg-153"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- " #Example 4_3\n",
- " \n",
- " \n",
- " #To find out at what rate the wagon accelerate and how large a force the ground pushing up on wagon\n",
- "F1=90 #units in Newtons\n",
- "F2=60 #units in Newtons\n",
- "P=F1-F2 #units in Newtons\n",
- "F3=100 #units in Newtons\n",
- "F4=sqrt(F3**2-F2**2) #units in Newtons\n",
- "a=9.8 #units in meters/sec**2\n",
- "ax=(F4*a)/F1 #units in Meters/sec**2\n",
- "print \"The wagon accelerates at ax=\",round(ax,1),\" meters/sec**2\\n\"\n",
- "print \"Force by which the ground pushing is P=\",round(P),\" N\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The wagon accelerates at ax= 8.7 meters/sec**2\n",
- "\n",
- "Force by which the ground pushing is P= 30.0 N\n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex4.4:pg-153"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- " #Example 4_4\n",
- " \n",
- " \n",
- " # To calculate How far does the car goes\n",
- "w1=3300 #units in lb\n",
- "F1=4.45 #units in Newtons\n",
- "w2=1 #units in lb\n",
- "weight=w1*(F1/w2) #units in Newtons\n",
- "g=9.8 #units in meters/sec**2\n",
- "Mass=weight/g #units in Kg\n",
- "speed=38 #units in mi/h\n",
- "speed=speed*(1.61)*(1/3600) #units in Km/sec\n",
- "stoppingforce=0.7*(weight) #units in Newtons\n",
- "a=stoppingforce/-(Mass) #units in meters/sec**2\n",
- "vf=0\n",
- "v0=17 #units in meters/sec\n",
- "x=(vf**2-v0**2)/(2*a)\n",
- "print \"The car goes by x=\",round(x,1),\" meters\"\n",
- " #In text book the answer is printed wrong as x=20.9 meters the correct answer is x=21.1 meters\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The car goes by x= 21.1 meters\n"
- ]
- }
- ],
- "prompt_number": 4
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex4.5:pg-155"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- " #Example 4_5\n",
- " \n",
- " \n",
- " #To find the acceleration of the masses\n",
- "w1=10 #units in Kg\n",
- "w2=5 #units in Kg\n",
- "f1=98 #units in Newtons\n",
- "f2=49 #units in Newtons\n",
- "w=w1/w2\n",
- "T=round((f1+(w*f2))/(w+1)) #units in Newtons\n",
- "a=(f1-T)/w1 #units in meters/sec**2\n",
- "print \"Acceleration is a=\",round(a,1),\" meters/sec**2\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Acceleration is a= 3.3 meters/sec**2\n"
- ]
- }
- ],
- "prompt_number": 5
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex4.6:pg-156"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- " #Example 4_6\n",
- " \n",
- "\n",
- " #To find the acceleration of the objects\n",
- "w1=0.4 #units in Kg\n",
- "w2=0.2 #units in Kg\n",
- "w=w1/w2\n",
- "a=9.8 #units in meters/sec**2\n",
- "f=0.098 #units in Newtons\n",
- "c=w2*a #units in Newtons\n",
- "T=((w*c)+f)/(1+w) #units in Newtons\n",
- "a=(T-f)/w1 #units in meters/sec**2\n",
- "print \"Acceleration a=\",round(a,1),\" meters/sec**2\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Acceleration a= 3.1 meters/sec**2\n"
- ]
- }
- ],
- "prompt_number": 6
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex4.7:pg-157"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- " #Example 4_7\n",
- " \n",
- " \n",
- " #To estimate the lower limit for the speed\n",
- " #In a practical situation u should be atleast 0.5\n",
- "u=0.5\n",
- "g=9.8 #units in meter/sec**2\n",
- "x=7 #units in meters\n",
- "v0=math.sqrt(2*u*g*x) #units in meters/sec\n",
- "print \"The lower limit of the speed v0=\",round(v0,1),\" meter/sec\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The lower limit of the speed v0= 8.3 meter/sec\n"
- ]
- }
- ],
- "prompt_number": 7
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex4.9:pg-158"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- " #Example 4_9\n",
- " \n",
- " \n",
- " #To calculate how large a force must push on car to accelerate\n",
- "m=1200 #units in Kg\n",
- "g=9.8 #units in meters/sec**2\n",
- "d1=4 #units in meters\n",
- "d2=40 #units in meters\n",
- "a=0.5 #units in meters/sec**2\n",
- "P=((m*g)*(d1/d2))+(m*a) #units in Newtons\n",
- "print \"The force required is P=\",round(P),\" N\"\n",
- " #In text book the answer is printed wrong as P=1780 N but the correct answer is P=1776 N\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": []
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex4.10:pg-159"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- " #Example 4_10\n",
- " \n",
- " \n",
- " #To calculate the tension in the rope\n",
- "u=0.7\n",
- "sintheta=(6.0/10)\n",
- "w1=50 #units in Kg\n",
- "g=9.8 #units in meter/sec**2\n",
- "costheta=(8.0/10)\n",
- "Fn=w1*g*costheta #units in Newtons\n",
- "f=u*Fn #units in Newtons\n",
- "T=f+(w1*g*sintheta)\n",
- "print \"The tension in the rope is T=\",round(T),\" N\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": []
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex4.11:pg-159"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- " #Example 4_11\n",
- " \n",
- " \n",
- " #To find the acceleration of the system\n",
- "w1=7.0 #units in Kg\n",
- "a=9.8 #units in meters/sec**2\n",
- "w2=5 #units in Kg\n",
- "w=w1/w2\n",
- "F1=29.4 #units in Newtons\n",
- "F2=20 #units in Newtons\n",
- "f=(F1+F2) #units in Newtons\n",
- "T1=w1*a #units in Newtons\n",
- "T=(T1+(w*f))/(1+w) #units in Newtons\n",
- "a=((w1*a)-T)/w1 #units in meters/sec**2\n",
- "print \"Acceleration a=\",round(a,2),\" meters/sec**2\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Acceleration a= 1.6 meters/sec**2\n"
- ]
- }
- ],
- "prompt_number": 8
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file