summaryrefslogtreecommitdiff
path: root/Transport_Phenomena:_A_Unified_Approach/ch15.ipynb
diff options
context:
space:
mode:
authorroot2014-07-14 15:31:28 +0530
committerroot2014-07-14 15:31:28 +0530
commitcea77a632f1b20598ba2a1be1b77e6587920c2a0 (patch)
tree0ac530caf18d10bd82bf11ffc1c96bfda13d0e39 /Transport_Phenomena:_A_Unified_Approach/ch15.ipynb
parent7b7e179ba5b3287d04539fc1826eba5d433eef6c (diff)
downloadPython-Textbook-Companions-cea77a632f1b20598ba2a1be1b77e6587920c2a0.tar.gz
Python-Textbook-Companions-cea77a632f1b20598ba2a1be1b77e6587920c2a0.tar.bz2
Python-Textbook-Companions-cea77a632f1b20598ba2a1be1b77e6587920c2a0.zip
adding books
Diffstat (limited to 'Transport_Phenomena:_A_Unified_Approach/ch15.ipynb')
-rwxr-xr-xTransport_Phenomena:_A_Unified_Approach/ch15.ipynb259
1 files changed, 259 insertions, 0 deletions
diff --git a/Transport_Phenomena:_A_Unified_Approach/ch15.ipynb b/Transport_Phenomena:_A_Unified_Approach/ch15.ipynb
new file mode 100755
index 00000000..374352f1
--- /dev/null
+++ b/Transport_Phenomena:_A_Unified_Approach/ch15.ipynb
@@ -0,0 +1,259 @@
+{
+ "metadata": {
+ "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 15 : Non newtonian phenomena"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 15.1 - Page No :760\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "%pylab inline\n",
+ "\n",
+ "import math \n",
+ "from numpy import *\n",
+ "from matplotlib.pyplot import *\n",
+ "\n",
+ "# Variables\n",
+ "# given\n",
+ "r = array([10, 20, 50, 100, 200, 400, 600, 1000, 2000])\n",
+ "tau = array([2.2, 3.1 ,4.4, 5.8, 7.4, 9.8, 11.1, 13.9, 17.0])\n",
+ "\n",
+ "# Calculation and Results\n",
+ "#tau = tau*(10**-4);\n",
+ "plot(r,tau);\n",
+ "plot(r,tau,'ro');\n",
+ "suptitle(\"asic shear diagram for the fluid\")\n",
+ "xlabel(\"Shear rate, S**-1 \")\n",
+ "ylabel(\"Shear streets, Nm**-2 \")\n",
+ "\n",
+ "# the data falls nearly on a straight line\n",
+ "# from the graph the slope and the intercept are\n",
+ "slope = 0.3841;\n",
+ "intercept = 9.17046;\n",
+ "# from the relation tau = K*(-r)**n;\n",
+ "K = math.exp(intercept);\n",
+ "n = slope\n",
+ "print \"K = \",K\n",
+ "print \"n = \",n\n",
+ "print \" The fluid is pseudo plastic, since the slope is less than 1 \"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Populating the interactive namespace from numpy and matplotlib\n",
+ "K = "
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " 9609.04383369\n",
+ "n = 0.3841\n",
+ " The fluid is pseudo plastic, since the slope is less than 1 \n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stderr",
+ "text": [
+ "WARNING: pylab import has clobbered these variables: ['draw_if_interactive']\n",
+ "`%pylab --no-import-all` prevents importing * from pylab and numpy\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEhCAYAAACUW2yNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8TOf+B/DPZLWEppbgSiqkyDbZpaVNjDWxpNrS4gol\nKLf3CtXburf0SqgqpSpRvVQttdWlm0oRWxY7SRDUFglJWoIUkRjJZJ7fH/PLJGOGRMyafN6vV17N\nnDnnPN9zGvOd5zybRAghQEREVIWVqQMgIiLzw+RARERamByIiEgLkwMREWlhciAiIi1MDkREpIXJ\ngbTMnDkTe/bseapzODg46CmamouJicHChQsB6OcaDOXNN9+Et7c3Fi9eXKvjk5OTcejQIfXr0aNH\n4/vvv691PJs2bUKnTp3Qq1cvJCcnIyIiotpjXnrpJZ3bnzYWMh82pg6AzE9sbOxTn0MikeghEk3l\n5eWwtrauUZn6uIaalPmkrl27hoyMDFy8eLHGxyiVSlhZVX6P27dvH5o0aYKuXbsCePp7vWrVKqxe\nvRrdunVDUlJSjY45cOCAzu0SicQg/+/J+FhzqCdeeeUVBAUFoVOnToiLiwMAKBQKjBw5ElKpFD4+\nPvj8888BaH77O3DgAIKCguDn54cuXbrg3r17GufNy8tDaGgo/P39IZVKsX//fvV7M2bMgL+/P/z9\n/fHHH38AUH04Dhw4EL6+vvDz80NycjIA4OjRo+jatSt8fX0RGBiIs2fPAgBWr16NV155BWFhYejb\nt6/Wdf3nP//B888/D5lMhvPnz6s/mKpeQ0xMDIKDg+Hu7o7Ro0dDqVSqr83d3R3BwcF4//33IZVK\ndZZZXFyMHj16IDAwEO7u7ti8eTMAICcnB+7u7hg7dizc3d0xYsQI7Nq1C6GhoWjfvj0OHjyoFW/f\nvn2Rn58Pf39/7N+/H0ePHlXfu379+qGwsBAAIJPJ8O6776Jr167q/18VZS5btgyLFi1CQECA+n6n\npKQgNDQUzz33HDZs2KDef9asWfDx8YGHhwf+/e9/a8Uza9YsHDhwAFFRUfjggw80Ptir1sQAwNvb\nG1evXgVQWTNUKpUYP348OnfujPDwcBQUFIDjausIQfXCnTt3hBBClJSUCA8PD3H9+nVx5MgR0a9f\nP/U+9+7dE0IIMXr0aPH9998LuVwu2rZtK06cOKE+VqFQaJx3/vz5Yt68eVrnkEgkYvv27UIIIT74\n4AMxc+ZMIYQQr732mti/f78QQogrV64INzc3IYQQRUVFQqlUCiGE2LVrlxg4cKAQQohVq1YJZ2dn\ncffuXa1rOnjwoJBKpaK0tFQUFxeL559/XixcuFDjGqpeuxBCjBw5UmzZskUIIUTHjh3FsWPHhBBC\nTJ8+XUilUp1lKhQKUVxcLIQQ4saNG8LV1VUolUqRnZ0tbGxsxG+//SaUSqUIDAwU48aNE0II8fPP\nP4sBAwZoxZyTkyO8vb3Vrzt16iQOHDgghBAiNjZWTJw4UQghhEwmE9HR0VrHCyFETEyM+jqFEOKt\nt94Sw4YNE0IIcfbsWdGuXTt1DG+//bYQQojy8nIxcOBAsWvXLq3zyWQykZaWJoQQYt++fep7HxMT\nIxYsWKDez9vbW1y5ckUIIYSDg4MQQogNGzaI8PBwIYQQ169fF46Ojur7TpaNj5Xqiblz52Lbtm2w\ntrbG77//jkuXLsHT0xOXLl1CdHQ0wsPD0a9fP/X+QgicOnUKrq6u8PX1BQA0bNhQ67wvvvgixo4d\ni/v37yMiIgIBAQEAADs7O4SHhwMAAgMDsXPnTgDA7t27kZ2drT7+wYMHKCoqws2bNzF06FBcuXIF\nVlZWkMvl6n369u2LJk2aaJWdmpqK119/Hba2trC1tcUrr7yi89q3bduGhQsXQqFQ4NatW3B3d0dB\nQQFKS0sRFBQEABg6dCh+/vlnnWWWlZVhypQpOHjwIGxtbVFQUKCuCbVv3x7u7u4AAC8vL/Ts2ROA\n6lt2bm6uViyiyrfqgoICyOVydOvWDQAQGRmpcQ1DhgzReT0Pn0cikaiP8/DwwM2bNwEAiYmJSExM\nhL+/PwCguLgYOTk5jzxnbaSmpmLo0KEAACcnJ/X1k+VjcqgHEhMTsX//fqSlpcHOzg49evSAQqGA\no6MjMjIysHPnTqxYsQJbtmzBypUr1cfV5NlxSEgIUlJSkJCQgHHjxmHKlCkYNWoUbG1t1ftYWVmp\nH+VIJBIcO3YMNjaaf3oTJkzAgAED8M477+DKlSuQyWTq9xo1aqSzbCsrK40PSaHjcca9e/cwZcoU\nnDp1Cq1bt0ZsbCwUCoXWtT18bNUyv/32W9y9exeZmZmQSCRo3749FAoFAMDe3l4jHjs7O61rrqmH\nY2jcuHGNj60oF9D8//bRRx8hKirqieKo8PA1VE3YVffRdd/J8rHNoR6Qy+V49tlnYWdnh4sXL+Lw\n4cMAgMLCQggh8Prrr2PWrFk4fvy4+hiJRAIfHx/k5OTgxIkTAFTfPMvLyzXOnZeXBycnJ4wdOxZR\nUVEa59Cld+/e+O9//6t+febMGXWMrVu3BqD6MK6Jl19+GT/99BNKS0tRUlKCbdu2ae2jUChgZWUF\nR0dH3L9/X91e0LJlS9jZ2SEtLQ0A1Nt1kcvlcHJygkQiQUpKCq5cuVKj+Krj5OSEhg0bqnsebdiw\nAd27d6/2uIYNG6KkpKTa/cLCwrBq1Sr1h/r169fVtYqacHZ2Rnp6OgDgxIkTGjW+Ci+//LL63t24\ncQP79u2r8fnJvLHmUA+Eh4djyZIl8PDwgIeHh7qXS25uLkaPHq3eb+7cuRrH2dnZYdOmTYiKioJS\nqUSDBg2wZ88ejW+0e/bswYIFC2Bra4smTZqoax5Vv71W7cHy3//+F+PGjcOyZcsghEC3bt2wfPly\n/POf/0RkZCTmzp2L8PBw9f6P6/3y4osv4tVXX4WnpyecnZ0RHBystY+joyPGjBkDd3d3tGvXDi+8\n8IL6vZUrVyIyMhJNmzZF165d1Y/NHi5zxIgRCAsLg6+vL4KCguDh4aFxbVU9fN26VN2+du1aTJgw\nAQqFAm3bttVoTH6UiIgIvP766/jhhx8QHx//yHIjIiJw9uxZBAQEwM7ODvb29vjuu+/QokWLR567\n6rW/+eabWLNmDby9vfHiiy+ic+fOWmUMHToUe/bsQefOndGhQwf1IzKyfBLBOiHVU/fv31cnhE8/\n/RRXr17F0qVLTRwVkXlgzYHqra1bt2Lu3Lm4f/8+XFxcavStnai+YM2BiIi0sEGaiIi0MDkQEZEW\nJgciItLC5EBERFqYHIiISAuTAxERaWFyICIiLQZLDlFRUWjVqpV6jnxANX++n58fvL294evrq3O+\neyIiMj2DJYcxY8Zgx44dGtumTZuGefPm4fTp0/j0008xbdo0QxVPRERPwWDJISQkBM8++6zGNhcX\nF9y5cwcAcPv2bbRr185QxRMR0VMw6PQZOTk5iIiIQGZmJgDgypUrePnllyGRSKBUKnHo0CG4uLgY\nqngiIqolozZIjx07FnFxcbh69SoWLVpU60VIiIjIsIxac3BwcFAvUC+EQJMmTbQWrAeA559/HllZ\nWYYKi4ioTnJzc8OlS5f0ci6j1hzatWuH5ORkAMDevXvRvn17nftlZWVBCMEfPf3MnDnT5DHUpR/e\nT95Lc/3R55dqg63nMHz4cCQnJ+PmzZtwcXHBrFmz8PXXX+Odd95BWVkZ7O3t8c033xiqeCIiegoG\nSw4bN27Uub1iPWIiIjJfHCFdD8hkMlOHUKfwfuoP76X5MsuV4CQSCcwwLCIis6bPz07WHIiISAuT\nAxERaWFyICIiLUwORESkhcmBiIi0MDkQEVm4lIQEzAgL0+s52ZWViMiCpSQkYOfkyZiTlQUJoLfP\nTiYHIiILdesW8K9eYfj6ZCIA6DU5GGz6DCIi0q+iIiA1Fdi7V/Vz6RLQ2+aBQcpimwMRkZmSy4F9\n+4AZM4Bu3YA2bYAFCwBHR2DJElXNwbOLvUHK5mMlIiIzUVYGHD9eWTM4ehTw9gZ69gR69QK6dgUa\nNtQ8hm0ORER1jFIJnDpVmQxSU4EOHVTJoGdPICQEaNq0+vOkJCRgV3w8Pt65k8mBiMjSCAGcP1+Z\nDJKSgBYtKpOBTKZ6XVv6/OxkciAiMqArVyqTwd69gI2N6hFRz55Ajx5A27b6K4vJgYjITF27pmpE\nrkgG9+5V1gx69lQ9NpJIDFM2kwMRkZn4808gObkyGeTnqx4PVSQDT0/DJYOHMTkQEZlIcbHmWIML\nF1TdTCuSgb8/YG1tmtgsIjlERUUhISEBTk5OyMzMVG+Pj4/HihUroFQqER4ejs8++0w7KCYHIjIT\nDx4Ahw9XJoOMDCAwsLLdIDgYsLMzdZQqFpEcUlNT4eDggFGjRqmTQ0JCAr766iv89NNPsLGxwa1b\nt9C8eXPtoJgciMhEFAogLa0yGRw+rHo0VFEzeOkloFEjU0epmz4/Ow02fUZISAhycnI0tq1YsQLT\npk2DjY2qWF2JgYjImJRK4PTpymSQkgI895yqZhAdDWzZAjzzjKmjND6jzq107tw57Ny5E5MmTULD\nhg2xcOFCdOvWzZghEFE9JwRw8WJlMti3D3j2WVWtIDISWLECcHIydZSmZ9TkoFQqUVRUhBMnTuDY\nsWMYPHgwrly5AomxmvKJqF7KzdUcawCoksHAgcDChYCLi2njM0dGTQ4uLi54/fXXAQBdunSBnZ0d\nrl+/jtatW2vtGxMTo/5dJpNBJpMZKUoisnQFBZpjDW7frmwzmDEDeP5543UvNaSkpCQkJSUZ5NwG\n7cqak5ODiIgIdYP0okWLcPv2bcTGxuLChQuQyWTIy8uDlZXm5LBskCaiJ3H7tqqtoCIZXL0KhIZW\n9ijy8gIe+pipkyyiQXr48OFITk7GrVu34OLiglmzZuEf//gHoqKi4O3tDQBYvXq1VmIgIqpOSQmw\nf39lMvjtN9WMpT17qtoMAgJU01RQ7XEQHBGZvdJS4MiRymSQlqYabFZRM3jhBcDeMMsaWBSLGOfw\nNJgciOq38nLVYLM9e1TJ4NAhoHPnynaDl18GGjc2dZTmh8mBiOoUIYAzZyprBsnJqtlKKxa5CQ1V\ndTelx2NyICKLJgRw+XJlzWDfPqBJk8qaQY8eQKtWpo7S8jA5EJHFyc/XHGugUFTWDHr0ANq1M3WE\nlo/JgYjM3s2bmmMNbt1SJYGK2kGnTnVjrIE5YXIgIrNz967mWIPsbNUayBU9iqTS+jHWwJSYHIjI\n5O7fBw4erGw3OHNG1aW0omYQGAjY2po6yvqFyYGIjK6sDDh6tLJmcOwY4Otb2W7w4otAgwamjrJ+\nY3IgIoMrLwdOnlQlgj17gAMHgI4dNccaNGli6iipKiYHItI7IVTTUFTUDJKSgNatK2sG3bsDzZqZ\nOkp6HCYHItKL7GzN7qUNG2qONWjTxtQR0pNgciCiWvn9d83upXJ5ZTLo2RNo397UEdLTYHIgohop\nLFQ9HqpIBtevAzJZZTJwd+dYg7qEyYGIdCoqAlJTK5PBpUuqhuOKdgMfH8Da2tRRkqEwORARANVj\noUOHKpPBqVNAly6VNYMuXTjWoD5hciCqpxQK1fiCimRw9Cjg7V2ZDLp1UzUqU/3E5EBUTyiVqtpA\nRTJITVU1GldMSRESAjRtauooyVwwORDVUUIA589rjjVo0aKyZiCTqV4T6cLkQFSHXLmiOdbAxqay\nZtCjh2rRG6Ka0Odnp8HmSIyKikKrVq0glUq13lu4cCGsrKxQWFhoqOKJzNa1a8DGjcD48YCbGxAc\nDCQmqlY7S0kBcnKAlSuByEgmBjIdg9UcUlNT4eDggFGjRiEzM1O9PTc3F+PHj8f58+eRlpaGZjrG\n47PmQHXJn3+qlr2sqBnk52uONfD05FgD0g99fnba6OUsOoSEhCAnJ0dr+9SpUzF//nwMGjTIUEUT\nmVRxseZYgwsXVL2IevYEVq8G/P051oDMn8GSgy4///wznJ2d4ePjY8xiifQiJSEBiXFxsHnwAAp7\ne/SNjkbogAF48AA4fLgyGWRkqNYy6NUL+OIL1WMjOztTR0/0ZIyWHEpKSvDJJ59g165d6m2Pq/7E\nxMSof5fJZJDJZAaMjujxUhISsHPyZMzJylJve+d4Fqa7ACeyBsDTU1Uz+M9/gJdeAho1MmGwVG8k\nJSUhKSnJIOc2aG+lnJwcREREIDMzE5mZmejduzca/f+/mry8PLRt2xZHjx6Fk5OTZlBscyAzMyMs\nDB8nJmptn+Afhvn7duCZZ0wQFNFDLKLN4WFSqRTXr19Xv27fvv0jG6SJzMnt20DOmQc632vTVM7E\nQHXSI7uyZmdn47XXXkNwcDDmzJmDsrIy9XuvvvpqtScePnw4unXrhgsXLsDFxQWrVq3SeF/C7hlk\n5srLgeXLVTOXFkvsde/DdTGpjnrkY6XQ0FD89a9/xUsvvYRly5YhPT0dW7duRYsWLeDv74+MjAzD\nBcXHSmRi+/cD0dGqtoO4OODeH9ptDh+6uSF88WKEDhhgwkiJKhnlsVJhYSEmTpwIAFiyZAnWr1+P\n0NBQ/PLLL3opmMgc5eUBH3yg6oo6fz4wbFjFGARVAvgoPh7WcjnKGzRA+KRJTAxUZz2y5uDl5YX0\n9HTY21dWp3fv3o2JEyeiuLgYf/zxh+GCYs2BjEwuBxYuBBYtAiZOBP79b6BxY1NHRfRkjDJ9xujR\no3H06FGNbb1798bmzZvh7e2tl8KJTE0I4KefAC8vIC1NNQX2xx8zMRBx4j2qt86eBSZPVq2rvHgx\n0Lu3qSMiejomm3gvICBAL4USmdLt28CUKUD37kBEBHDiBBMD0cOeKDnw2zxZsqpdU+/fV9UcoqO5\njCaRLk80CG4Ae2aQharaNfXXXwFWgoke77E1h4p5kHbv3g0A+Pjjjw0fEZEe5eUBf/0rMHw48P77\nqi6qTAxE1XtsckhOTsaBAwcMNrETkaHI5cCcOYCvL9ChA3DunCpBcGA+Uc08MjnExsaitLQUvXr1\nQmlpKWJjY40ZF1GtPNw19dgxdk0lqo3HdmVduXIlCgoK4OTkhKioKOMFxa6sVAvsmkr1ndG6st69\nexf/+te/cO/ePb0URmQI7JpKpH+PTQ5eXl4AAE9PT6MEQ/Qk2DWVyHAe25U1OTkZjRo1QlJSEnrz\nqxiZkYquqY0bA9u3q9ZlJiL9YYM0WZSHu6ampDAxEBkCG6TJIlTMmvr558Df/sZZU4l0YYM01RsV\nXVM9Pdk1lciYajQrqxACd+7cgVKpVG8z5NrPrDkQwK6pRE/KqLOyxsfHw8nJCb6+vggMDERgYCCC\ngoL0UjiRLuyaSmR61SaHhQsX4rfffsOVK1eQnZ2N7OxsXL58uUYnj4qKQqtWrSCVStXbpk6dCk9P\nT3h6emLgwIG4detW7aOnOoVdU4nMR7XJwcPDAw4ODrU6+ZgxY7Bjxw6NbRERETh9+jTOnj0Lb29v\nTuZHAFRdU7t0AdauVXVNXbYMaNnS1FER1V/VTtk9Z84cBAcHo2vXrrCzswOgeq4VFxdX7clDQkKQ\nk5Ojsa1Hjx7q31966SWsXbv2CUOmuiQvD/jgA9VsqfPnA8OGcXI8InNQbXJ4++230bt3b0ilUlhZ\nWUEIAYme/vUuX74cw4YN08u5yLI83DX166/ZA4nInNRosZ/PP/9c7wXPmTMHdnZ2GDFihM73Y2Ji\n1L/LZDLIZDK9x0DGJwTw88/A1KmAn5+qa2qHDqaOisgyJSUlGWxJhWq7sk6fPh2urq4YOHAg7O3t\n1dtr2pU1JycHERERyMzMVG9bs2YNli1bhr1796JBgwbaQbEra53ErqlEhqXPz85qk4Orq6vOx0jZ\n2dk1KuDh5LBjxw689957SE5ORosWLXQHxeRQp9y+DcTEAOvXAx99pHqMxB5IRPpn1OTwNIYPH47k\n5GTcvHkTrVq1QmxsLObOnYvS0lJ1zaNr165YunSpZlBMDnVCeTnwzTfAf/4DDBqkGtnMHkhEhmOU\n5JCcnPzYhufQ0FC9BKAzKCYHi1d11tS4OE6OR2QMRkkOAwcO1JkcTp06hby8PJSXl+slAJ1BMTlY\nrKpdUz/7DBg6lF1TiYxFn5+dj+yttG3bNo3XBw4cwOzZs9GmTRssWbJEL4VT3VG1a+o777BrKpGl\nq7Yr6+7du9WjmKdPn44+ffoYPCiyHBWzpr73HrumEtUlj605zJkzB46Ojpg9ezZCQkKMGRdZgKpd\nU5cvZ9dUorrkkW0OVlZWcHZ2hq+vr/ZBEgm2bt1quKDY5mDW2DWVyDwZpc1h7969jyxMX9NnkPlL\nSUhAYlwcbB48QJmdPZSdorFqywAMGqSqObBrKlHdZNBxDrXFmoN5SElIwM7JkzEnK0u97a0GbpDN\nW4wx0QNMGBkR6WLUxX6o/kqMi9NIDACwRp6Fy7/GmygiIjIWJgfS6eZNIOfMA53vWcvlRo6GiIyN\nyYE0lJQAn3yiWo2txMpe5z7lOiZLJKK65YmTw4cffoh58+Zxec86RqFQDVzr2FG1ZvOhQ8CUr6Ix\n3c1NY78P3dzQZ9IkE0VJRMbyxA3SP/74I7KysnDy5EmDreLGBmnjEQLYuhX4978BJyfVamzBwZXv\npyQkYFd8PKzlcpQ3aIA+kyYhdAAbo4nMkcXMylpbTA7GcfCgah6kO3eAefOAfv04DxKRJTNqb6Wp\nU6eiuLgYpaWl6NmzJxwdHbFq1Sq9FE6mce4c8NprqvWax49XPUbq35+JgYgqVZsc9u7di8aNG+OX\nX35Bhw4dcOXKFSxatMgYsZGe/f478PbbQEgI0K0bcOEC8NZbgLW1qSMjInNTbXIoKysDAPz6668Y\nPHgwnnnmGVjz08Si3LkDTJ8OSKWAo6MqKbz/PsBOR0T0KNUmh/79+8Pb2xvp6eno1asXbt26BRub\naidzJTPw4IFqreZOnVS1howMVYPzs8+aOjIiMnfVNkjL5XLcvXsXzZo1g42NDYqLi3Hnzh385S9/\nMVxQbJB+Kkol8N13wIwZgIcH8OmnqloDEdVtRu2tFBAQgPT09Gq36ROTQ+3t3g1MmwbY2Kh6IMlk\npo6IiIzFKLOy/vHHH/j9999RUlKC9PR0CCEgkUhQXFyMu3fvVnviqKgoJCQkwMnJCZmZmQCAwsJC\nDB06FNevX0ebNm2wadMmODo66uVC6ruMDFVSyM5WjXAeMoS9j4io9h5Zc1izZg1Wr16N48ePIygo\nSL29YcOGGDlyJIYPH/7YE6empsLBwQGjRo1SJ4dJkybBzc0NU6ZMwRdffIHs7GwsXrxYOyjWHGos\nO1u1psKePar/jh/PtRWI6iujPlbasmULhgwZUquT5+TkICIiQp0c3NzccPToUTRv3hw3b97Eiy++\niEuXLmkHxeRQrZs3gTlzgG+/BaKjVct0OjiYOioiMiWjDoLr2rUrIiMj1WtHnz9/HsuXL69VYTdu\n3EDz5s0BAC1atEBBQUGtzlOfVZ0Yr7RUteDOzJlMDESkX9X2SY2MjMTEiRMxZ84cAKpv/4MHD8bb\nb79t0MBiYmLUv8tkMsjqWctq1RXYFPb26PX3aGQVDEBMjGoA26FDqknyiKj+SkpKQlJSkmFOLqoh\nlUqFEEL4+fmpt/n6+lZ3mBBCiOzsbOHt7a1+3aFDB3Hjxg0hhBAFBQXCzc1N53E1CKtOS962TXzo\n5iaEal48IQARaesmXvTaJo4cMXV0RGSu9PnZWe1jpcaNG2tMz52RkQF7e93z/Fenf//+WLduHQBg\n3bp16N+/f63OU9fpWoFtbVkWejnHa8yYSkRkKNU+Vvr888/Rt29fXL58GaGhobh69So2b95c7YmH\nDx+O5ORk3Lx5Ey4uLpg1axZiY2MxdOhQrFy5Eq1bt8b//vc/vVxEXWPzQPcKbDZcgY2IjKTa5NC1\na1ccPnwYp06dghACPj4+sLOzq/bEGzdu1Ll9165dTx5lPXNHwRXYiMi0qn2sVFRUhNjYWHz55ZcI\nCgpCbm4ufvnlF2PEVi+dOwf8+Fs0JjlxBTYiMp1qxzkMGjQI3bp1w7fffoszZ85ALpcjODgYp06d\nMlxQ9XScw7lzQK9ewNy5gGtzrsBGRE/GqIPgpFIpMjMz4e/vj4yMDACAn58fTpw4oZcAdAZVD5ND\n1cQwapSpoyEiS2TUQXB2dna4f/+++vXVq1f1UjBVYmIgInNTbYP0zJkz0atXL+Tl5WHUqFHYt29f\nrUdIkzYmBiIyR49NDkqlEnK5HD/++CNSU1MBAPPnz0fr1q2NElxdx8RAROaq2jaHF154AUeOHDFW\nPADqR5sDEwMR6ZtR2xx69OiBRYsWITc3F4WFheofqj0mBiIyd9XWHFxdXSHRsWpMdna24YKqwzUH\nJgYiMhSjdmWVy+Vo8NDIXF3b9KmuJgcmBiIyJKM+VurWrVuNttHjMTEQkSUx2BrSVImJgYgszSOT\nQ2JiIlavXo38/Hy899576u0NGzbE7NmzjRJcXcDEQESWqNo2h++//x6DBw82VjwA6k6bAxMDERmT\nUdsccnJyUFxcDCEEoqKi4OPjg4SEBL0UXpcxMRCRJas2OaxZswaNGzfG9u3bcfv2bWzYsAEzZsww\nRmwWi4mBiCxdtcmhooqyY8cOREZGwtvb2+BBWTImBiKqC6pNDn5+fujfvz927NiB8PBw3Lt3zxhx\nWSQmBiKqK6ptkFYoFEhPT0enTp3g6OiIwsJC5ObmwtfX13BBWWCDNBMDEZmaUUdIG8LMmTOxceNG\nWFlZwdvbG99++y0aNWpUGZSFJQcmBiIyB0btraRvly5dwtq1a3H69GmcO3cO1tbW2Lhxo7HD0Bsm\nBiKqi6pd7EffmjVrBltbWxQXF8PKygolJSVo166dscPQCyYGIqqrHltzKC8vh6enp14LbNasGd57\n7z0899xz+Mtf/gJHR0f07t1br2UYAxMDEdVlj605WFtbo3PnzsjPz0fbtm31UmBWVha++OIL5OTk\n4JlnnsEbb7yB9evXY8SIERr7xcTEqH+XyWSQyWR6KV8fmBiIyBwkJSUhKSnJIOeutkE6JCQEGRkZ\nCA4ORuO96CKvAAATq0lEQVTGjVUHSSTYunVrrQrcuHEj9uzZgxUrVgAA1q5di4MHD+Krr76qDMqM\nG6SZGIjIXOnzs7PaNgd9T7L3/PPPY86cObh//z4aNGiA3bt3w8fHR69lGAoTAxHVFybpyhoTE4P1\n69fDysoK/v7+WL16tcbiQeZYc2BiICJzZ9RxDsnJyZg0aRIuXLiA8vJylJeXw8HBwaBrOphbcmBi\nICJLYNTHSn//+9/x448/4s0338Tx48exYcMGnDlzRi+Fm6uUhAQkxsXB5sED3FHY48ffojF30QAm\nBiKqN6pNDra2tujYsSNKS0thbW2NkSNHIjAwEJ9++qkx4jO6lIQE7Jw8GXOystTbFE5ZcG0OAANM\nFhcRkTFVmxwcHBxQVlYGb29vTJs2Da1atUJJSYkxYjOJxLg4jcQAAPEFWfgoPh6hA5gciKh+qHb6\njLVr16K8vBxLly6FtbU18vLyat2N1RLYPHigc7u1XG7kSIiITKfamoOrqyuKiopw/fp1fPLJJ8aI\nyaTK7O11bi+v0puKiKiuq7bmsHnzZvj7+6N///4AgNOnT2NAHX68cqdNNN5q4Kax7UM3N/SZNMlE\nERERGV+1XVm9vLxw4MAB9OjRAxkZGQAAHx8fnDp1ynBBmagra2oq8MYbwJK5CTi5KR7WcjnKGzRA\nn0mT2N5ARGbPqF1ZbWxs4OjoqLFNoVDopXBzcuMG8Ne/AitXAv37D8CQMUwGRFR/VZscPD09sX79\neigUCmRnZ2Pp0qXo0qWLMWIzGqVSNbhtxAjg/5+eERHVa9W2OXz99ddIS0uDEAIRERFQKpUak+TV\nBfPnA0VFgJ6nkSIislgmmVupOsZsc6hoZzh2DHBxMUqRREQGYdQ2h9OnT2PBggXIzc2FUqlUB7B3\n7169BGBKVdsZmBiIiCpVW3Po3LkzpkyZgoCAAFhbW6sOkkgQGBhouKCMUHNQKoEBAwBfX6COzgRC\nRPWMUWdlDQ4OxtGjR/VSWE0ZIzl8+imwbRuwbx9ga2vQooiIjMIoyaGwsBBCCMTHx6N169YYNGgQ\n7KuMHm7WrJleAtAZlIGTA9sZiKguMkpycHV1hUQieWQAly9f1ksAjzq/oZLDjRtAQACwbBm7rRJR\n3WLUx0qmYKjkwHYGIqrL9PnZ+chxDkePHsW1a9fUr1esWIF+/frh7bffxvXr1/VSuLFxPAMRUc08\nMjmMHz8ejRo1AgDs2bMHH330EcaNGwcnJyeMGzfOaAHqS2oq8MUXwMaNbIAmIqrOY0dIN23aFACw\nZcsWTJgwAYMHD8bHH3+MS5cuPVWht2/fxhtvvAFfX194eHjg0KFDT3W+6nA8AxHRk3lkcpDL5Sgr\nKwMAJCUlITQ0VP2ejU21Y+cea/z48Xj99ddx8uRJnDlzBl5eXk91vsfhvElERE/ukZ/yb775Jrp3\n746WLVvCxsYG3bt3BwDk5OSgcePGtS7w1q1bOHHiBDZv3gwAsLKyUtdQDGHePLYzEBE9qcf2VkpK\nSsKNGzcQFham/gC/ePEiioqKEBAQUKsCDx8+jKlTp8LZ2Rlnz55FQEAAli5dCgcHh8qg9NTizvEM\nRFSfWHRX1oMHD6J79+44ePAgunTpgilTpsDe3h7z5s2rDEoiwcyZM9WvZTIZZDJZjc6fkpCAxLg4\nKIseICXdHq/9KxrvxXBtBiKqe5KSkpCUlKR+HRsba7nJITc3FyEhIcjJyQEA7N+/H7Nnz8bOnTsr\ng6pl9ktJSMDOyZMxJytLvW26mxvCFi/mSm5EVOcZZZyDobi4uKBFixa4cOECAGD37t3w8PDQy7kT\n4+I0EgMAzMnKwq74eL2cn4iovni6bke19M0332DEiBEoKSlBu3btsH79er2c1+bBA53breVyvZyf\niKi+MEly8PX1xbFjx/R+XkWViQGrKm/QQO9lERHVZUZ/rGRIfaOj8Za9m8a2D93c0GfSJBNFRERk\nmUxSczCUxq0HILUpMN0/HrYP5Chv0ADhkyaxMZqI6AnVqVlZR48GPDyAadP0HxMRkbmz6HEONVGb\nCywoADp3Bi5dApo3N1BgRERmzKK7shrK8uXAkCFMDERE+lAnag5lZYCrK7B9O+DjY7i4iIjMGWsO\nD/nhB6BjRyYGIiJ9qRPJIS4OiI42dRRERHWHxSeHtDQgLw945RVTR0JEVHdYfHKIjwfeeQd4yvWH\niIioCotukGb3VSKiSmyQ/n/svkpEZBgWW3Ng91UiIk2sOYDdV4mIDMnikkNKQgJmhIVh/XgZOt4O\nQ0pCgqlDIiKqcyyqj4/WMqAngemTVb9z5lUiIv2xqJoDlwElIjIOi0oOXAaUiMg4LCo5cBlQIiLj\nMFlyKC8vh7+/PyIiImp8TN/oaEx4hsuAEhEZmskapBcvXgxPT08UFRXV+JjQAQPwt6ZAtEc8mtlz\nGVAiIkMxSXLIy8vDr7/+iunTp+Pzzz+v8XG5uUDB/QFYtH8ArK0NGCARUT1nksdK7777Lj777DNY\nWT1Z8YmJQO/eYGIgIjIwo9cctm3bBicnJ/j7+yMpKemR+8XExKh/l8lkkMlk2LkT6N/f8DESEVmC\npKSkx36OPg2jz6304YcfYu3atbCxsYFcLsfdu3cxePBgfPvtt5VB6ZgfpLwcaNkSyMwE2rY1ZsRE\nRJZBn3MrmXTiveTkZCxYsAC//PKLxnZdF3jkCDBunCo5EBGRtjo18Z5EIqnRfjt3AmFhBg6GiIgA\nWNCU3S+9BMTEAH36mCYmIiJzV2ceKz3Kwxd4+zbw3HOqld84GJqISLc69VipJvbsUdUcmBiIiIzD\nIpID2xuIiIzL7JODEEwORETGZtbJISUhAVNDwuB+TYZ1U7jqGxGRsZjtSnAVq74tqljcJxGYnsVV\n34iIjMFsaw5c9Y2IyHTMNjlw1TciItMx2+TAVd+IiEzHbJND3+hoTG3LVd+IiEzBrEdIz5yagIyN\n8QjorFr1rQ9XfSMieqR6M31GTIxqqu7Zs00dERGR+as302dcvgx06GDqKIiI6h8mByIi0sLkQERE\nWsy2zaG4WKBZM6C4GLC2NnVERETmr160OeTkAK6uTAxERKZgtsnhi8gweBbIMCOME+4RERmbSSbe\ny83NxYgRI/Dnn3+itLQUY8eOxQcffKCxz/KMRNUvnHCPiMjoTFJzsLOzw9KlS5GZmYm0tDSsWLEC\nJ0+efOT+nHDv6SQlJZk6hDqF91N/eC/Nl0mSQ6tWreDt7Q0AcHBwgI+PD37//ffHHsMJ92qP/wD1\ni/dTf3gvzZfJ2xxycnJw7NgxvPzyy4/djxPuEREZj0mTw7179/DGG29g8eLFaNKkySP344R7RETG\nZbJxDmVlZRg4cCDCw8Px7rvvarzXtk0b/H7tminCIiKyWG5ubrh06ZJezmWS5CCEwFtvvYXmzZtj\n0aJFxi6eiIiqYZLksH//foSGhsLHxwcSiQQAMHfuXISHhxs7FCIi0sEsp88gIiLTMnlvpYft2LED\nUqkUnp6emDdvnqnDsQiurq7w8fGBv78/goODAQCFhYXo06cPfHx8EBYWhtu3b6v3nzt3Ljw9PSGV\nSpGYmGiqsM1GVFQUWrVqBalUqt5Wm/uXlpYGf39/eHl5YfLkyUa9BnOh617GxMTA2dkZ/v7+8Pf3\nx/bt29Xv8V4+Xm5uLkJDQyGVStG5c2fMnz8fgJH+PoUZkcvlwtXVVeTl5YmysjIRFBQk0tPTTR2W\n2XN1dRW3bt3S2PaPf/xDLFq0SAghxKJFi0R0dLQQQojjx4+LoKAgoVAoRF5ennB1dRUPHjwweszm\nJCUlRaSnpwtvb2/1tie5f6WlpUIIIaRSqfrvddCgQeKHH34w8pWYnq57GRMTIxYuXKi1L+9l9a5d\nuyYyMzOFEEIUFRWJjh07ihMnThjl79Osag5HjhyBl5cX2rZtCxsbGwwdOhQJnFepRsRDTwd//fVX\njBw5EgAQGRmpvo8JCQkYNmwYrK2t0bZtW3h5eeHo0aNGj9echISE4Nlnn9XY9iT378iRI7h69SqU\nSiX8/f21jqlPdN1LQPvvE+C9rAldA4bz8/ON8vdpVskhLy8PLi4u6tfOzs7Iy8szYUSWQSKRqKuY\nS5YsAQDcuHEDzZs3BwC0aNECBQUFAID8/Hw4Ozurj+U91u1J719+fr7G327btm15X6v48ssv4eHh\ngcjISBQWFgLgvXxSVQcMG+Pv06ySQ0XPJXoyhw8fRnp6Ovbs2YNVq1Zh9+7dpg6JSO3vf/87srKy\ncPbsWbi5uSE6OtrUIVmce/fuYciQIVi8eDGaNm1qlDLNKjk4OzsjNzdX/To3N1cj25FuTk5OAICW\nLVtiyJAhOHbsGFq2bImbN28CUH0Lrtjn4Xv8cG2NVJ70/unaXvUbXH3WokULSCQSSCQSTJgwAceO\nHQPAe1lTZWVlGDx4MEaMGIFXX30VgHH+Ps0qOXTp0gWnT59Gfn4+ysrK8L///Q/9+vUzdVhmraSk\nBCUlJQCA4uJi7NixA15eXujfvz/WrVsHAFi3bh369+8PAOjfvz82bdoEhUKBvLw8nD59Wt3DiSo9\n6f1zcXGBlZUVMjIyAADr169XH1PfVTzyAIDvv/8eXl5eAHgva0IIgbFjx8LT01NjJgmj/H0apIn9\nKfz666/Cy8tLeHh4iE8++cTU4Zi9y5cvCx8fH+Hr6ys6duwoPvroIyGEELdu3RK9e/cWUqlU9OnT\nR/z555/qY+bMmSM8PDyEl5eX2LFjh6lCNxvDhg0Tbdq0Eba2tsLZ2VmsXLmyVvfv+PHjws/PT3h6\neopJkyaZ4lJM7uF7+c0334jIyEjh4+Mj3N3dRVhYmMjLy1Pvz3v5eKmpqUIikQhfX1/h5+cn/Pz8\nxPbt243y98lBcEREpMWsHisREZF5YHIgIiItTA5ERKSFyYGIiLQwORARkRYmByIi0sLkQGblo48+\nQufOneHr6wtfX1/1pICurq7qOXnMwZo1a/DHH3/U+vj8/Hz06dMHXl5e8Pb21lroKjY2VusYXdsq\npKSkICAgALa2tvj+++9rHRdRBRtTB0BUISkpCXv27MHp06dha2uLu3fvqkd/SyQSnTN7Po3y8nJY\nW1s/8n2lUgkrK93fn1avXg1vb2+0adOmVmVPnz4dr7zyCiZNmgQAOHfuHADgiy++QNOmTVFcXIwZ\nM2age/fuOHPmjNa2Pn36aJyvXbt2WLNmDRYsWFCreIgexpoDmY0bN26gZcuWsLW1BQA0bdoUrVu3\nVr8fHx+P4OBgdO7cGadPnwagmpBs+PDh8PX1hZeXFzZv3gxANYNlSEgI/P394e3tjeTkZACqBBQS\nEoLXXntNY0GaCg4ODvjnP/+JoKAgHD58GLGxsQgODoa7uztGjx4NpVKJLVu24Pjx4xgxYgQCAgIg\nl8tx6NAhdO3aFT4+PujRowfy8/Orvda2bduqX7u7uwMApkyZgoKCAsTFxaFfv37o06ePzm0Pa9eu\nHaRS6SOTGdET0/+Ab6LauXPnjvD29hbu7u5i4sSJYvfu3er3XF1dxVdffSWEEGLp0qXirbfeEkII\n8e6774p169YJIYT4888/hZubm7h79664f/++epGTCxcuCKlUKoQQYt++faJx48YaUzhUJZFINBZB\nuXPnjvr3kSNHii1btgghhJDJZCItLU0IIcSDBw9EYGCguHnzphBCiO+++06MGDHisde6bds28cwz\nz4iePXuKWbNmidzcXCGEEIsXLxbffPONeP/998X06dPFrl27dG57lNGjR6tjJHoafKxEZqNp06Y4\nceIEkpOTkZKSgsjISMyePRvjxo0DAAwaNAgAEBAQgC1btgAAEhMTsWvXLvXjFIVCgdzcXLRq1Qrv\nvPMOTp8+DTs7O1y4cEFdTnBwsMa39qqsra3VM18CwLZt27Bw4UIoFArcunVL/Q0fqFzA5tSpU7h4\n8SJ69+4NQPW4qlWrVo+91gEDBuDSpUvYtWsXtm/fjoCAAGRmZqqns46NjcXMmTMBQH3eqtuIDI3J\ngcyKtbU1evbsiZ49e0IqlWLFihXq5GBvb6/eR6lUqo/ZunUr2rdvr3GeDz/8EK6urti0aRPKy8vR\noEED9XuNGzd+ZPkNGjRQryty7949TJkyBadOnULr1q0RGxsLhUKh3rdiPyEEfH19kZKS8kTX2qJF\nCwwfPhzDhw9HREQEkpKSMHToUADQmQSqbpsxYwYSEhIgkUiQnp6usR/XRSF94ANKMhsXL15ETk6O\n+nVGRka1a02EhYVh6dKl6tcVbRFyuVz97X3Dhg0oLy9/4ngUCgWsrKzg6OiI+/fvq9szAKBhw4Yo\nLi4GAPj4+ODq1avq6ZAVCgXOnz8PAFiyZAm+/PJLrXOnpqZCLpcDAIqKipCVlfVE62p8/PHHyMjI\n0EoMQgi9N9xT/cTkQGajqKgIw4YNg1QqhYeHB06ePInZs2cD0Pw2XLFwDADMnj0bBQUF8PT0hI+P\nD6ZNmwYA+Nvf/oavv/4agYGBOHPmDBwcHDSOf5Sq7zk6OmLMmDFwd3dHeHg4XnjhBfV7I0eOxJgx\nYxAQEAAhBDZv3oyJEyfCz88Pfn5+6gbwc+fOoUWLFlrlHDp0CIGBgfD19UVQUBBGjBiBbt261ea2\nAQCOHTsGFxcXbNmyBRMmTNDZ2E70JDhlN5EBRURE4Mcff4SNDZ/gkmVhciAiIi18rERERFqYHIiI\nSAuTAxERaWFyICIiLUwORESkhcmBiIi0MDkQEZGW/wOmW+2j75qxkQAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x35cb850>"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 15.2 - Page No :774\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Variables\n",
+ "a = array([651, 1361, 2086, 5089, 7575, 11140, 19270, 25030])\n",
+ "tau = array([3.71, 7.49, 11.41, 24.08, -35.21, 46.25, 77.50, 96.68])\n",
+ "\n",
+ "# from the graph\n",
+ "betao = -4.3790154;\n",
+ "beta1 = 0.8851;\n",
+ "\n",
+ "# Calculations\n",
+ "K = math.exp(betao);\n",
+ "n = beta1;\n",
+ "plot(a,tau);\n",
+ "suptitle(\"Capillary shear diagram for polyisobutylene L-80 in cyclohexane.\")\n",
+ "xlabel(\"Pseudoshear rate\")\n",
+ "ylabel(\"Wall shear stress \")\n",
+ "\n",
+ "# Results\n",
+ "print \" The final rheological model_ is tauw = %f*8*Uz,avg/do)**%f\"%(K,n);\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The final rheological model_ is tauw = 0.012538*8*Uz,avg/do)**0.885100\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEhCAYAAABV3CYhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVPX6wPHPgPuSlriUmCipbMOmoigSpmTill5LvWq5\nlXZT0+re1O79oZbZZultuVcrrdTKLZdEyRUVt9wFLXcULBVxQTZh4Pv748RcUBAQZg4zPO/Xy5cw\nzDnf53CGeea7G5RSCiGEEOI+OegdgBBCCNsmiUQIIUSpSCIRQghRKpJIhBBClIokEiGEEKUiiUQI\nIUSp2GwiuXTpEgMHDsTLywtvb2+6du3KiRMn7utcL7zwAr/99hsALi4uXLt2DYBatWqVWbxFCQkJ\n4cCBA1YrDyAqKopevXoB8NNPP/Hee+9Ztfzi+vjjj2nVqhVDhw61Wpl5XwcF+f3333nmmWdKfN64\nuDiMRmOJjtm2bRu7d+8u8nnDhg1jxYoVJY6pJIrzNxEeHk7Lli1xc3Ojf//+pKWlAXDt2jVCQ0Px\n9vamW7du3Lhx465j7/f3WlpF3e/7uW8ViU0mkuzsbJ566il69uxJbGwsR48e5aOPPiIxMfG+zvfF\nF1/g5uYGgMFgMD+e9+uiKKUozZSckpRVXCWJqVevXrzxxhtWLbO45s2bx9atW1m4cGGxnp+dnV3q\nMou6H4888gjLli0rdTnFsXXrVnbt2lXk8wwGg0VeR3eWcS+nT59m4cKFxMbG8ttvv+Ho6Mj3338P\naAmmR48eHD16lO7duxMeHn7X8db8veZl6d+bvbPJRLJhwwYaNGjAkCFDzI95e3sTFBREamoqnTt3\npnXr1ri5uZlflHFxcbi5ufHcc8/h5eVFz549zZ+UQkJCOHjwYKHlpaSkFHrOVq1aMWzYMHx9fXn7\n7beZOHGi+bgvvviCV199Nd+5TCYTQ4cOxWg04u3tzUcffWT+2bJly+jQoQPNmjVjy5Yt5uePHTsW\nHx8f3N3d+fe//12imC5evJiv/NWrV9OiRQvatWvHypUrzY9//fXXjBs3DoA1a9bQrl07jEYjwcHB\n/PHHHwBcvnyZoKAgfH19efHFF82f4u4sMyEhgTFjxtC2bVtatmzJpEmTzOW4uLjw5ptv0qZNG9q0\nacPBgwfp3r07Li4ufPLJJ3f97seMGcPZs2d56qmnmD17NlevXqVbt24YjUZat25tvm9Tp05l6NCh\nhISEMGzYsHzniIqKIjg4mN69e9OqVSuGDx9uTnYLFizAw8MDDw8PJkyYkO84pRTh4eHMmTPH/Nib\nb77Jv//9b+Li4vDy8gLgyJEjtGvXDj8/P7y9vTlz5gwAM2bMwN3dHXd393y1PZPJVODrMO+n4v37\n99O5c2fOnz/P3Llz+fjjj/H39yc6OprmzZtjMpkASE5Ozvd97nXt3r2bwMBAvL296dy5s/l1EBIS\nwqRJk4r9Oiuphx56iMqVK5OamorJZCItLY2mTZsCsG7dOnOtcsiQIURERNx1fN5P/l9//TX9+vWj\nZ8+eNG/e/K77k2vnzp20adMGX19fAgICSElJ4fHHH+fIkSPm5wQFBRETE8OtW7cYOHAgnp6e+Pj4\nFFiDK+y+ZWdnM2bMGLy8vAgJCSE1NRWAEydO0LlzZ3x8fGjXrh3Hjh3DZDIREBDAtm3bAJg8eTL/\n/Oc/Ae21GhAQgJubG8OGDSMnJwew/L2xKGWD3n33XTVp0qQCf2YymVRqaqpSSqnExETl4uKicnJy\n1Llz55TBYFB79+5VSin1wgsvqHfeeUcppVRISIg6cOCAUkopFxcXlZSUpJRSqlatWkWe08HBQe3f\nv18ppVRKSopydXVVJpNJKaVUhw4dVGxsbL749u7dq7p3727+PiUlxRzDG2+8oZRSat26derxxx9X\nSik1Z84c9fbbbyullMrIyFD+/v7q5MmTxY4pr7S0NNWoUSN17tw5pZRSgwYNUr169VJKKbVgwQI1\nduxYpZRSN2/eNB/zxRdfmB8fNWqU+uCDD5RSSm3cuFEZDAaVlJRUYJm55zCZTCokJMT8MxcXFzVv\n3jyllFITJ05URqNRpaenq8TEROXk5HRXzHfek7z3bdu2bcrd3V0ppVR4eLhq06aNysrKuuv4rVu3\nqmrVqqkLFy6onJwc1a1bN/Xdd9+p8+fPq8aNG6vr16+r7Oxs1bVrV/XDDz/kKzMuLk75+/srpZTK\nzs5Wrq6u6tq1a+rcuXPKy8tLKaXU3/72N7VkyRLzc9LT09XOnTuV0WhUt2/fVunp6crT01Pt2bPn\nnq/DvNe5b98+FRISopRSaurUqWrWrFnm6xk+fLhatWqVUkqpuXPnqtdff10ppdSwYcPUihUr1O3b\nt5W/v7+6evWqUkqpH374QQ0ePFgpVfLX2Z1y/ybuZe7cuapWrVqqfv365nKVUqp27dr5nnfn90qp\nfL/XBQsWqObNm6vU1FSVkZGhHn30UXX27Nl8z8/IyFCNGzdWhw8fVkppr3GTyaS++eYbNWHCBKWU\nUidOnFBt2rRRSik1fvx48+9Lqf+9TnN/9/e6b5UqVVIxMTFKKaWeffZZtWDBAqWU9nd+6tQppZRS\ne/bsUR07dlRKKXXs2DHl7u6uNm7cqPz8/Myvzbx/X0OHDlXLly9XSpX+3ujJJmsk96qGZmVlMWHC\nBLy8vAgNDeXKlSvmT9RNmjQhICAAgEGDBhEdHV2s8u51zqZNm9K6dWsAatasyRNPPMFPP/3Eb7/9\nRlZWFp6envnO1bJlS06fPs348eNZt24dNWrUMP+sT58+APj7+xMfHw9ota9vv/0WPz8/2rdvz40b\nNzh79iwmk6lYMeUVExNDy5YtcXFxMf8OVAHNUKdPnyYkJASj0ciHH35o7nvatWuXuf26a9euPPjg\ng+Zj7izzq6++wsfHh9atW3Ps2LF8/Vc9e/YEwGg0EhgYSLVq1XBycqJGjRoFtpvntXPnTgYNGgRA\ncHAwKSkpXL16FYPBQO/evalUqVKBxwUEBNCkSRMMBgMDBgwgOjqavXv30qVLF+rWrYuDgwODBg1i\nx44d+Y5r2rQp9erV4/Dhw2zYsAF/f/981w3ap923336b9957j1OnTlGtWjWio6Pp168fVapUoVq1\navTr148dO3ZgMBju63WY9z6NGjWKBQsWANqn9uHDh+d73tGjRzl9+jRdu3bFz8+PGTNmcPnyZfNz\nSvI6K6kzZ84we/Zs4uLi+P3330lNTWXx4sUlPk+uLl26UKNGDapWrYqnpycJCQn5fn706FFcXFzw\n8fEBoHr16jg6OtK/f3/Wrl2LyWRi/vz55t/R5s2bGTNmjPn4Bx54wPy1Uuqe961Zs2bmWmjr1q2J\nj48nKSmJgwcP8swzz+Dn58eYMWO4evUqAB4eHgwZMoRevXqxYMEC82tz7dq1tG7dGh8fH7Zs2ZLv\nb8OS98aSCv6rK+eMRiOzZ88u8GfffvstycnJxMTEmG9+brU/bwJSShW7XfRe56xZs2a+544aNcpc\nNR4xYsRd56pbty6HDx8mMjKSL7/8kuXLlzN//nwAqlatCoCjo6O5ugvw3//+l86dO+c7z7x584od\nUy4Hh/yfGwpKIgBjx47ln//8J2FhYWzbto2pU6cWeUzeMk+cOMFnn33G4cOHqVWrFsOHDzfHlvc6\nHRwcqFKlSr748l53YQqLIW9SvlNx7n1hj+e+cV++fLnAezpo0CDat29PREQEvXr1Yu7cuRgMhnxx\n5j13YbHkvf6MjIxCr6VDhw7ExcURFRVFdnY2Hh4edz3Hx8eH7du3F3h8SV5nRUlISDAP2BgzZgx1\n6tShQ4cO1KtXD4B+/foRHR3N4MGDqV+/PlevXsXJyYnExEQaNGhQ5PlzY82N9857X9jfcI0aNQgN\nDWXVqlUsW7YsX9N1Ya+f3PMVdt/ujCUnJwelFPXr1+fQoUMFni8mJoYHH3zQnMhTUlKYMGECR48e\npVGjRkybNq3Av42yuDfWZJM1kieffJJLly7l+6QTExNDdHQ0GRkZNGjQAIPBwPbt2zl//rz5ORcu\nXGDfvn0ALFmyhKCgoGKVd69z3ikgIICEhAS+++478yfnvK5du0ZOTg79+vVj+vTp7N+//55ld+vW\njblz55pfVOfOnSM9Pb1EMeXy9PTk5MmT5ucuWbKk0Ott1KgRoCXRXB06dDC3KW/evJnr168Xenyt\nWrWoWbMmV69eZf369QU+715/0IXp1KkTP/zwAwA7duygdu3aODk5FXmuX375hfj4eJRSLFu2jKCg\nIAIDA9myZQs3btwgJyeHpUuXEhwcfNexffv2JTIykv3799OtW7e7fn7+/HmaNWvG2LFj6dOnD4cO\nHSIoKIhVq1aRmZlJRkYGq1atIjg4GKVUoa9DZ2dn8+shb/9V9erVzf0ouZ577jkGDx58V2IzGAx4\ne3tz4cIF85ubyWQqckRjYa+zojg7O3Po0CEOHTrE6NGjcXV1Zc+ePaSnp6OUYtOmTTz22GMAhIWF\nsWjRIgAWLVpEWFhYkee/05332Wg0EhcXx+HDhwFITU01D7YYNWoU48ePJyAggDp16gAQGhrK3Llz\nzccnJyebvzYYDPe8bwVxcnKifv36rF271hzf8ePHAfjxxx+5ceMG27ZtY9y4cdy8eROTyYSDgwN1\n69YlPT29WAML7vfeWJNNJhJHR0ciIyNZs2YNXl5e+Pj48Prrr9OwYUMGDx7Mrl278PHx4ZtvvsHd\n3d18XKtWrfjkk0/w8vLi4sWLvPLKK/csJ/eTyL3OWdAnomeffZagoCDzizev+Ph4OnXqhJ+fH0OH\nDmXmzJn3LPvll1+mcePG5s7B3E/3JY0JtDekuXPn0rVrV9q1a0f9+vXzfUrO/fpf//oXffv2pV27\ndtSrV8/8+FtvvcXKlSvx9fVl6dKlNGzYkGrVqt1Vpo+PD0ajkRYtWjB48OBCE/ado4wKizvv4zNm\nzCAqKgpvb28mTJhgHsl1rxFLBoOBtm3bMnbsWNzc3Hj44YcZOHAgzs7OTJ8+ncDAQDw9PXF3dzc3\n3eU9V+XKlXniiSd49tlnC4x38eLFGI1G/Pz8OHbsGM8//zyBgYEMGDAAHx8f871u27YtUPjrMDw8\nnJdeeon27dvj4OBgPn+vXr347rvv8PX1NTeD/fWvf+X69esFflipUqUKy5YtY8yYMfj6+uLr62vu\n9C3sd1vQ6ywrK+uu56elpdGkSRPzvztbBtq2bUv//v3x9vbGzc2N27dv8/LLLwMwbdo0IiIi8Pb2\nZv369UyfPv2eMRV0T+/8vmrVqixZsoQRI0bg6+tLly5dzLU5f39/6tSpk6/p76233uLChQt4eHjg\n6+vL5s2b853vXvetsFiWLFnCrFmz8Pb2xsvLi2XLlpGUlMTkyZP58ssvadGiBWPHjuWVV16hbt26\nDB8+HDc3N5566inatWtX4O8g7/kLew8A8PPzK/R4q7JWZ4ze8nbiWVrv3r3Vpk2brFKWNd2+fVtl\nZ2crpZTatWuX8vDw0Dmi4tm6davq2bPnfR+fk5Oj/Pz8zB2q5cGKFSvUkCFD9A6jXPv999/VY489\npncYFYJN9pHcL0uPFb9x4wYdO3bEw8ODLl26WLQsPZw/f55nn30Wk8mEwWDgyy+/1DukYinN/Irj\nx4/Tt29fevToYW6i0dv48ePZuHEjq1ev1juUcuvbb79l2rRphdb4RdkyKCUbWwkhhLh/NtlHIoQQ\novyQRCKEEKJUJJEIIYQoFUkkQgghSkUSiRBCiFKRRCKEEKJUJJEIIYQoFYsnkhEjRtCwYcN8u4vd\na6e0mTNn4uHhgdFoZMOGDZYOTwghRClZPJEMHz6cyMjIfI8VtlPagQMH+PHHH4mJiSEyMpLRo0eT\nmZlp6RCFEEKUgsUTSadOne7av6GwndIiIiIYOHAgjo6O5kXKfvnlF0uHKIQQohR06SNJTEw071fg\n5OTElStXALh48SLOzs7m5zk7O9+1kY0QQojyRTrbhRBClIouq/8WtlOas7OzeXtJ0HZfa9KkyV3H\nP/bYY5w5c8Zq8QohhD1wdXXl9OnTZX5eXWokhe2UFhYWxpIlSzCZTCQkJBAbG2ve2zqvM2fOoJSy\n23/h4eG6xyDXJ9dXEa/Pnq9NKWWxD+AWr5EMGjSIbdu2cfXqVZo0acL06dOZNm0aAwYMYP78+TRq\n1IilS5cC0Lp1a/r27Yu3tzcODg7MnTuXypUrWzpEIYQQpWDxRPL9998X+PjGjRsLfHzKlClMmTLF\nkiEJIYQoQ9LZXg6FhIToHYJFyfXZNnu9vitX4PTpEGJj9Y7E9tjkDokGgwEbDFsIUQ5duAAffgiL\nFsHAgTBlCuSZhWBXLPXeKTUSIUSFdOIEjBgBfn5QrRocOwaff26/ScSSdBn+K4QQejl0CGbOhKgo\nGDcOTp+GOxbfECUkNRIhRIWwYwd07w69ekFgIJw9C//6lySRsiA1EiGE3VIK1q/XaiB//AGTJsGq\nVVC1qt6R2RdJJEIIu5OdDStWwDvvaMlk8mTo3x8qyTueRcivVQhhNzIzYeFCeO89cHKCGTMgLAwM\nBr0js2+SSIQQNi81Fb78UhvG6+EBX3wBwcGSQKxFEokQwmbduAGffQb//jd06qT1f7RurXdUFY+M\n2hJC2JzLl7WOc1dXOHVKG8q7fLkkEb1IIhFC2Iy4OBg7FtzdISUFDhyAr7/Wvhf6kUQihCj3fv0V\nnn9eq3HUrq19/+mn4OKid2QCpI9ECFGO7d+vzQGJjobx4+HMGahbV++oxJ0kkQghyhWlYNs2bQ7I\nr7/C3/+uDemtUUPvyERhJJEIIcoFpSAiQksgSUnwxhswZAhUqaJ3ZKIokkiEELoymWDZMnj3XXBw\n0JZx79cPHB31jkwUlyQSIYQubt+Gb7/VZqE//LCWSJ56SiYR2iJJJEIIq0pJgXnzYNYs8PGBBQu0\nyYTCdkkiEUJYxbVr2pDdTz+FkBBYu1bbVErYPplHIoSwqD/+0EZetWihTSjcsQOWLpUkYk8kkQgh\nLOLsWXjpJfD01FblPXQI5s+HVq30jkyUNUkkQogydewYDB0KAQFQr562N/qcOfDoo3pHJixF10QS\nHh5Oy5YtcXNzo3///qSlpXHt2jVCQ0Px9vamW7du3LhxQ88QhRDFtHcvPP00dOmi1ULOnIG334b6\n9fWOTFiabonk9OnTLFy4kNjYWH777TccHR35/vvvCQ8Pp0ePHhw9epTu3bsTHh6uV4hCiCIoBZs3\na8nj2Weha1etSWvSJKhTR+/ohLXolkgeeughKleuTGpqKiaTibS0NB599FHWrVvH0KFDARgyZAgR\nERF6hSiEKERODqxeDe3bw8svw3PPwenT2sq8spRJxaPb8N+HHnqI1157jUcffZTq1avTrVs3QkND\nSUxMpF69egA4OTlx5coVvUIUQtzBZIIlS7SFFKtW1WahP/20zEKv6HRLJGfOnGH27NnExcVRp04d\nnnnmGRYtWlTs46dOnWr+OiQkhJCQkLIPUggBQEaGtu/H++9rneYffQShoTILvbyLiooiKirK4uUY\nlFLK4qUU4Pvvv2fz5s18+eWXACxcuJBdu3axYcMG9u7di5OTE4mJiQQGBnL69On8QRsM6BS2EBXK\nrVswd66WOPz9YfJk6NhR76jE/bLUe6dufSSPPfYYe/bsIT09HaUUmzZtwtXVlbCwMHPNZNGiRYSF\nhekVohAVVlIShIdD8+baniDr1mkz0SWJiILo1rTVtm1b+vfvj7e3Nw4ODvj5+TF27FjS0tIYMGAA\n8+fPp1GjRixdulSvEIWocC5e1GofCxbAX/4Cu3ZpM9KFuBfdmrZKQ5q2hChb169r+4B89ZW2pe1r\nr4Gzs95RibJmd01bQgj93b6t1UBatYKbN7VZ6R9/LElElIys/itEBZSTow3jnTIFvLwgKgo8PPSO\nStgqSSRCVDBRUdpqvEppfSEycl6UliQSISqI48e1fdCPHdP6Q559VtvaVojSkpeREHbujz/gxRe1\nmkfnzvDrrzBwoCQRUXbkpSSEnUpJ0eaCeHlpCyieOAGvvqotbSJEWZJEIoSdMZngv//V5n+cOQMH\nDsAHH8CDD+odmbBX0kcihJ1QCtas0ZZwf/hhbSZ669Z6RyUqAkkkQtiBvXu1kVjXrsGsWdC9uyyo\nKKxHmraEsGFnzsCAAdCvnzYj/cgRCAuTJCKsSxKJEDYoKQkmTND2RTca4eRJGDlS9gUR+pBEIoQN\nSU/X9gRxc4OsLG1uyD//CTVr6h2ZqMikj0QIG5CTA4sXa0mjdWuIjtbWxxKiPJBEIkQ5t2mT1pFe\nrZqWTIKC9I5IiPwkkQhRTh09Cv/4B5w+De++q+0PIp3oojySPhIhypmEBBgxQtsTvUcPrR+kf39J\nIqL8kkQiRDmRnAxvvgk+PtCokTYSa9w4qFJF78iEuDdJJELoLDMTPv0UWraE33+Hw4e11Xnr1NE7\nMiGKR/pIhNCJUvDjj9qSJq6u8PPPWm1ECFsjiUQIHezaBa+/Dmlp8PnnWn+IELZKEokQVnTyJEye\nDPv2wdtvw+DBMhtd2D7pIxHCCq5cgbFjoWNHbVmTEyfgueckiQj7IIlECAtKS4MZM8DDAypV0nYn\nfOMNqF5d78iEKDu6JpIbN27wzDPP4OPjg7u7O3v27OHatWuEhobi7e1Nt27duHHjhp4hCnFfsrNh\n/nxtJNaRI9oy77Nng5OT3pEJUfZ0TSQvvPAC/fr148iRIxw7dgwPDw/Cw8Pp0aMHR48epXv37oSH\nh+sZohAlohSsXw++vrBgAaxYAUuXaqOyhLBXBqWU0qPgpKQk2rdvz6lTp/I97urqyi+//EK9evW4\nevUq7du35/Tp0/meYzAY0ClsIQp18KC2pElCArz3HvTuLbPRRfliqfdO3Wokp06don79+jz77LN4\neXnx3HPPcevWLRITE6lXrx4ATk5OXLlyRa8QhSiW8+dh6FBtOZP+/SEmBvr0kSQiKg7dhv/m5OSw\nb98+5syZQ9u2bZkwYQJvvfVWsY+fOnWq+euQkBBCQkLKPkgh7uHGDW0G+ldfaSOyTp6E2rX1jkqI\n/4mKiiIqKsri5ejWtBUfH0+nTp2Ii4sDIDo6munTp3P27Fn27NmDk5MTiYmJBAYGStOWKFdu39Ym\nEc6cqdU8pk2DRx7ROyohimZ3TVtNmjTBycmJkydPArBp0ybc3d3p3r07ixYtAmDRokWEhYXpFaIQ\n+SgFP/wA7u6weTNs3QpffCFJRAjdaiQAR44cYdSoUaSlpdG0aVMWL16MUooBAwZw+fJlGjVqxNKl\nS6lbt26+46RGIqxt+3ZtSZOcHPjgA+jcWe+IhCg5S7136ppI7pckEmEtuRMIY2K0/pABA8BBpvEK\nG2V3TVtClGeXLsHo0RAcDI8/Dr/9BoMGSRIRoiDyZyFEHikpMHUqeHpqI7BOnIDXXoOqVfWOTIjy\nq8hEcvr0aTIyMgDYunUrH330EUlJSRYPTAhrMplg3jxtSZNTp2D/fvjwQ3joIb0jE6L8KzKR9OvX\njypVqnDixAlGjx7NH3/8wdChQ60RmxAWpxT89BN4e8P338OaNbB4MTRrpndkQtiOIickOjo64uDg\nwKpVqxg/fjxjx47Fz8/PGrEJYVH79sHf/w6JidpIrLAwmY0uxP0oskZSpUoVli5dyuLFi+nRowcA\nJpPJ4oEJYSlnz2od508/DUOGaKvz9ughSUSI+1VkIpk3bx7btm1j8uTJNGvWjAsXLvDXv/7VGrEJ\nUaaSkmDiRGjbVtsf5ORJGDVK2ydECHH/SjSP5Nq1a8TFxeHv72/JmIok80hESWRkwCefwPvvwzPP\nQHg4NGyod1RCWJ9u80iCg4NJTU3l6tWr+Pn5MWbMGMaPH1/mgQhR1nJyYNEiaNUKdu2C6GhtjSxJ\nIkKUrSIr9bdu3aJmzZosXryYESNGEB4ejtFotEZsQty3zZu1jvQqVbRk0qmT3hEJYb+KrJGYTCYS\nExNZsWIF3bt31w6S6b2inIqJ0UZfjR4NkyfD7t2SRISwtCIzwpQpUwgJCaF58+YEBAQQFxdH8+bN\nrRGbEMV28SKMHAldu8JTT8Hx41p/iIzEEsLyZNFGYdOSk7VO9P/8B158UVtg8Y7FooUQf9Kts/3Y\nsWMEBQXh5uYGwPHjx5k2bVqZByJESWRlwWefaUuaJCTA4cPaRlOSRISwviITyYgRI5g1axbVq1cH\nwN3dnaVLl1o8MCEKohT8+KO2qOLq1RAZCV9/DU2a6B2ZEBVXkaO2MjIyaNeunfl7g8GAo6OjRYMS\noiC7dmkjsVJS4NNP4ckn9Y5ICAHFSCQPPfRQvj3T165dS7169SwalBB5nT0L//gH7N0Lb7+tLWsi\nn2WEKD+K7Gw/ceIEI0aM4ODBg9SvX5/69euzZMkSHnvsMWvFeBfpbK9Y2rTRRmK9+Sb82cIqhLgP\nlnrvvGeNJCcnh6+++oqdO3dy9epVlFLUr1+/zIMQojDx8RAXp202JWtiCVE+3fNP08HBgZ07dwLg\n5ORklYCEyOunn7QJhpJEhCi/ivzzNBqN9O3bl379+lGjRg1Aqx7169fP4sEJsXo1vPCC3lEIIe6l\nyD6SYcOGYShgevCCBQssFlRRpI+kYkhOBmdnbdZ67dp6RyOE7dOljwRg1KhRBAUF5XssOjq6zAMR\n4k6RkdCxoyQRIcq7IickFrRk/Lhx48osgOzsbPz8/OjVqxeg7XkSGhqKt7c33bp148aNG2VWlrAt\na9ZA7956RyGEKEqhNZLdu3eza9curly5wkcffWSuDqWlpZGRkVFmAcyZMwcPDw9u3boFQHh4OD16\n9GDChAnMnj2b8PBw5syZU2blCduQlQXr1sG77+odiRCiKIXWSDIzM7l16xbZ2dncunWLlJQUUlJS\nqFq1Kj/++GOZFJ6QkMC6desYNWqUOVGtW7eOoUOHAjBkyBAiIiLKpCxhW6KjoXlzrY9ECFG+FVoj\nefzxx3n88ccZPnw4TZs2BbRmqBs3bpTZzPaJEyfywQcfkJycbH4sMTHRfH4nJyeuXLlSJmUJ27Jm\nDfTpo3fh6dBHAAAgAElEQVQUQojiKLKz/Y033uCrr75CKUXbtm1JTk7m5ZdfZsqUKaUqeO3atTRo\n0AA/Pz+ioqJKfPzUqVPNX4eEhBASElKqeET5oZQ27HflSr0jEcK2RUVF3df7a0kVOfzX19eXw4cP\ns3DhQo4cOcLMmTPx9/cnJiamVAVPmTKFhQsXUqlSJTIyMkhOTqZfv37s2rWLvXv34uTkRGJiIoGB\ngfnW+gIZ/mvvYmOhZ084d042phKiLOm2H0lWVhZZWVmsXbuWnj17Urly5TJZ/fedd94hPj6ec+fO\n8cMPP/DEE0+wcOFCwsLCWLRoEQCLFi0iLCys1GUJ27J6tTZaS5KIELahyEQyatQoXFxcSE5OJjg4\nmPj4eGrWrFnmgeROepw2bRoRERF4e3uzfv16pk+fXuZlifJNhv0KYVtKvNWuUors7Gwq6bj4kTRt\n2a/ff9c2rbpyBSpX1jsaIeyLbk1bBQWiZxIR9m3tWm3JeEkiQtiOEicSISxJhv0KYXvumUhycnLY\nvXu3tWIRFVxKCmzfrtVIhBC2456JxMHBoUzX1RLiXjZuhHbtoG5dvSMRQpREkU1bISEhrFy5Ujq3\nhcXlDvsVQtiWIkdt1apVi7S0NBwdHalWrZp2kMGQb1kTa5NRW/YnOxsaNYL9++HPFXmEEGVMt/1I\nUlJSyrxQIe60ezc0bixJRAhbVKxxvImJiZw6dQqTyWR+LDg42GJBiYpHmrWEsF1FJpJ///vf/Pe/\n/+X333/Hz8+PPXv2EBgYyJYtW6wRn6gg1qyB777TOwohxP0osrP9008/5cCBA7i4uLB161aOHj1K\nXRlWI8rQb79Bair4++sdiRDifhSZSB544AGqV69OdnY2mZmZtGjRgl9//dUasYkKIndtLVmkUQjb\nVGTT1iOPPEJycjI9e/akS5cuPPjggzRp0sQasYkKYvVq+Ne/9I5CCHG/SrRo44YNG8jIyOCpp56i\nSpUqlozrnmT4r/24cgVatoTLl6FqVb2jEcK+6Tb8F2DTpk3ExcUxatQorl69ysWLF2nWrFmZByMq\nnogICA2VJCKELSuyj2Ty5MnMmTOH999/H9D2bR84cKDFAxMVgwz7FcL2FZlIVq1axerVq82bWTVs\n2JDbt29bPDBh/9LTYcsW6NFD70iEEKVRZCKpXLkyDg7/e1pGRgaZmZkWDUpUDJs2aUN+H3pI70iE\nEKVRZCLp378/o0eP5saNG8yfP5/Q0FCef/55a8Qm7JzsPSKEfSjWqK01a9awYcMGALp160avXr0s\nHti9yKgt25eTA488Ajt3gqur3tEIUTFY6r2zxHu2lweSSGzfnj0wciQcO6Z3JEJUHLrt2f7dd9/h\n4uJCrVq1qF27NrVr1+aBBx4o80CEJiMDpk+HMWP0jsSypFlLCPtRZI3k0Ucf5eeff8bd3d1aMRXJ\nXmsk69fDuHFgNGod0Rcvgr3mbE9P+OoraN9e70iEqDh0q5G4uLiUqyRij86fh759Yfx4+OQTWLkS\nOnbUtp61R6dPQ1ISBAToHYkQoiwUOrN9xYoVAPj5+TFo0CB69+5tXhbFYDDQr1+/UhUcHx/P4MGD\nuX79OpmZmYwcOZJ//OMfXLt2jQEDBnD58mUefvhhlixZYrerDd++DbNmwUcfwYQJ8P338OcmlPTo\nAWvXwl/+om+MlrBmDfTqBQ5FfowRQtiCQpu2hg0bhuHP5ViVUuavcy1YsKBUBV++fJnExES8vLxI\nSUnB39+fZcuW8eWXX+Lq6sqECROYPXs2586dY86cOfmDtoOmrQ0bYOxYcHeH2bPhzhVnzp6FDh3g\n99/t7w03JARee01LJkII67H7UVv9+/dnxIgRjBs3jl9++YV69epx9epV2rdvz+nTp/M915YTSXw8\nTJwIhw7BnDnQs2fhz3V3h2+/hbZtrRefpSUlaUnz8mWoXl3vaISoWHTrI3nttddITU0lMzOTJ554\ngrp165a6NnKnuLg49u3bR1BQEImJidSrVw8AJycnrly5UqZl6SUzE957D/z8wMsLYmPvnURAa96K\niLBOfNaybh088YQkESHsSZGr/27evJlZs2axYsUKmjdvzsqVK+nUqRPDhw8vkwBSUlLo378/c+bM\nKdGw4qlTp5q/DgkJISQkpEzisYTNm7VmrObNYe/e4k/A69ED/vEPyHOpNk+G/QphPVFRUURFRVm+\nIFUEDw8PpZRSI0aMUOvWrVNKKeXr61vUYcWSmZmpnnzySfXRRx+ZH2vevLlKTExUSil15coV5erq\netdxxQi7XEhIUGrAAKWaNlVq1SqlcnJKdnxmplJ16yr1xx8WCc/qMjKUqlNHqcuX9Y5EiIrJUu+d\nRTZthYWF4eXlxcGDB+nSpQtJSUlUqlSsbUyKSmCMHDkSDw8PJk6cmK+8RYsWAbBo0SLCwsJKXZa1\nZWVpo7F8fKBFCzh+XPsUXtKtZCtX1vbqWL/eMnFa29atWrNegwZ6RyKEKEvF6my/cuUK9erVw9HR\nkdTUVJKTk3n44YdLVXB0dDTBwcF4e3ubR4TNnDmTgIAA8/DfRo0asXTp0ruG/5bnzvaoKHj5ZWjS\nRJsT0qJF6c73zTdac9Cfo7Ft2ksvaR3t//iH3pEIUTHZ/aitkiiPieSPP+Dvf4cdO+Djj7UJhiWt\ngRQkdyvaK1dAx92NS00pcHbW+ovc3PSORoiKSbdRW+LeTCZtHojRqNVCjh+Hfv3KJomA1gzUqpWW\noGzZgQNQq5YkESHsUek7Oyqw6Gj429+gYUPta0u9SeYOA+7SxTLnt4Y1a2RLXSHsVaFNWwcOHLhr\nNnte/v7+FguqKHo3bV2+rLXzb9miLW/Sv3/Z1UAKcuAA/PWvcOKE5cqwNF9f+PRTCArSOxIhKi5L\nvXcWWiN57bXX7plItm7dWubBlHcmE/z3vzBtGgwfDr/+qjXXWJqfHyQna4sdPvaY5csra3Fx2krG\ngYF6RyKEsIRCE4lVJrHYkN27tWasunVh2zbw8LBe2Q4O/2veeuUV65VbVn76SZvF7+iodyRCCEu4\n5+q/96qRlHb1X1uRmAiTJkFkJHz4IQwcaNlmrML06AGff26biWT1am1ItBDCPhVr9d+ClPV6WyVh\njT6S7GyYNw/Cw2HoUO1/PTeZunVL2+P899+hdm394iipGzfg0Ue1uK3RDCiEKJzV+0i+/vrrMi/M\nVvzyi9aMVbOm1qHu5aV3RFryaN9e2zmxb1+9oym+yEgIDpYkIoQ9K3L4b05ODitXruTEiROYTCbz\n4//3f/9n0cD0kJ4Or7+u7VD4/vsweLA+zViFye0nsaVEsnq1DPsVwt4VOSFxxIgRrF69ms8//xyl\nFEuXLuX8+fPWiM2qzp7VtrdNStImFQ4ZUr6SCGiJZN06bZa4LcjM1GoksoGVEPatyESyZ88evv32\nW+rVq0d4eDj79u27a6MpW7d2rTY0dfhwbbvb8rqzb4sWWhPRoUN6R1I827dry7uUclk2IUQ5V2Qi\nyd0jpFKlSly6dAmDwWA3NZLsbHjzTW0xwZUrYdy48lcLuVPPnraz2ZXsPSJExVCsZeSTk5N57bXX\n8Pb2xsXFhUGDBlkjNou6cgW6dYM9e7SZ4x066B1R8djKrolKSf+IEBVFocN/P/74Yzp27Ii/v795\n/5GUlBRMJtNdy7pbW2mHsO3eDQMGwHPPabPUbWmiXGamtpDjyZPle1+PI0e0QQFnzpT/Wp4QFYXV\nV/9NSEhgwoQJ1K9fn+DgYKZMmUJUVBQ5OTllHoS1KKXtEfL009rkvrfftq0kAtpS8l26lP/NrnKb\ntSSJCGH/ityP5Pbt2+zfv5/du3eza9cudu/eTd26dfn111+tFeNd7ierJifDqFHaelXLl2v7p9uq\n+fO10VBLl+odSeHatIEPPoDOnfWORAiRS7f9SNLT00lOTubmzZvcvHmTRx55hPbt25d5IJZ05Ij2\nxlavHuzaZdtJBCAsDDZu1Lb0LY8SEuDcOVnpV4iKotAJiS+88ALHjx+ndu3aBAQE0KFDB1599VUe\nfPBBa8ZXavPnwxtvwJw52lLs9qBRI3B1hZ07ISRE72ju9tNP0L27tue8EML+FVojuXDhArdv36ZR\no0Y0btyYxo0b697JXhJpadq8kFmztPkM9pJEcpXnYcAy7FeIiuWefSQ5OTkcO3bM3D8SExNDvXr1\naN++PdOnT7dmnPkU1c534oS22ZSfH/znP9qaWfZm3z54/nltFn55kru45MWL+i5yKYS4m6X6SIrs\nbAeIj49n165d7Ny5k7Vr15KUlMTNmzfLPJjiutcvY8kSGDsW3nlH61y311FDOTnaG3Z56/NZvhy+\n+AJ+/lnvSIQQd7J6Z/ucOXMYMGAAjz76KI8//jg//fQT7u7urFy5kmvXrpV5IGXl119hwwZ44QX7\nTSKgbXbVvXv5a96SZi0hKp5CayQTJ04kKCiIwMBAHnnkEWvHdU9679leXixfDl9+qQ0FLg9MJm0g\nwKFD0KSJ3tEIIe6ka9OWtUVGRvL3v/+d7Oxsnn/+ed544418P5dEorl5E5yd4dKl8tEPtG0bvPqq\ntuSMEKL80W0eibXdvn2bl156icjISI4ePcry5cs5ZCvL3VpZnTrQti1s3qx3JBpZW0uIiqncJZK9\ne/fi6elJ48aNqVSpEgMGDCCivHUElCPlZRiwUtI/IkRFVe4SSUJCAk3yNLA7OzuTkJCgY0TlW3nZ\n7Or4cW1BSR8ffeMQQlhfkVvtWpuhmEOtpk6dav46JCSEkPI4xdsKWraEqlXh6FF938TXrNGatex5\npJwQtiYqKoqoqCiLl1PuEomzszPx8fHm7+Pj4/PVUHLlTSQVmcGg1UrWrtU/keg4R1UIUYA7P2RP\nmzbNIuWUu6attm3bEhsby8WLF8nKymLp0qV0795d77DKNb03u7p0CX77DR5/XL8YhBD6KXc1kmrV\nqvGf//yHbt26kZOTw9ChQ/H399c7rHLt8cfh2DG4ehWcnKxf/tq12m6TVapYv2whhP7K5TySosg8\nkrs9/bS2vtiQIdYvu1cvGDTI/hbGFMLeVJh5JOL+6DUMODVVm4gorY9CVFySSOxEWJi2xpjJZN1y\nN23SJkXa2DY1QogyJInETjzyCDRtCrt3W7dcmc0uhJBEYkdyhwFbS3a2Vp4kEiEqNkkkdsTaw4D3\n7NFW+23WzHplCiHKH0kkdqRtW7hyBc6ft055sraWEAIkkdgVR0d46inr1Uqkf0QIAZJI7I61hgGf\nOKHtz966teXLEkKUb5JI7MyTT8KOHZCWZtlyfvpJm4joIK8gISo8eRuwM3Xrgr8/bN1q2XKkWUsI\nkUsSiR2y9DDgxERt2fonnrBcGUII21HuFm0Updejh9bprpRl9geJiICuXaFatbI/txDC9kiNxA65\nu2sjuGJjLXN+GfYrhMhLEokdyt3syhKjt9LTYfNmbW0vIYQASSR2y1KJZMsW8PXVZ98TIUT5JInE\nTnXuDEeOwLVrZXve3L3ZhRAilyQSO1WtGoSEwM8/l905c3IkkQgh7iaJxI6VdfPW/v3aviMtWpTd\nOYUQtk8SiR0LC4PISG2597IgkxCFEAWRRGLHmjSBxo215d7Lggz7FUIURBKJnSur5q2zZ7Ul6gMC\nSn8uIYR9kURi58oqkaxZoy3S6OhY+nMJIeyLJBI71749XLwI8fGlO4+M1hJCFEaXRPLqq6/i4eGB\nh4cHPXv2JCkpyfyzmTNn4uHhgdFoZMOGDXqEZ1dyN7tat+7+z3HtmjZiq2vXsotLCGE/dEkkvXr1\nIjY2luPHj+Pl5cXbb78NwIEDB/jxxx+JiYkhMjKS0aNHk5mZqUeIdqW0zVvr12sTHGvUKLuYhBD2\nQ5dE0rlzZxz+3BGpY8eOXLx4EYCIiAgGDhyIo6MjjRs3xtPTk19++UWPEO1Kt24QFaWtk3U/ZNiv\nEOJedO8jmTdvHn3+HFN68eJFnJ2dzT9zdnYmISFBr9DsxkMPgY+PlkxK6vZt2LBB28JXCCEKYrH9\nSEJDQ7l06dJdj7/zzjv06tULgBkzZlClShUGDx5c4vNPnTrV/HVISAghISH3G2qFkNu81b17yY6L\nigIPD2jY0CJhCSEsKCoqiqj7+QRZQgallLJ4KQX45ptvmDt3Llu2bKHanzskvfXWW1SvXp3XX38d\ngJ49ezJ58mQ6duyY71iDwYBOYdusmBiteers2ZJtdvXyy9rExkmTLBebEMI6LPXeqUvTVmRkJO+/\n/z5r1qwxJxGAsLAwlixZgslkIiEhgdjYWAJkBlyZ8PLSFl389dfiH6OUzGYXQhRNl612x40bR2Zm\nJqGhoQAEBgby+eef07p1a/r27Yu3tzcODg7MnTuXypUr6xGi3cm72ZWHR/GOOXRIW0XYzc2ysQkh\nbJtuTVulIU1b9yciAj74oPid7lOnQkoKfPihJaMSQliLXTVtCX107gwHD8L168V7vgz7FUIUhySS\nCqRGDejUSRvOW5QLF7RlVTp0sHxcQgjbJomkginuLPefftKeW0mXXjQhhC2RRFLB9OihLXlS1GZX\n0qwlhCguSSQVTNOm0KgR7NtX+HNu3oTdu7WlVYQQoiiSSCqgopq3IiO1vpRatawXkxDCdkkiqYCK\nSiQyCVEIURIyj6QCMpm0tbOOHtX2dM8rK0v7WWwsPPKIPvEJISxD5pGIMlOpEjz5ZMGbXe3YAY89\nJklECFF8kkgqqMKat2RLXSFESUnTVgV19Sq4usKVK1C1qvaYUtC8uTb019tb3/iEEGVPmrZEmXJy\n0lYE3rbtf4/Fxmr/G436xCSEsE2SSCqwO5u3cichlmS/EiGEkERSgeUmktyargz7FULcD+kjqcCU\ngkcfhU2boHZtranr8mWQLWCEsE+Weu+UJfkqMIMBwsJg7VptFnv37pJEhBAlJ4mkguvRA2bPhurV\n4bnn9I5GCGGLpGmrgktN1RZxNBi0/Ufq1NE7IiGEpUjTlrCImjUhKEhbVl6SiBDifkgiEUya9L+R\nW0IIUVLStCWEEBWEzGwXQghRLumaSGbNmoWDgwPXrl0zPzZz5kw8PDwwGo1s2LBBx+iEEEIUh26J\nJD4+no0bN9K0aVPzYwcOHODHH38kJiaGyMhIRo8eTWZmpl4h6iYqKkrvECxKrs+22fP12fO1WZJu\nieTVV1/l/fffz/dYREQEAwcOxNHRkcaNG+Pp6ckvv/yiU4T6sfcXs1yfbbPn67Pna7MkXRLJ6tWr\ncXZ2xvuOtcovXryIs7Oz+XtnZ2cSEhKsHZ4QQogSsNjw39DQUC5dunTX4zNmzGDmzJn5+j9kBJYQ\nQtgwZWUxMTGqQYMGysXFRbm4uKhKlSqppk2bqkuXLqnp06erDz74wPzcHj16qOjo6LvO4erqqgD5\nJ//kn/yTfyX45+rqapH3dd3nkTRr1owDBw7w0EMPceDAAcaMGcPu3bu5dOkSQUFBnDp1isqykqAQ\nQpRbus9sN+TZRal169b07dsXb29vHBwcmDt3riQRIYQo53SvkQghhLBtNjezPTIyEqPRiIeHB++9\n957e4RSbi4sL3t7e+Pn5ERAQAMC1a9cIDQ3F29ubbt26cePGDfPzC5uYeeDAAfz8/PD09OSVV16x\n+nXkGjFiBA0bNsSYZ4P3srye27dvM2DAAIxGIx07duT8+fPWubA/FXR9U6dOxdnZGT8/P/z8/Fi/\nfr35Z7Z0ffHx8QQHB2M0GmnVqpV5GL693L/Crs9e7l9GRgZt27bFz8+Pli1bMnHiREDn+2eRnhcL\nycjIUC4uLiohIUFlZWWpNm3aqIMHD+odVrG4uLiopKSkfI+NHTtWffzxx0oppT7++GM1fvx4pZRS\n+/fvV23atFEmk0klJCQoFxcXlZmZqZRSymg0mq+5T58+6scff7TiVfzP9u3b1cGDB5WXl5f5sbK8\nng8//FC98sorSimlVq5cqXr37m21a1Oq4OubOnWqmjVr1l3PtbXru3TpkoqJiVFKKXXr1i3VokUL\ndfjwYbu5f4Vdn73cP6WUSktLU0oplZWVpdq1a6e2bNmi6/2zqRrJ3r178fT0pHHjxlSqVIkBAwYQ\nERGhd1jFpu5oRVy3bh1Dhw4FYMiQIeZrKWhi5t69e7lw4QI5OTn4+fnddYy1derUiQcffDDfY2V5\nPXnP1bt3b3bt2mXVYeIFXR/cfQ/B9q6vYcOGeHl5AVCrVi28vb25ePGi3dy/wq4P7OP+AVSvXh2A\nzMxMsrOzadCgga73z6YSSUJCAk2aNDF/b0sTFg0Gg7na+emnnwKQmJhIvXr1AHBycuLKlStA4RMz\nL168mO/6GzduXK6uvyyvJ++9dnBwoF69eubz6emzzz7D3d2dIUOGmNeIs+Xri4uLY9++fQQFBdnl\n/cu9vk6dOgH2c/9ycnLw9fWlYcOGdO7cGU9PT13vn00lkrwjvGzNnj17OHjwIJs3b2bBggVs2rRJ\n75BECb388sucOXOG48eP4+rqyvjx4/UOqVRSUlLo378/c+bM4YEHHtA7nDKXkpLCM888w5w5c6hd\nu7Zd3T8HBwcOHz5MQkIC27dvZ+vWrfrGo2vpJeTs7Ex8fLz5+/j4+HwZtTxr0KABAPXr16d///7s\n27eP+vXrc/XqVUD7NJ/7nDuvM/fTQUGP5/2kobeyuJ7c++ns7MyFCxcA7dNXUlIS9evXt9alFMjJ\nyQmDwYDBYGD06NHs27cPsM3ry8rK4i9/+QuDBw/m6aefBuzr/uVe31//+lfz9dnT/ctVp04devTo\nwd69e3W9fzaVSNq2bUtsbCwXL14kKyuLpUuX0r17d73DKlJaWhppaWkApKamEhkZiaenJ2FhYSxa\ntAiARYsWERYWBkBYWBhLlizBZDKRkJBAbGwsAQEBNGnSBAcHBw4dOgTA4sWLzceUB2VxPbn3M++5\nVq9eTWBgIA4O+r5c81btV6xYgaenJ2B716eUYuTIkXh4eJhH/NwZky3fv8Kuz17uX1JSErdu3QIg\nPT2djRs3YjQa9b1/ZTWKwFrWrVunPD09lbu7u3rnnXf0DqdYzp49q7y9vZWPj49q0aKF+te//qWU\nUiopKUl17dpVGY1GFRoaqq5fv24+ZsaMGcrd3V15enqqyMhI8+P79+9Xvr6+ysPDQ40bN87q15Jr\n4MCB6uGHH1aVK1dWzs7Oav78+WV6PRkZGeqZZ55RXl5eKjAwUJ07d86al3fX9X311VdqyJAhytvb\nW7m5ualu3bqphIQE8/Nt6fp27NihDAaD8vHxUb6+vsrX11etX7/ebu5fQde3bt06u7l/R48eVb6+\nvsrHx0e1atVKTZs2TSlVtu8nJb0+mZAohBCiVGyqaUsIIUT5I4lECCFEqUgiEUIIUSqSSIQQQpSK\nJBIhhBClIolECCFEqUgiETbB0dERPz8/3Nzc6NOnj3lCliW4uLiY12GyxnGW8s033/DHH3/oHYao\nACSRCJtQo0YNDh06xG+//Ubt2rX57LPPLFbW/a7pZjAYynwF2Ozs7Hv+PCcnp9Cfff311/z+++9l\nGo8QBZFEImxOUFAQZ8+e5eLFiwQHB+Pn54fRaCQ6OhqANWvW0Lp1a4xGY77aS94aw/79++ncuTOg\nrUvUqVMnfH19efHFF/MlgxkzZuDu7o67u7t5I7Xk5GTCwsLw8fHBaDSydOlS8/M/+eQTAgICaNWq\nFbGxsYC2eOCgQYPw8fHB09OTZcuWAdrKtJ06dcLPzw8vLy+2bdsGQFRUFJ06daJv3775NtbKVatW\nLV5//XXatGnDnj17mDZtGgEBAbi5uTFs2DBycnJYvnw5+/fvZ/Dgwfj7+5ORkcHu3bsJDAzE29ub\nzp07m5dWF6LUym7ivhCWU6tWLaWUtpFPnz591OzZs9X777+v3nvvPfNzUlJS1KVLl1RgYKB54593\n331Xvfnmm0qp/JuL7du3T4WEhCillHrxxRfNy+38/PPPymAwqKSkJLVz505lNBrV7du3VXp6uvL0\n9FR79uxRS5cuVS+99JK53Fu3bpnP/5///EcppdTnn3+unn/+eaWUUhMnTlSLFi1SSil1/fp15erq\nqpKTk1V6erp5g6GTJ08qo9GolFJq69atqmbNmvmW8MjLYDDk29Ds5s2b5q+HDh2qli9frpRSKiQk\nRB04cEAppdTt27dV69at1dWrV5VSSv3www9q8ODBxfrdC1GUSnonMiGKIz09HT8/P7KysggKCuJv\nf/sbe/bsYeTIkaSnp9OrVy/8/f1Zv349p06dokOHDoC28U+7du3uee7o6GgmT54MwJNPPsmDDz6I\nUoro6Gj69etHlSpVAOjXrx87duygT58+TJo0iUmTJhEWFkZwcLD5XH369AHA39+f5cuXA7BhwwY2\nbtzIhx9+CIDJZCI+Pp6GDRvyt7/9jdjYWKpUqcLJkyfN5wkICKBx48YFxuvo6Ghe0RZg7dq1zJo1\nC5PJRFJSEm5ubuafqT9rV0ePHuXUqVN07doV0JrMGjZsWNSvXYhikUQibEL16tXNq5Tm6tSpE9u3\nbyciIoJRo0YxYcIEatSoQffu3fn222/vOoeDg4O5TyEjI8P8eGF9G3c+rpTCYDDQokULDhw4QERE\nBOHh4XTu3Jn/+7//A6Bq1aqA9maft/9izZo1NGvWLN/5p0yZgouLC0uWLCE7O5tq1aqZf1azZs1C\nfxfVqlUz9+OkpKQwYcIEjh49SqNGjZg2bRomkynfNeTG7uPjw/bt2ws9rxD3S/pIhM1KSEigQYMG\njBw5khEjRrB//346derE1q1bzXspZGRkcObMGUDbY2H//v0ArFy50nyeoKAglixZAsDGjRu5fv06\nBoOBoKAgVq1aRWZmJhkZGaxatYrg4GAuXbpEjRo1GDx4MK+99pr5nIXp1q0bn3/+ufn73L6TjIwM\nc63gu+++K7JjvSAmkwkHBwfq1q1Lenq6uf8FtOSbmpoKgLe3NxcuXDAnY5PJxIkTJ0pcnhAFkRqJ\nsGCl5KoAAAEhSURBVAkFjaTavHkzH374IZUrV6Z27drMnz+fhg0bMm/ePHr37g1oo5pmzJiBq6sr\n4eHhjBw5koYNG9KpUyfzOd966y3+8pe/8MMPP9CuXTuaNm0KQGBgIAMGDMDHxweA4cOH07ZtWzZs\n2MDrr79OpUqVqFSpknnr5DvjzXv+l156CQ8PDypVqkSTJk2IiIjgpZdeonfv3ixevJjQ0FBq1ap1\nz+st6Gd169Zl+PDhuLm50bRp03zNeEOHDmX48OE88MAD7Nq1i2XLljFmzBhu376NyWRi/PjxtGrV\nqtj3QIjCyDLyQgghSkWatoQQQpSKJBIhhBClIolECCFEqUgiEUIIUSqSSIQQQpSKJBIhhBClIolE\nCCFEqUgiEUIIUSr/D5BULYf7jJs0AAAAAElFTkSuQmCC\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x3f00550>"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 15.3 - Page No :774\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Variables\n",
+ "# from Example 15.2 \n",
+ "n = 0.8851;\n",
+ "K = 0.01254;\n",
+ "n = n;\n",
+ "\n",
+ "# Calculations\n",
+ "K = K/((3*n+1)/(4*n));\n",
+ "\n",
+ "# Results\n",
+ "print \"n = \",n\n",
+ "print \"K = %f N/m**2\"%(K);\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "n = 0.8851\n",
+ "K = 0.012146 N/m**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 15.4 - Page No :775\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Variables\n",
+ "a = array([10, 20, 50, 100, 200, 400, 600, 1000, 2000])\n",
+ "tau = array([2.24, 3.10, 4.35, 5.77, 7.50, 9.13, 11.0, 13.52, 16.40])\n",
+ "tau = tau*10**-4;\n",
+ "betao = 8.96694;\n",
+ "beta1 = 0.48452520;\n",
+ "beta2 = 0.010923041;\n",
+ "\n",
+ "# Calculations\n",
+ "# such a plot suggests a second order polynomila of the type y = betao+beta1*x+beta2*x**2;\n",
+ "# where y = ln(tauw) and x = ln(8*Uz,avg/do) = ln(a);\n",
+ "# from the graph\n",
+ "n = beta1+2.*beta2*a;\n",
+ "phiw = ((3.*n+1.)/(4.*n))*(a);\n",
+ "mu = tau/phiw;\n",
+ "\n",
+ "# Results\n",
+ "\n",
+ "print \" 8*Uz,avg/do n ((3*n+1)/4*n) phiw mu\"\n",
+ "for i in range(9):\n",
+ " print \" %6.0f %8.4f %8.4f %8.4f %6.6f\"%(a[i],n[i],3*n[i]+1/4*n[i],phiw[i],mu[i])\n",
+ "\n",
+ "\n",
+ "# Answer in book is wrong. Please calculate manually."
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " 8*Uz,avg/do n ((3*n+1)/4*n) phiw mu\n",
+ " 10 0.7030 2.1090 11.0563 0.000020\n",
+ " 20 0.9214 2.7643 20.4262 0.000015\n",
+ " 50 1.5768 4.7305 45.4273 0.000010\n",
+ " 100 2.6691 8.0074 84.3663 0.000007\n",
+ " 200 4.8537 14.5612 160.3013 0.000005\n",
+ " 400 9.2230 27.6689 310.8425 0.000003\n",
+ " 600 13.5922 40.7765 461.0358 0.000002\n",
+ " 1000 22.3306 66.9918 761.1954 0.000002\n",
+ " 2000 44.1767 132.5301 1511.3182 0.000001\n"
+ ]
+ }
+ ],
+ "prompt_number": 24
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file