summaryrefslogtreecommitdiff
path: root/Thermodynamics_Demystified/Chapter1.ipynb
diff options
context:
space:
mode:
authorhardythe12015-04-07 15:58:05 +0530
committerhardythe12015-04-07 15:58:05 +0530
commit92cca121f959c6616e3da431c1e2d23c4fa5e886 (patch)
tree205e68d0ce598ac5caca7de839a2934d746cce86 /Thermodynamics_Demystified/Chapter1.ipynb
parentb14c13fcc6bb6d01c468805d612acb353ec168ac (diff)
downloadPython-Textbook-Companions-92cca121f959c6616e3da431c1e2d23c4fa5e886.tar.gz
Python-Textbook-Companions-92cca121f959c6616e3da431c1e2d23c4fa5e886.tar.bz2
Python-Textbook-Companions-92cca121f959c6616e3da431c1e2d23c4fa5e886.zip
added books
Diffstat (limited to 'Thermodynamics_Demystified/Chapter1.ipynb')
-rwxr-xr-xThermodynamics_Demystified/Chapter1.ipynb209
1 files changed, 209 insertions, 0 deletions
diff --git a/Thermodynamics_Demystified/Chapter1.ipynb b/Thermodynamics_Demystified/Chapter1.ipynb
new file mode 100755
index 00000000..68c66861
--- /dev/null
+++ b/Thermodynamics_Demystified/Chapter1.ipynb
@@ -0,0 +1,209 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:2622b864e241f67942d9af83d84aabbbf519132ac138f1180d8869df35c708b4"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "CHAPTER 1 : Basic Principles"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1.2 : PG-9 "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# initialization of variables\n",
+ "m=10 # mass in Kg\n",
+ "V=5 # velocity in m/s\n",
+ "\n",
+ "KE=m*V**2/2 # kinetic energy in N-m \n",
+ "print \"The Kinetic Energy is \",round(KE),\" N.m\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The Kinetic Energy is 125.0 N.m\n"
+ ]
+ }
+ ],
+ "prompt_number": 77
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1.3 : PG-10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# initialization of variables\n",
+ "V= 3*5*20; # Volume of air in m^3 from dimensions\n",
+ "m= 350.0; # mass in kg\n",
+ "g= 9.81; # gavitational acceleration in m/s^2\n",
+ "\n",
+ "rho=m/V;# density\n",
+ "print \" The Density is \",round(rho,3),\"kg/m^3 \\n\"\n",
+ "\n",
+ "v= 1/rho # specific volume of air\n",
+ "print \" The specific volume is\", round(v,3),\"m^3/kg \\n\"\n",
+ "\n",
+ "gama= rho*g # specific weight of air\n",
+ "print \" The specific weight is\", round(gama,2),\" N/m^3\"\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The Density is 1.167 kg/m^3 \n",
+ "\n",
+ " The specific volume is 0.857 m^3/kg \n",
+ "\n",
+ " The specific weight is 11.45 N/m^3\n"
+ ]
+ }
+ ],
+ "prompt_number": 78
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1.4 : PG-13"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# initialization of variables\n",
+ "h=0.020 # height of mercury in m\n",
+ "gammawater=9810 # specific weight of water in N/m^3\n",
+ "Patm=0.7846*101.3 # atmospheric pressure in kPa from table B.1\n",
+ "\n",
+ "Pgauge=13.6*gammawater*h/1000 # pressure in Pascal from condition gammaHg=13.6*gammawater\n",
+ "\n",
+ "P=(Pgauge+Patm)# absolute pressure in KPa\n",
+ "#result\n",
+ "print \"The Pressure is\",round(P,2),\" kPa\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The Pressure is 82.15 kPa\n"
+ ]
+ }
+ ],
+ "prompt_number": 79
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1.5 : PG-13"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "# initialization of variables\n",
+ "d=10.0/100 # diameter of cylinder in 'm'\n",
+ "P=600 # pressure in KPa\n",
+ "Patm=100 # atmospheric pressure in Kpa\n",
+ "K=4.8*1000 # spring constant in N/m \n",
+ "\n",
+ "deltax=(P-Patm)*(math.pi*1000*d**2)/(4*K) # by balancing forces on piston\n",
+ "#result\n",
+ "print \"The Compression in spring is\",round(deltax,3),\" m\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The Compression in spring is 0.818 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 80
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1.6 : PG-16"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# initialization of variables\n",
+ "ma=2200 # mass of Automobile 'a' in kg\n",
+ "va=25 #velocity of Automobile 'a' in m/s before collision\n",
+ "va1=13.89 # velocity of Automobile 'a' after collision in m/s\n",
+ "mb=1000 # mass of Automobile 'b' in kg\n",
+ "vb=24.44 #velocity of Automobile 'b' after collision in m/s\n",
+ "\n",
+ "KE1=(ma*va**2)/2 # kinetic energy before collision\n",
+ "KE2=(ma*va1**2)/2+(mb*vb**2)/2 # kinetic energy after collision\n",
+ "U=(KE1-KE2)/1000 # internal energy from conservation of energy principle in kJ\n",
+ "#result\n",
+ "print \"The increase in kinetic energy is of\",round(U,1),\" kJ\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The increase in kinetic energy is of 176.6 kJ\n"
+ ]
+ }
+ ],
+ "prompt_number": 81
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file