summaryrefslogtreecommitdiff
path: root/Thermodynamics_An_Engineering_Approach/Chapter1.ipynb
diff options
context:
space:
mode:
authorhardythe12015-04-07 15:58:05 +0530
committerhardythe12015-04-07 15:58:05 +0530
commit92cca121f959c6616e3da431c1e2d23c4fa5e886 (patch)
tree205e68d0ce598ac5caca7de839a2934d746cce86 /Thermodynamics_An_Engineering_Approach/Chapter1.ipynb
parentb14c13fcc6bb6d01c468805d612acb353ec168ac (diff)
downloadPython-Textbook-Companions-92cca121f959c6616e3da431c1e2d23c4fa5e886.tar.gz
Python-Textbook-Companions-92cca121f959c6616e3da431c1e2d23c4fa5e886.tar.bz2
Python-Textbook-Companions-92cca121f959c6616e3da431c1e2d23c4fa5e886.zip
added books
Diffstat (limited to 'Thermodynamics_An_Engineering_Approach/Chapter1.ipynb')
-rwxr-xr-xThermodynamics_An_Engineering_Approach/Chapter1.ipynb387
1 files changed, 387 insertions, 0 deletions
diff --git a/Thermodynamics_An_Engineering_Approach/Chapter1.ipynb b/Thermodynamics_An_Engineering_Approach/Chapter1.ipynb
new file mode 100755
index 00000000..3e2c2051
--- /dev/null
+++ b/Thermodynamics_An_Engineering_Approach/Chapter1.ipynb
@@ -0,0 +1,387 @@
+{
+ "metadata": {
+ "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 1: Introduction and Basic Concepts"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1-2, Page No.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Given values\n",
+ "p=850;# density in kg/m^3\n",
+ "V=2; # volumne of tank in m^3\n",
+ "\n",
+ "#Calculations\n",
+ "m=p*V;# mass, density and volumne corealtion\n",
+ "\n",
+ "#Result\n",
+ "print 'The amount of oil in tank is %i kg' %round(m,0)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The amount of oil in tank is 1700 kg\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1-3, Page No.9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Constants used\n",
+ "g=32.174;# gravitational constant in ft/s^2\n",
+ "\n",
+ "#given values\n",
+ "m=1; # mass of 1.00 lbm is subjected to standard earth gravity\n",
+ "\n",
+ "#Calculations\n",
+ "w=(m*g)/g; # weight is mass times the local value of gravitational acceleration\n",
+ "#dimensionally the above equation is represented as lbm * ft/s^2 * (lbf/ft/s^2)\n",
+ "\n",
+ "#Result\n",
+ "print 'The weight on earth is %i lbf' %w\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The weight on earth is 1 lbf\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1-4, Page No.21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Example 1.4\n",
+ "\n",
+ "# Given values\n",
+ "Tc=10; #change in temp in Celcius\n",
+ "\n",
+ "# Calculations\n",
+ "Tk=Tc;\n",
+ "Tr=1.8*Tk;#conversion scale of temperature change from K to R\n",
+ "Tf=Tr;\n",
+ "# calculated using the corealtions b/w these scales\n",
+ "\n",
+ "#Results\n",
+ "print 'the corresponding change is %i K' %Tk\n",
+ "print 'the corresponding change is %i R' %Tr\n",
+ "print 'the corresponding change is %i F' %Tf\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the corresponding change is 10 K\n",
+ "the corresponding change is 18 R\n",
+ "the corresponding change is 18 F\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1-5, Page No.23"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Given values\n",
+ "Patm=14.5; #atmospheric pressure in psi\n",
+ "Pvac=5.8; #vacuum gage reading in psi\n",
+ "\n",
+ "#Calculations\n",
+ "Pabs=Patm-Pvac;#pressure in vaccumm is always treated to be negative\n",
+ "\n",
+ "#Results\n",
+ "print'the absolute pressure in the chamber %f psi'%round(Pabs,1)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the absolute pressure in the chamber 8.700000 psi\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1-6, Page No.26"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Constants used\n",
+ "pw=1000; # density of water in kg/m^3;\n",
+ "g=9.81; # acceleration due to gravity in m/s^2;\n",
+ " \n",
+ "#Given values\n",
+ "SG=0.85;# specific gravity of manometric fluid\n",
+ "h=0.55;# converting height from cm to m\n",
+ "Patm=96;# atmospheric pressure in kPa\n",
+ "\n",
+ "# Calculations\n",
+ "p=SG*pw;\n",
+ "Ptank=Patm+(p*g*h/1000); # calculating pressure using liquid at same height have same pressure\n",
+ "\n",
+ "#Results\n",
+ "print 'absolute pressure in tank %f kPa' %round(Ptank,1)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "absolute pressure in tank 100.600000 kPa\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1-7, Page No.28"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Constants used\n",
+ "g=9.81;#acceleration due to gravity in m/s^2;\n",
+ "\n",
+ "#Given values\n",
+ "h1=0.1;# distance b/w point 1 at air-water interface and point 2 at mercury-air interface in m\n",
+ "h2=0.2;# distance b/w oil-water interface and mercury-oil interface in m\n",
+ "h3=0.35;# distance b/w air-mercury interface and mercury-oil interface in m\n",
+ "pw=1000;# density of water in kg/m^3\n",
+ "pHg=13600;# density of mercury in kg/m^3\n",
+ "poil=800;# density of oil in kg/m^3\n",
+ "Patm=85.6;# atmospheric pressure in kPa\n",
+ "\n",
+ "#Calculation\n",
+ "P1=Patm-(pw*g*h1+poil*g*h2-pHg*g*h3)/1000;#calculating pressure using liquid at same height have same pressure\n",
+ "\n",
+ "#Results\n",
+ "print 'the air pressure in tank %i kPa' %round(P1)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the air pressure in tank 130 kPa\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1-8, Page No.31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Constants used\n",
+ "g=9.81;# acceleration due to gravity in m/s^2;\n",
+ "\n",
+ "#Given values\n",
+ "pHg=13570;# density of mercury at 10 C in kg/m^3\n",
+ "h=0.74;# converting barometric reading into m from mm\n",
+ "\n",
+ "#Calculationa\n",
+ "Patm=pHg*g*h/1000;# standard pressure formula\n",
+ "\n",
+ "#Results\n",
+ "print 'the atmospheric pressure %f kPa' %round(Patm,1)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the atmospheric pressure 98.500000 kPa\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1-9, Page No.31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#constants used\n",
+ "g=9.81;#acceleration due to gravity in m/s^2;\n",
+ "\n",
+ "#given values\n",
+ "m=60;# mass of piston in kg\n",
+ "Patm=0.97;# atmospheric pressure in kPa\n",
+ "A=0.04;# cross-sectional area in m^2\n",
+ "\n",
+ "#calculation\n",
+ "P=Patm+(m*g/A)/100000;# standard pressure formula\n",
+ "print 'The pressure inside the cylinder %f bar' %round(P,2)\n",
+ "#The volume change will have no effect on the free-body diagram drawn in part (a), and therefore the pressure inside the cylinder will remain the same\n",
+ "print('If some heat is transferred to the gas and its volume is doubled, there is no change in pressure');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The pressure inside the cylinder 1.120000 bar\n",
+ "If some heat is transferred to the gas and its volume is doubled, there is no change in pressure\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1-10, Page No.32"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "from scipy.integrate import quad \n",
+ "from pylab import *\n",
+ "\n",
+ "#Constants used\n",
+ "g=9.81;#acceleration due to gravity in m/s^2;\n",
+ "\n",
+ "#Given values\n",
+ "p=1040;# density on the water surface in kg/m^3\n",
+ "h1=0.8;# thickness of surface zone\n",
+ "H=4;# thickness of gradient zone\n",
+ "x0=0.0;# lower limit of integration\n",
+ "x1=4.0;# upper limit of integration\n",
+ "\n",
+ "\n",
+ "#Calculations\n",
+ "P1=p*g*h1/1000;#standard pressure determination formula\n",
+ "#P2 = integration of the exp. p*g*(math.sqrt(1+(math.tan(math.pi*z/4/H)^2))) b/w 0-4\n",
+ "def intgrnd1(z): \n",
+ " return (p*g*(math.sqrt(1+(math.tan(math.pi*(z)/4/H)**2))) )#integrant\n",
+ "P2, err = quad(intgrnd1, x0, x1) \n",
+ "P2=P2/1000;#converting into kPa\n",
+ "P=P1+P2;\n",
+ "\n",
+ "#Results\n",
+ "print 'the gage pressure at the bottom of gradient zone %f kPa' %round(P)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the gage pressure at the bottom of gradient zone 54.000000 kPa\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file