diff options
author | Thomas Stephen Lee | 2015-09-04 22:04:10 +0530 |
---|---|---|
committer | Thomas Stephen Lee | 2015-09-04 22:04:10 +0530 |
commit | 41f1f72e9502f5c3de6ca16b303803dfcf1df594 (patch) | |
tree | f4bf726a3e3ce5d7d9ee3781cbacfe3116115a2c /Thermodynamics_An_Engineering_Approach/Chapter1.ipynb | |
parent | 9c9779ba21b9bedde88e1e8216f9e3b4f8650b0e (diff) | |
download | Python-Textbook-Companions-41f1f72e9502f5c3de6ca16b303803dfcf1df594.tar.gz Python-Textbook-Companions-41f1f72e9502f5c3de6ca16b303803dfcf1df594.tar.bz2 Python-Textbook-Companions-41f1f72e9502f5c3de6ca16b303803dfcf1df594.zip |
add/remove/update books
Diffstat (limited to 'Thermodynamics_An_Engineering_Approach/Chapter1.ipynb')
-rwxr-xr-x | Thermodynamics_An_Engineering_Approach/Chapter1.ipynb | 387 |
1 files changed, 0 insertions, 387 deletions
diff --git a/Thermodynamics_An_Engineering_Approach/Chapter1.ipynb b/Thermodynamics_An_Engineering_Approach/Chapter1.ipynb deleted file mode 100755 index 3e2c2051..00000000 --- a/Thermodynamics_An_Engineering_Approach/Chapter1.ipynb +++ /dev/null @@ -1,387 +0,0 @@ -{
- "metadata": {
- "name": ""
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "Chapter 1: Introduction and Basic Concepts"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 1-2, Page No.8"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Given values\n",
- "p=850;# density in kg/m^3\n",
- "V=2; # volumne of tank in m^3\n",
- "\n",
- "#Calculations\n",
- "m=p*V;# mass, density and volumne corealtion\n",
- "\n",
- "#Result\n",
- "print 'The amount of oil in tank is %i kg' %round(m,0)\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The amount of oil in tank is 1700 kg\n"
- ]
- }
- ],
- "prompt_number": 8
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 1-3, Page No.9"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Constants used\n",
- "g=32.174;# gravitational constant in ft/s^2\n",
- "\n",
- "#given values\n",
- "m=1; # mass of 1.00 lbm is subjected to standard earth gravity\n",
- "\n",
- "#Calculations\n",
- "w=(m*g)/g; # weight is mass times the local value of gravitational acceleration\n",
- "#dimensionally the above equation is represented as lbm * ft/s^2 * (lbf/ft/s^2)\n",
- "\n",
- "#Result\n",
- "print 'The weight on earth is %i lbf' %w\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The weight on earth is 1 lbf\n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 1-4, Page No.21"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "# Example 1.4\n",
- "\n",
- "# Given values\n",
- "Tc=10; #change in temp in Celcius\n",
- "\n",
- "# Calculations\n",
- "Tk=Tc;\n",
- "Tr=1.8*Tk;#conversion scale of temperature change from K to R\n",
- "Tf=Tr;\n",
- "# calculated using the corealtions b/w these scales\n",
- "\n",
- "#Results\n",
- "print 'the corresponding change is %i K' %Tk\n",
- "print 'the corresponding change is %i R' %Tr\n",
- "print 'the corresponding change is %i F' %Tf\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "the corresponding change is 10 K\n",
- "the corresponding change is 18 R\n",
- "the corresponding change is 18 F\n"
- ]
- }
- ],
- "prompt_number": 4
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 1-5, Page No.23"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Given values\n",
- "Patm=14.5; #atmospheric pressure in psi\n",
- "Pvac=5.8; #vacuum gage reading in psi\n",
- "\n",
- "#Calculations\n",
- "Pabs=Patm-Pvac;#pressure in vaccumm is always treated to be negative\n",
- "\n",
- "#Results\n",
- "print'the absolute pressure in the chamber %f psi'%round(Pabs,1)\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "the absolute pressure in the chamber 8.700000 psi\n"
- ]
- }
- ],
- "prompt_number": 14
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 1-6, Page No.26"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Constants used\n",
- "pw=1000; # density of water in kg/m^3;\n",
- "g=9.81; # acceleration due to gravity in m/s^2;\n",
- " \n",
- "#Given values\n",
- "SG=0.85;# specific gravity of manometric fluid\n",
- "h=0.55;# converting height from cm to m\n",
- "Patm=96;# atmospheric pressure in kPa\n",
- "\n",
- "# Calculations\n",
- "p=SG*pw;\n",
- "Ptank=Patm+(p*g*h/1000); # calculating pressure using liquid at same height have same pressure\n",
- "\n",
- "#Results\n",
- "print 'absolute pressure in tank %f kPa' %round(Ptank,1)\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "absolute pressure in tank 100.600000 kPa\n"
- ]
- }
- ],
- "prompt_number": 5
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 1-7, Page No.28"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Constants used\n",
- "g=9.81;#acceleration due to gravity in m/s^2;\n",
- "\n",
- "#Given values\n",
- "h1=0.1;# distance b/w point 1 at air-water interface and point 2 at mercury-air interface in m\n",
- "h2=0.2;# distance b/w oil-water interface and mercury-oil interface in m\n",
- "h3=0.35;# distance b/w air-mercury interface and mercury-oil interface in m\n",
- "pw=1000;# density of water in kg/m^3\n",
- "pHg=13600;# density of mercury in kg/m^3\n",
- "poil=800;# density of oil in kg/m^3\n",
- "Patm=85.6;# atmospheric pressure in kPa\n",
- "\n",
- "#Calculation\n",
- "P1=Patm-(pw*g*h1+poil*g*h2-pHg*g*h3)/1000;#calculating pressure using liquid at same height have same pressure\n",
- "\n",
- "#Results\n",
- "print 'the air pressure in tank %i kPa' %round(P1)\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "the air pressure in tank 130 kPa\n"
- ]
- }
- ],
- "prompt_number": 11
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 1-8, Page No.31"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Constants used\n",
- "g=9.81;# acceleration due to gravity in m/s^2;\n",
- "\n",
- "#Given values\n",
- "pHg=13570;# density of mercury at 10 C in kg/m^3\n",
- "h=0.74;# converting barometric reading into m from mm\n",
- "\n",
- "#Calculationa\n",
- "Patm=pHg*g*h/1000;# standard pressure formula\n",
- "\n",
- "#Results\n",
- "print 'the atmospheric pressure %f kPa' %round(Patm,1)\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "the atmospheric pressure 98.500000 kPa\n"
- ]
- }
- ],
- "prompt_number": 12
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 1-9, Page No.31"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#constants used\n",
- "g=9.81;#acceleration due to gravity in m/s^2;\n",
- "\n",
- "#given values\n",
- "m=60;# mass of piston in kg\n",
- "Patm=0.97;# atmospheric pressure in kPa\n",
- "A=0.04;# cross-sectional area in m^2\n",
- "\n",
- "#calculation\n",
- "P=Patm+(m*g/A)/100000;# standard pressure formula\n",
- "print 'The pressure inside the cylinder %f bar' %round(P,2)\n",
- "#The volume change will have no effect on the free-body diagram drawn in part (a), and therefore the pressure inside the cylinder will remain the same\n",
- "print('If some heat is transferred to the gas and its volume is doubled, there is no change in pressure');\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The pressure inside the cylinder 1.120000 bar\n",
- "If some heat is transferred to the gas and its volume is doubled, there is no change in pressure\n"
- ]
- }
- ],
- "prompt_number": 16
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 1-10, Page No.32"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "from scipy.integrate import quad \n",
- "from pylab import *\n",
- "\n",
- "#Constants used\n",
- "g=9.81;#acceleration due to gravity in m/s^2;\n",
- "\n",
- "#Given values\n",
- "p=1040;# density on the water surface in kg/m^3\n",
- "h1=0.8;# thickness of surface zone\n",
- "H=4;# thickness of gradient zone\n",
- "x0=0.0;# lower limit of integration\n",
- "x1=4.0;# upper limit of integration\n",
- "\n",
- "\n",
- "#Calculations\n",
- "P1=p*g*h1/1000;#standard pressure determination formula\n",
- "#P2 = integration of the exp. p*g*(math.sqrt(1+(math.tan(math.pi*z/4/H)^2))) b/w 0-4\n",
- "def intgrnd1(z): \n",
- " return (p*g*(math.sqrt(1+(math.tan(math.pi*(z)/4/H)**2))) )#integrant\n",
- "P2, err = quad(intgrnd1, x0, x1) \n",
- "P2=P2/1000;#converting into kPa\n",
- "P=P1+P2;\n",
- "\n",
- "#Results\n",
- "print 'the gage pressure at the bottom of gradient zone %f kPa' %round(P)\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "the gage pressure at the bottom of gradient zone 54.000000 kPa\n"
- ]
- }
- ],
- "prompt_number": 17
- }
- ],
- "metadata": {}
- }
- ]
-}
\ No newline at end of file |