summaryrefslogtreecommitdiff
path: root/Textbook_Of_Heat_Transfer/Chapter_8_Condensation_and_boiling.ipynb
diff options
context:
space:
mode:
authorhardythe12015-06-03 15:27:17 +0530
committerhardythe12015-06-03 15:27:17 +0530
commitdf60071cf1d1c18822d34f943ab8f412a8946b69 (patch)
treeab059cf19bad4a1233a464ccf5d72cf8b3fb323c /Textbook_Of_Heat_Transfer/Chapter_8_Condensation_and_boiling.ipynb
parentfba055ce5aa0955e22bac2413c33493b10ae6532 (diff)
downloadPython-Textbook-Companions-df60071cf1d1c18822d34f943ab8f412a8946b69.tar.gz
Python-Textbook-Companions-df60071cf1d1c18822d34f943ab8f412a8946b69.tar.bz2
Python-Textbook-Companions-df60071cf1d1c18822d34f943ab8f412a8946b69.zip
add books
Diffstat (limited to 'Textbook_Of_Heat_Transfer/Chapter_8_Condensation_and_boiling.ipynb')
-rwxr-xr-xTextbook_Of_Heat_Transfer/Chapter_8_Condensation_and_boiling.ipynb496
1 files changed, 496 insertions, 0 deletions
diff --git a/Textbook_Of_Heat_Transfer/Chapter_8_Condensation_and_boiling.ipynb b/Textbook_Of_Heat_Transfer/Chapter_8_Condensation_and_boiling.ipynb
new file mode 100755
index 00000000..0b5c2058
--- /dev/null
+++ b/Textbook_Of_Heat_Transfer/Chapter_8_Condensation_and_boiling.ipynb
@@ -0,0 +1,496 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:0879cd22772a64b93e3052735e29d09cf3e246362da6a06c0b0212fbf34b9367"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 8: Condensation and boiling"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8.1 , Page no:318"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "Ts = 80 ; #C\n",
+ "Tw = 70 ; #C\n",
+ "L = 1 ; #m\n",
+ "g = 9.8 ; #m/s^2\n",
+ "#From table A.1\n",
+ "rho = 978.8 ; #kg/m^3\n",
+ "k = 0.672 ; #W/m K\n",
+ "hfg = 2309 ; #At 80 C,kJ/kg\n",
+ "\n",
+ "#calculations\n",
+ "Tm = (Ts + Tw)/2 ; #Assuming condensate film is laminar and Re < 30\n",
+ "u = 381 *10**-6 ; #kg/m s\n",
+ "v = u/rho ;\n",
+ "#Substituting in eqn 8.3.9, we get\n",
+ "h = 0.943*(( hfg *1000*( rho**2)*g*(k**3)) /(( Ts -Tw)*u*L) )**(1/4) ; #W/m^2 K\n",
+ "rate = h*L*(Ts -Tw)/( hfg *1000) ; #kg/m s\n",
+ "Re = 4* rate /u;\n",
+ "#Substituting h = Re*(lambda*1000)*u/(4*L*(Ts-Tw)), in eqn 8.3.12\n",
+ "Re_1 = (((4* L*(Ts -Tw)*k/( hfg *1000* u)*(g/(v**2) )**(1/3) )+5.2)/1.08)**(1/1.22) ; #Substituting h = Re*(hfg*1000)*u/(4*L*(Ts-Tw))\n",
+ "#From eqn 8.3.12\n",
+ "h_1 = ((Re /(1.08*( Re**1.22) -5.2) )*k *(( g/v**2)**(1/3) )); #W/m^2 K\n",
+ "m = h_1*L *10/( hfg *1000) ; #rate of condensation,kg/m s\n",
+ "\n",
+ "#result\n",
+ "print\"Assuming condensate film is laminar and Re < 30\";\n",
+ "print\"h =\",round(h,4),\"W/m^2 K\";\n",
+ "print\"ReL =\",round(Re,4);\n",
+ "print\"Initial assumption was wrong, Now considering the effect of ripples, we get\";\n",
+ "print\"Re =\",round(Re_1,4);\n",
+ "print\"Heat Transfer Cofficient =\",round(h_1,4),\"W/m^2 K\";\n",
+ "print\"Rate of condensation =\",round(m,6),\"kg/m s\";"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Assuming condensate film is laminar and Re < 30\n",
+ "h = 6078.7864 W/m^2 K\n",
+ "ReL = 276.3936\n",
+ "Initial assumption was wrong, Now considering the effect of ripples, we get\n",
+ "Re = 320.4829\n",
+ "Heat Transfer Cofficient = 7287.8478 W/m^2 K\n",
+ "Rate of condensation = 0.031563 kg/m s\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8.2 , Page no:321"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "Ts = 262 ; #K\n",
+ "D = 0.022 ; #m\n",
+ "Tw = 258 ; #K\n",
+ "#Properties at Tm\n",
+ "rho = 1324 ; #kg/m^3\n",
+ "k = 0.1008 ; #W/m K\n",
+ "g = 9.81 ; #m/s^2\n",
+ "\n",
+ "#calculations\n",
+ "Tm = (Ts+Tw) /2;\n",
+ "v = 1.90*10**-7 ; #m^2/s\n",
+ "hfg = 215.1*10**3 ; #J/kg\n",
+ "u = v*rho ; #Viscosity\n",
+ "#From eqn 8.4.1\n",
+ "h = 0.725*( hfg *( rho**2) *g*(k**3) /(( Ts -Tw)*u*D))**(1/4) ;\n",
+ "rate = h*3.14*D*(Ts -Tw) / hfg ; #kg/s m\n",
+ "Re = 4* rate /u ;\n",
+ "\n",
+ "#result\n",
+ "print\"Heat transfer coefficient =\",round(h,4),\"W/m^2 K\";\n",
+ "print\"Condensation rate per unit length =\",round(rate,6),\"kg/s m\";\n",
+ "print\"Film Reynolds number =\",round(Re,4);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Heat transfer coefficient = 2622.2475 W/m^2 K\n",
+ "Condensation rate per unit length = 0.003369 kg/s m\n",
+ "Film Reynolds number = 53.5629\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8.3 , Page no:322"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "m = 25/60 ; #kg/sec\n",
+ "ID = 0.025 ; #m\n",
+ "OD = 0.029 ; #m\n",
+ "Tci = 30 ; #C\n",
+ "Tce = 70 ; #C\n",
+ "g = 9.8 ; #m/s^2\n",
+ "Ts = 100 ; #C\n",
+ "#Assuming 5.3.2 is valid, properties at 50 C\n",
+ "#Properties at Tm\n",
+ "rho = 988.1 ; #kg/m^3\n",
+ "k = 0.648 ; #W/m K\n",
+ "Pr = 3.54 ;\n",
+ "#From eqn 4.6.4a\n",
+ "f = 0.005635;\n",
+ "#From eqn 5.3.2\n",
+ "Nu = 198.39 ;\n",
+ "Tw = 90 ; #Assuming average wall temperature = 90 C\n",
+ "#Properties at Tm\n",
+ "#Properties at Tm\n",
+ "rho = 961.9 ; #kg/m^3\n",
+ "k = 0.682 ; #W/m K\n",
+ "l = 0; #initial guess, assumed value for fsolve function\n",
+ "\n",
+ "#calculations\n",
+ "v = 0.556*10**-6; #m^2/s\n",
+ "Re = 4*m/(3.14*ID*rho *v);\n",
+ "h = Nu*k/ID ;\n",
+ "u = 298.6*10**-6 ; #kg/m s\n",
+ "hfg = 2257*10**3 ; #J/kg\n",
+ "#Equating the heat flow from the condensing steam to the tube wall, to the heat flow from the tube wall to the flowing water.\n",
+ "#Solving the simplified equation\n",
+ "h = 0.725*(hfg *( rho**2) *g*(k**3) /(( Ts -Tw)*u*OD))**(1/4) ;\n",
+ "#By solving trial and error method, the temperature value we get\n",
+ "T=86.964984;# in oC\n",
+ "#Therefore\n",
+ "hc = 21338.77/(100 - T)**(1/4) ; #W/m^2 K\n",
+ "#Now, equating the heat flowing from the condensing steam to the tube wall to the heat gained by the water, we have\n",
+ "#Solving by trial and error method, we get\n",
+ "L=5.216152; #in meter\n",
+ "\n",
+ "#result\n",
+ "print\"Temperature obtained from trial and error =\",round(T,4),\"oC\";\n",
+ "print\"hc =\",round(hc,4),\"W/m^2 K\";\n",
+ "print\"Length of the tube =\",round(L,4),\"m\";"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Temperature obtained from trial and error = 86.965 oC\n",
+ "hc = 11230.3034 W/m^2 K\n",
+ "Length of the tube = 5.2162 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8.4 , Page no:322"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "from __future__ import division\n",
+ "#Properties at (Tw+Ts)/2 = 100.5 degree celsius\n",
+ "deltaT1 = 1; #in degree celsius\n",
+ "p1 = 7.55*10**-4; #[K^(-1) p1 is coefficient of cubical expansion\n",
+ "v1 = 0.294*10**-6; #[m^2/sec] viscosity at 100.5 degree celsius\n",
+ "k1 = 0.683; #[W/m-k]thermal conductivity\n",
+ "Pr1 = 1.74; #Prandtl number\n",
+ "g = 9.81; #acceleration due to gravity\n",
+ "L = 0.14*10**-2; #diameter in meters\n",
+ "#Properties at (Tw+Ts)/2 =102.5\n",
+ "deltaT2 = 5; #in degree celsius\n",
+ "p2 = 7.66*10**-4; #[K^(-1) p1 is coefficient of cubical expansion\n",
+ "v2 = 0.289*10**-6; #[m^2/sec] viscosity at 102.5 degree celsius \n",
+ "k2 = 0.684; #[W/m-k]thermal conductivity\n",
+ "Pr2 = 1.71; #Prandtl number \n",
+ "#Properties at (Tw+Ts)/2 =105\n",
+ "deltaT3 = 10; #in degree celsius\n",
+ "p3 = 7.80*10**-4; #[K^(-1) p1 is coefficient of cubical expansion\n",
+ "v3 = 0.284*10**-6; #[m^2/sec] viscosity at 105 degree celsius \n",
+ "k3 = 0.684; #[W/m-k]thermal conductivity\n",
+ "Pr3 = 1.68; #Prandtl number\n",
+ "\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "Ra1 = ((p1*g*deltaT1*L**3)/(v1**2))*Pr1;\n",
+ "q1=(k1/L)*(deltaT1)*(0.36+(0.518*Ra1**(1/4))/(1+(0.559/Pr1)**(9/16))**(4/9))\n",
+ "\n",
+ "Ra2 = ((p2*g*deltaT2*L**3)/(v2**2))*Pr2;\n",
+ "q2=(k2/L)*(deltaT2)*(0.36+(0.518*Ra2**(1/4))/(1+(0.559/Pr2)**(9/16))**(4/9))\n",
+ "\n",
+ "Ra3 = ((p3*g*deltaT3*L**3)/(v3**2))*Pr3;\n",
+ "q3=(k3/L)*(deltaT3)*(0.36+(0.518*Ra3**(1/4))/(1+(0.559/Pr3)**(9/16))**(4/9))\n",
+ "\n",
+ "#At 100 degree celsius\n",
+ "Cpl = 4.220; #[kJ/kg]\n",
+ "lamda = 2257; #[kJ/kg]\n",
+ "ul = 282.4*10**-6; #viscosity is in kg/m-sec\n",
+ "sigma = 589*10**-4; #Surface tension is in N/m\n",
+ "pl = 958.4; #density in kg/m^3\n",
+ "pv =0.598; #density of vapour in kg/m^3\n",
+ "deltap = pl-pv;\n",
+ "Prl = 1.75; #Prandtl no. of liquid\n",
+ "Ksf = 0.013;\n",
+ "deltaT11=5;\n",
+ "deltaT12=10;\n",
+ "deltaT13=20;\n",
+ "q11=141.32*deltaT11**3\n",
+ "q12=141.32*deltaT12**3\n",
+ "q13=141.32*deltaT13**3\n",
+ "\n",
+ "\n",
+ "L1 = (L/2)*(g*(pl-pv)/sigma)**(1/2);\n",
+ "f_L = 0.89+2.27*math.exp(-3.44*L1**(0.5));\n",
+ "q2 = f_L*((3.14/24)*lamda*10**(3)*pv**(0.5)*(sigma*g*(pl-pv))**(0.25));\n",
+ "\n",
+ "Tn=pow(q2/141.32,1/3)\n",
+ "q3 = 0.09*lamda*10**3*pv*(sigma*g*(pl-pv)/(pl+pv)**(2))**(0.25);\n",
+ "Ts1 = 140; #surface temperature in degree celsius\n",
+ "Ts2 = 200; #surface temperature in degree celsius\n",
+ "Ts3 = 600; #surface temperature in degree celsius\n",
+ "Twm1 = (140+100)/2; #Mean film temperature\n",
+ "#properties of steam at 120 degree celsius and 1.013 bar\n",
+ "kv = 0.02558; #thermal conductivity in W/mK\n",
+ "pv1 = 0.5654; #vapor density in kg/m**3\n",
+ "uv=13.185*10**(-6); #viscosity of vapour in kg/m sec\n",
+ "lamda1 = (2716.1-419.1)*10**(3);#Latent heat of fusion in J/kg\n",
+ "hc = 0.62*((kv**3)*pv*(pl-pv)*g*lamda1/(L*uv*(140-100)))**(0.25);\n",
+ "qrad = 5.67*10**(-8)*(413**4 - 373**4)/((1/0.9)+1-1);\n",
+ "hr = qrad/(413-373);\n",
+ "h = hc + 0.75*hr;\n",
+ "\n",
+ "hc_200 = 0.62*((kv**3)*pv*(pl-pv)*g*lamda1/(L*uv*(200-100)))**(0.25);\n",
+ "qrad1 = 5.67*10**(-8)*(473**4 - 373**4)/((1/0.9)+1-1);\n",
+ "hr_200 = qrad1/(200-100);\n",
+ "h_200 = hc_200 +0.75*hr_200;\n",
+ "hc_600 = 0.62*((kv**3)*pv*(pl-pv)*g*lamda1/(L*uv*(600-100)))**(0.25);\n",
+ "qrad2 = 5.67*10**(-8)*(873**4 - 373**4)/((1/0.9)+1-1);\n",
+ "hr_600 = qrad1/(600-100)\n",
+ "\n",
+ "#Results\n",
+ "\n",
+ "print \"\\n q/A = \",round(q1,2),\" W/m^2 at (Tw-Ts)=1\";\n",
+ "print \"\\n q/A = \",round(q2,2),\" W/m^2 at (Tw-Ts)=5\";\n",
+ "print \"\\n q/A = \",round(q3,2),\" W/m^2 at (Tw-Ts)=10\";\n",
+ "print \"\\n q/A at deltaT = 5 degree celsius = \",q11,\" W/m^2\";\n",
+ "print \"\\nq/A at deltaT = 10 degree celsius = \",q12,\" W/m^2\";\n",
+ "print \"\\n q/A at deltaT =20 degree celsius = \",q13,\" W/m^2\";\n",
+ "print \"\\n Peak heat flux L = \",round(L1,2); \n",
+ "print \"\\n f(l) = \",round(f_L,2);\n",
+ "print \"\\n q/A = \",q2,\" W/m^2\";\n",
+ "print \"Tw-Ts = \",Tn,\" degree celsius\"\n",
+ "print \"\\n\\n Minimum heat flux\";\n",
+ "print \"\\n q/A \",q3, \"W/m^2\"\n",
+ "print \"\\n\\n Stable film boiling\"\n",
+ "print \"\\n hc = \",hc,\" W/m^2\"\n",
+ "print \"\\n q/A due to radiation = \",qrad,\" W/m^2\";\n",
+ "print \"\\n hr = \",hr,\" W/m^2 K \";\n",
+ "print \"\\n Since hr<hc \";\n",
+ "print \"\\n The total heat transfer coefficient \";\n",
+ "print \" h = \",h,\" W/m^2 K\";\n",
+ "print \"\\n Total heat flux \",h*(140-100),\" W/m^2 K\";\n",
+ "print \"\\n\\n hc = \",hc_200,\" W/m^2\";\n",
+ "print \"\\n hr = \",hr_200,\" W/m^2 K\";\n",
+ "print \"\\n q/A due to radiation = \",qrad1,\" W/m^2\";\n",
+ "print \"\\n Total heat flux = \",h_200*100,\" W/m^2\";\n",
+ "print \"\\n\\n hc = \",hc_600,\" W/m^2\";\n",
+ "print \"\\n hr = \",hr_600,\" W/m^2 K\";\n",
+ "print \"\\n q/A due to radiation = \",qrad2,\" W/m^2\";\n",
+ "\n",
+ "#Graph\n",
+ "\n",
+ "import matplotlib.pyplot as plt\n",
+ "import numpy as np\n",
+ "from pylab import *\n",
+ "figure(1); # For Plotting y-x Diagram\n",
+ "%matplotlib inline\n",
+ "q = [q11, q12, q13];\n",
+ "plt.plot ([1, 5, 10],q);\n",
+ "deltaT=linspace(1,10,10);\n",
+ "q1=141.32*deltaT**3;\n",
+ "plt.plot (deltaT,q1)\n",
+ "plt.title (\"Boiling curve\");\n",
+ "plt.xlabel(\" (Tw - Ts)degree celsius \");\n",
+ "plt.ylabel(\" Heat flux,(q/A)W/m^2 \");"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "\n",
+ " q/A = 1116.99 W/m^2 at (Tw-Ts)=1\n",
+ "\n",
+ " q/A = 1393519.91 W/m^2 at (Tw-Ts)=5\n",
+ "\n",
+ " q/A = 19025.3 W/m^2 at (Tw-Ts)=10\n",
+ "\n",
+ " q/A at deltaT = 5 degree celsius = 17665.0 W/m^2\n",
+ "\n",
+ "q/A at deltaT = 10 degree celsius = 141320.0 W/m^2\n",
+ "\n",
+ " q/A at deltaT =20 degree celsius = 1130560.0 W/m^2\n",
+ "\n",
+ " Peak heat flux L = 0.28\n",
+ "\n",
+ " f(l) = 1.26\n",
+ "\n",
+ " q/A = 1393519.90741 W/m^2\n",
+ "Tw-Ts = 21.4438708455 degree celsius\n",
+ "\n",
+ "\n",
+ " Minimum heat flux\n",
+ "\n",
+ " q/A 19025.295556 W/m^2\n",
+ "\n",
+ "\n",
+ " Stable film boiling\n",
+ "\n",
+ " hc = 455.986290831 W/m^2\n",
+ "\n",
+ " q/A due to radiation = 496.874268274 W/m^2\n",
+ "\n",
+ " hr = 12.4218567068 W/m^2 K \n",
+ "\n",
+ " Since hr<hc \n",
+ "\n",
+ " The total heat transfer coefficient \n",
+ " h = 465.302683361 W/m^2 K\n",
+ "\n",
+ " Total heat flux 18612.1073344 W/m^2 K\n",
+ "\n",
+ "\n",
+ " hc = 362.632549817 W/m^2\n",
+ "\n",
+ " hr = 15.665080604 W/m^2 K\n",
+ "\n",
+ " q/A due to radiation = 1566.5080604 W/m^2\n",
+ "\n",
+ " Total heat flux = 37438.136027 W/m^2\n",
+ "\n",
+ "\n",
+ " hc = 242.507001959 W/m^2\n",
+ "\n",
+ " hr = 3.13301612081 W/m^2 K\n",
+ "\n",
+ " q/A due to radiation = 28652.514946 W/m^2\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAEXCAYAAADr+ZCUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XdcU2f7P/ArTAdKGBIgQVYCKFBAZYi1RREQ67YyrIKr\ndTxatX0o2vFVv62Ktj7VVq2/p5UCWkDrRCuIi2qVIQoWB0uCkDDUkLBncv/+OD39IkIZAodxvV+v\n80pycsaVtObDfc597sMihABCCCHU25SYLgAhhNDghAGEEEKIERhACCGEGIEBhBBCiBEYQAghhBiB\nAYQQQogRGEAIdbNffvnlPS8vr0v0ayUlJUVeXp4ZAMCaNWt++Oqrrz5nrjqE+g4WXgeE0KtMTEzy\nnz17pqesrCxXVVVtdHV1vX348OHVPB5P1NltKSkpKXJzc/lmZmZ5PVErQv0VtoAQagWLxSIXLlyY\nWVlZOaK4uNiAw+GUrl+//num6+ppTU1NKkzXgAYPDCCE2qGurl6/YMGCU48ePRpLzysvL9cMCAiI\n0NPTe2ZiYpK/Y8eOzwghLACAsLCwpZMnT77Z2raWLl0a9sUXX3wJAJCQkODG4/FE//nPfz7icDil\nhoaGRWFhYUvpZSUSic6sWbPOa2pqljs5OaV8/vnnX7W1XQCAP/74401XV9fbWlpa0tGjRxdEREQE\nAAC4ubklHDlyZAW9XMv6lJSUFIcOHVprYWGRbWFhkb127dpDQUFBXzff9pw5c859++23mwAAioqK\nDBcsWHBKT0/vmZmZWd7333+/vpNfKUIAgAGEUJvoQKmpqRl2/Phx34kTJybS761fv/77ysrKEUKh\n0PT3339/OyIiIuDnn39e1t42WSwWYbFYfx/3Li0t5VRUVIwsKioyPHLkyIp//etfB8vLyzUBAP71\nr38dHDFiRGVpaSknPDw8MCIiIqD5us09ffrUeMaMGRc3bNiw/8WLF7rp6en2dnZ291vbZ2vOnTs3\nJyUlxenx48dj/P39o44fP+5LvyeVSrUuX77s4e/vH6VQKJRmzZp13sHBIa2oqMjw6tWr7vv27dsY\nHx/v2d5nR6glDCCEWkEIYc2dO/eslpaWlM1my65ever+73//+xsAALlcrnz8+HHfXbt2bRk+fHi1\nsbHx048//njv0aNHl3R02/RzVVXVxv/5n//5X2VlZbm3t3eshoZGVVZWlqVcLlc+ffr0/O3bt28d\nMmRI3ZgxYx4HBgaGN1+3ucjIyEUeHh6XfX19jysrK8u1tbXL6ADqiC1btuxis9kydXX1+jfffPMP\nFotFbt68ORkA4OTJk++6urre1tfXL7lz547jixcvdD///POvVFRUmkxNTYUrV678KTo62q+j+0KI\nhsd7EWoFi8Ui586dmzN16tRrhBDW2bNn57799tu/P378eAwhhNXY2KhqbGz8lF5+9OjRBWKxmNvZ\n/ejo6EiUlJQU9Othw4bVVFVVaTx//nxUU1OTipGRUSH93j91gBCJRLzX6eTQfD8sFov4+flFR0VF\n+U+ePPlmZGTkooCAgAgAqqVVVFRkqKWlJaWXl8vlym+99daNru4bDV7YAkKoHSwWi8ybN++MsrKy\n/I8//nhTV1f3haqqamN+fr4JvUxBQcHojvaQa+9wGADAqFGjnquoqDQVFhYa0fOaP2/JyMio8MmT\nJ+atvTd8+PDq6urq4fTrkpIS/fZq8vf3jzp58uS7T58+NU5JSXFasGDBKQAqaE1NTYVSqVSLnioq\nKkZeuHBhZnufCaGWMIAQagN9uIsQwjp37twcqVSqNWbMmMfKyspyHx+fE5999tmOqqoqjadPnxp/\n++23mxYvXnysI9ts6zBac8rKyvL58+ef3rZt27ba2tqhmZmZVkePHl3SVni99957v1y5cmXar7/+\nurCpqUlFIpHo3L9/3w4AwN7ePv306dPza2trh+bm5vKbd0hoi729fbquru6LlStX/jR9+vS4kSNH\nVgAAODk5pYwYMaJyz549n9TW1g6Vy+XKDx48sElNTZ3Q3jYRagkDCKE2zJo16/yIESMqNTU1y7/4\n4osvIyIiAsaMGfMYAOD7779fP3z48GozM7O8yZMn33zvvfd+WbZs2c8Ar570b/m8rfdaOnDgwLry\n8nJNfX39ksDAwHB/f/8oNTW1htaWNTIyKrx48eKMvXv3fqyjoyNxcHBI+/PPP98AANi0adO3ampq\nDRwOp3TZsmU/L168+FhHali0aFHktWvXpi5atCiSnqekpKS4cOHCzPT0dHszM7O8UaNGPf/ggw/+\nW1FRMbIj3ylCzeGFqAj1E8HBwbufPXum15Hedgj1Bz3WAlq+fHkoh8MptbW1zaDnBQUFfT1mzJjH\ndnZ29+fPn3+a7m4KALBr164tAoEgx8rKKrN5l867d++Ot7W1zRAIBDkbNmzYT8+vr69X9/X1PS4Q\nCHJcXFySnj59aky/Fx4eHkhf00BfCwEAIBQKTZ2dnZMFAkGOn59fdGNjo2pPfX6EXldWVpbln3/+\n+QYhhJWSkuIUGhq6fN68eWeYrguhbkMI6ZHpxo0bk+/du+dgY2OTQc+Lj4/3kMvlSoQQCA4ODgkO\nDg4hhMDDhw/H2tnZpTc0NKgKhUITc3PzXIVCwSKEgKOjY0pycrITIQS8vb0vxsbGTieEwMGDB9eu\nWbPmECEEoqOjfX19faMJISCRSLTNzMyeSKVStlQqZZuZmT2RyWSahBBYuHDhiePHj/sQQmD16tU/\n/PDDD6t76vPjhNPrTnfu3JnA5/Nzhg0bVm1qapoXEhISzHRNOOHUnVOPblwoFJo0D6Dm0+nTp+e9\n9957xwghsHPnzi3N/3F5eXnFJSYmuhQVFRlYWVk9pudHRUX5rVq16jC9TFJSkjMhBBobG1V0dXWf\nE0IgMjLSf/Xq1T/Q66xatepwVFSUn0KhYOnq6j6nAzAxMdHFy8srjun/ADjhhBNOg3Vi7Dqg0NDQ\n5f7+/lEA1NAeLi4uSfR7PB5PJBaLuaqqqo3Nu7ZyuVwxfa2FWCzm0tcuqKioNGlqapZLJBKdoqIi\nw+br0NsqKyvTZrPZMvqai+bbaq4jXWQRQgi9inSgh2dzjPSC27Fjx2dqamoNzXvX9KTOhgrTfxW0\nnLZu3cp4Df2hpr5aF9aENQ2Gurqi1wMoLCxs6cWLF2f88ssv79HzuFyuuPlFdiKRiMfj8URcLlcs\nEol4LefT6xQUFIwGoEbwLS8v19TR0ZG03FZhYaERl8sVa2trl8lkMrZCoVCit8XlcsW98ZkRQgi9\nqlcDKC4ubvrXX38ddO7cuTlDhgypo+fPnj07Jjo62q+hoUFNKBSa5uTkCJycnFL09fVLRo4cWZGc\nnOxMCGEdPXp0yZw5c87R64SHhwcCUGNVubu7XwUA8PT0jI+Pj/eUyWRsehBFLy+vSywWi0yZMuX6\nr7/+uhCA6ik3d+7cs735+RFCCDXTU80xPz+/KAMDgyJVVdUGHo9XeOTIkeV8Pj9n9OjRT+3t7dPs\n7e3T6F5shBDYsWPHp+bm5rmWlpaZcXFxXvT81NTU8TY2Nhnm5ua569ev/46eX1dXp75w4cITfD4/\nx9nZOUkoFJrQ74WGhi7j8/k5fD4/JywsLJCen5eXZ+rk5JTM5/NzfHx8jjc0NKi20owkfc3169eZ\nLuEVfbEmQvpmXVhTx2BNHdcX6/rrt7NTOYEXorbAYrEIficIIdQ5LBYLSH/ohIAQQghhACGEEGIE\nBhBCCCFGYAAhhBBiBAYQQgghRmAAIYQQYgQGEEIIIUZgACGEEHotRUVdWw8DCCGEUJeJRABvv921\ndTGAEEIIdUlhIYCbG8AHH3RtfQwghBBCnVZQQIXP2rUAQUFd2wYGEEIIoU7Jz6fCZ/16gI8+6vp2\nMIAQQgh1mFBIhc+mTQAbN77ethi7JTdCCKH+JS8PYMoUgOBg6tDb68IWEEIIoXbl5lItny1buid8\nADCAEEIItSMnh2r5fP45wOrV3bddPASHEEKoTVlZAO7uANu3A6xY0b3bxgBCCCHUqsePAaZNA9ix\nA2Dp0u7fPgYQQgihVzx6BODhAbBrF0BAQM/sAwMIIYTQSx48APD0BNizB2Dx4p7bDwYQQgihv2Vk\nUOGzdy/AokU9uy8MIIQQQgAAcP8+wPTpAPv2Afj69vz+MIAQQghBWhqAtzfA998DLFzYO/vEAEII\noUHu3j0qfA4dAliwoPf2ixeiIoTQIJaaSoXP4cO9Gz4A2AJCCKFBKyUFYNYsgB9/BJg9u/f3jwGE\nEEKDUFISFTqhoQAzZzJTAwYQQggNMomJAHPmAISFAcyYwVwdPXYOaPny5aEcDqfU1tY2g55XVlam\n7eHhcdnCwiLb09MzXiaTsen3du3atUUgEORYWVllxsfHe9Lz7969O97W1jZDIBDkbNiwYT89v76+\nXt3X1/e4QCDIcXFxSXr69Kkx/V54eHighYVFtoWFRXZERMTf1/AKhUJTZ2fnZIFAkOPn5xfd2Nio\n2lOfHyGE+qJbt6jwiYhgNnwAAIAQ0iPTjRs3Jt+7d8/BxsYmg54XFBS0Z/fu3Z8QQiAkJCQ4ODg4\nhBACDx8+HGtnZ5fe0NCgKhQKTczNzXMVCgWLEAKOjo4pycnJToQQ8Pb2vhgbGzudEAIHDx5cu2bN\nmkOEEIiOjvb19fWNJoSARCLRNjMzeyKVStlSqZRtZmb2RCaTaRJCYOHChSeOHz/uQwiB1atX//DD\nDz+sblk39ZUghNDAc+MGIaNGEXLpUvdv+6/fzk7lRI8FECEEhEKhSfMAsrS0zCwpKeEQQqC4uFjf\n0tIykxACO3fu3BISEhJML+fl5RWXmJjoUlRUZGBlZfWYnh8VFeW3atWqw/QySUlJzoQQaGxsVNHV\n1X1OCIHIyEj/1atX/0Cvs2rVqsNRUVF+CoWCpaur+1wulysRQiAxMdHFy8sr7pUvBAMIITQAJSRQ\n4XP5cs9svysB1KvngEpLSzkcDqcUAIDD4ZSWlpZyAACKiooMXVxckujleDyeSCwWc1VVVRt5PJ6I\nns/lcsVisZgLACAWi7lGRkaFAAAqKipNmpqa5RKJRKeoqMiw+Tr0tsrKyrTZbLZMSUlJ0XJbLW3b\ntu3v525ubuDm5taN3wJCCPWu69epkQ2iowGmTu2ebSYkJEBCQsJrbYOxTggsFouwWCzSW/vqzPLN\nAwghhPqzq1cB/PwAfv2VuqNpd2n5x/n27ds7vY1evRCVw+GUlpSU6AMAFBcXG+jp6T0DoFojhYWF\nRvRyIpGIx+PxRFwuVywSiXgt59PrFBQUjAYAaGpqUikvL9fU0dGRtNxWYWGhEZfLFWtra5fJZDK2\nQqFQorfF5XLFvfPJEUKo912+DODvD3DqVPeGT3fp1QCaPXt2THh4eCAA1VNt7ty5Z+n50dHRfg0N\nDWpCodA0JydH4OTklKKvr18ycuTIiuTkZGdCCOvo0aNL5syZc67ltk6ePPmuu7v7VQAAT0/P+Pj4\neE+ZTMaWSqValy9f9vDy8rrEYrHIlClTrv/6668LW+4fIYQGmkuXAN57D+D0aYC33mK6mjZ09qRR\nRyc/P78oAwODIlVV1QYej1cYGhq6TCKRaLu7u18RCATZHh4e8VKplE0vv2PHjk/Nzc1zLS0tM+Pi\n4rzo+ampqeNtbGwyzM3Nc9evX/8dPb+urk594cKFJ/h8fo6zs3OSUCg0od8LDQ1dxufzc/h8fk5Y\nWFggPT8vL8/Uyckpmc/n5/j4+BxvaGhQbVk3YCcEhFA/d/Ei1eHg1q3e2yd0oRMCi1oP0VgsFsHv\nBCHUX124ALB8OUBMDICLS+/tl8ViASGE1Zl1cCQEhBAaIM6fB1ixggohJyemq2kfjoaNEEIDwLlz\nACtXAvz2W/8IHwAMIIQQ6vdOnwb44AOAixcBHB2ZrqbjMIAQQqgfO3kSYO1agLg4gPHjma6mczCA\nEEKonzpxAmDdOqrLtYMD09V0HgYQQgj1Q9HRABs2AMTHA9jZMV1N12AAIYRQP/PLLwAffUSNdPDG\nG0xX03UYQAgh1I8cPQoQFESFj40N09W8HgwghBDqJ8LCADZvpgYYtbZmuprXhwGEEEL9QGgowOef\nA1y7BjBmDNPVdA8cCQEhhPq4n34C2L6dCh8LC6ar6T4YQAgh1If9v/8HsGMHFT4CAdPVdC8MIIQQ\n6qMOHQLYvZu6o6m5OdPVdD8MIIQQ6oMOHAD45hsqfMzMmK6mZ7TZCaG8vFxz8+bNIYsXLz4WGRm5\nqPl7a9euPdTzpSGE0OD03XcAe/cCJCQM3PAB+IcAWrZs2c8AAAsWLDgVFRXlv2DBglN1dXVDAAAS\nExMn9laBCCE0mHz7LcC+fVT4mJgwXU3PajOAnjx5Yh4SErJ53rx5Z86fPz9r3Lhx99zd3a++ePFC\ntzcLRAihweKbbwAOHqTCx9iY6Wp6XpvngBoaGtQUCoWSkpKSAgDgs88+28HlcsVvv/3271VVVRq9\nVyJCCA18u3dT3a0TEgB4PKar6R1ttoBmzpx54erVq+7N5y1dujRs7969H6upqTX0fGkIITQ47NoF\ncOTI4AofAAAWIYTpGvoUFotF8DtBCPWWr74COHaMus7H0JDparqOxWIBIYTVmXXaHYqnsrJyRNdL\nQggh1Jbt26mRra9f79/h01X/GEBisZj7zjvv/NZbxSCE0GBACMDWrdQN5RISAAwMmK6IGW12Qnj4\n8KG1r6/v8Z9++mllbxaEEEIDGSEAX3wBcO4c1fLR02O6Iua0eQ5o1KhRz8+ePTt30qRJt3q5Jkbh\nOSCEUE8hBOCzzwAuXKBuqTBqFNMVdZ9uPQfk5OSUcvbs2bmvXxZCCCFCqHv5XLxIdTgYSOHTVW0G\n0Llz5+bIZDL2J598sqc3C0IIoYGGkP+7i+nVqwC6eDk/APxDAKmoqDT9+OOP72toaFT1ZkEIITSQ\nEALw0UdUZ4MrVwB0dJiuqO/A64BawHNACKHuQgjAxo0At28DxMcDaGkxXVHP6ZHrgAAApFKp1v37\n9+3u3bs3jp66ViJl165dW6ytrR/a2tpmLFq0KLK+vl69rKxM28PD47KFhUW2p6dnvEwmYzdfXiAQ\n5FhZWWXGx8d70vPv3r073tbWNkMgEORs2LBhPz2/vr5e3dfX97hAIMhxcXFJevr06d+jKoWHhwda\nWFhkW1hYZEdERAS8zudACKG2EALw4YcASUnUobeBHD5dRgj5x+nzzz//ksfjFb711lu/u7m5Xaen\n9tZraxIKhSampqZ5dXV16oQQ8PHxOR4WFhYYFBS0Z/fu3Z8QQiAkJCQ4ODg4hBACDx8+HGtnZ5fe\n0NCgKhQKTczNzXMVCgWLEAKOjo4pycnJToQQ8Pb2vhgbGzudEAIHDx5cu2bNmkOEEIiOjvb19fWN\nJoSARCLRNjMzeyKVStlSqZRNP29eH/WVIIRQ18nlhKxZQ4iLCyEyGdPV9I6/fjs7lQftLiAQCLLr\n6+vVOrvhtiaJRKJtYWGRVVZWptXY2Kgyc+bM8/Hx8R6WlpaZJSUlHEIIFBcX61taWmYSQmDnzp1b\nQkJCgun1vby84hITE12KiooMrKysHtPzo6Ki/FatWnWYXiYpKcmZEAKNjY0qurq6zwkhEBkZ6b96\n9eof6HVWrVp1OCoqyu+lLwQDCCH0GuRyQj74gBBXV0LKy5mupvd0JYDavSOqtbX1Q6lUqsXhcEq7\no8Wlra1d9vHHH+8dPXp0wdChQ2u9vLwueXh4XC4tLeXQ++BwOKWlpaUcAICioiJDFxeXJHp9Ho8n\nEovFXFVV1UYejyei53O5XLFYLOYCUCM4GBkZFQJQnSk0NTXLJRKJTlFRkWHzdehttaxx27Ztfz93\nc3MDNze37vjoCKEBTqEAWLUKIDMTIC4OYMQAHsgsISEBEhISXmsb7QbQp59+utPBwSHNxsbmgbq6\nej0AdaI+JiZmdld2+OTJE/N9+/ZtzM/PN9HU1CxfuHDhr8eOHVvcfBkWi0VYLBZjPQGaBxBCCHWE\nQgGwciVAbi5AbCyAxgC/aU3LP863b9/e6W20G0ABAQERmzdvDrGxsXlA3xvodcIhNTV1gqur620d\nHR0JAMD8+fNPJyYmTtTX1y8pKSnR19fXLykuLjbQ09N7BkC1bAoLC43o9UUiEY/H44m4XK5YJBLx\nWs6n1ykoKBhtaGhY1NTUpFJeXq6po6Mj4XK54oSEBDd6ncLCQqOpU6de6+pnQQghAAC5HGDFCoD8\nfOpC04EePt2mvWN0EyZMuNPZ43r/NKWnp9tZW1s/qKmpGapQKFgBAQHhBw4c+FdQUNAe+lzPrl27\nNrfshFBfX6+Wl5dnamZm9oTuhODk5JSclJTkrFAoWC07IdDneqKiovyad0IwNTXNk0ql7LKyMi36\nefP6AM8BIYQ6oamJkCVLCJkyhZCqKqarYQ70xDmgyZMn39yyZcuu2bNnx9CH4AAAxo0bd68rgWdn\nZ3c/ICAgYsKECalKSkqKcePG3fvggw/+W1lZOcLHx+fEkSNHVpiYmOSfOHHCBwBg7Nixj3x8fE6M\nHTv2kYqKStOhQ4fW0i2wQ4cOrV26dGlYbW3t0BkzZlycPn16HADAihUrjixZsuSoQCDI0dHRkURH\nR/sBUOefvvjiiy8dHR3vAABs3bp1O5vNlnXlcyCEUFMTQGAgwLNn1Phuw4YxXVH/0u6FqG5ubgmt\nHXK7fv36lB6rikF4ISpCqCOamgCWLAGQSKiRrYcOZboiZnXlQtQ2A+j27duuEydOTGSyMwATMIAQ\nQu1pbAR47z2AigqAM2cwfAC6eSSEiIiIgHHjxt3z8/OLDgsLW1pSUqL/+iUihFD/1tgI4O8PUF0N\ncPYshs/raPcQ3OPHj8fExsZ6x8fHe8pkMvbUqVOvTZ8+PW7SpEm3lJWV5b1UZ6/BFhBCqC0NDQB+\nflQInTwJoK7OdEV9R7cegmtNTU3NsOvXr0+JjY31TkxMnHj37t3xna6yj8MAQgi1pqEBwMeHGuPt\nxAkMn5a6NYA2bNiwf9KkSbcmTZp0i8vlirulwn4AAwgh1FJ9PcDChQDKygDHjwOoqTFdUd/TreeA\n+Hx+Ln1LbmNj46f+/v5RBw4cWJeWluagUCg6NIo2Qgj1d3V1AAsWAKiqUi0fDJ/u06FDcGKxmJuY\nmDjx9u3brufOnZvz/PnzURUVFSN7ob5ehy0ghBCtrg5g3jxqTLdffqFCCLWuKy2gf7wQlRDC+vPP\nP9+4ffu26+3bt10fPXo0ls/n5wYEBES8XqkIIdS31dYCzJ1L3cfn2DEAlXYv20ed1WYLyMPD43JF\nRcVIe3v7dGdn5+SJEycmWllZZQ7064KwBYQQqqkBmDMHQE8PIDwcw6cjuvUckJmZWR6LxSI5OTmC\nnJwcQW5uLl8ikeDdzBFCA1pNDcCsWQD6+gARERg+Pandc0Dl5eWaSUlJLomJiRMTExMnvnjxQtfa\n2vrhQL2dNbaAEBq8qqsBZs4EGD0aIDSU6vWGOqbbzwEBAAwZMqRu2LBhNUOHDq1VV1evLywsNKqv\nr8ce8AihAaWqCuCddwDMzAB++gnDpze02QLatGnTt7dv33bNzs62cHBwSHN1db09adKkWxMnTkwc\nyCNIYwsIocGnshJgxgwAS0uA//4XQAkvNOm0bm0BmZiY5C9evPiYnZ3dfRUVlabXLw8hhPqeigoA\nb28Aa2uAw4cxfHpTh64DyszMtMrPzzdhsVjE2Nj4qZWVVWYv1MYIbAEhNHiUlwNMnw5gbw9w8CCG\nz+vo1haQUCg0/fbbbzddvHhxBpfLFRsaGhYRQljFxcUGIpGIN3PmzAubNm361sTEJP+1K0cIoV5W\nXg7g5QUwfjzAgQMArE79dKLu0GYLyMfH58T777//o5ubW4Kqqmpj8/caGxtVr1+/PuWnn35aSd+5\ndKDAFhBCA59MBuDpCeDiArB/P4ZPd+jx0bBpjY2Nqi1DaaDAAEJoYCsro8Jn8mSA//wHw6e7dOuF\nqC0RQlhXrlyZtmLFiiODaXRshNDAUVYGMG0awNtvY/j0Be0GUGJi4sQPP/zwO2Nj46dz5849O3ny\n5JuZmZlWvVEcQgh1F4kEwN2dCqBvvsHw6QvaPAS3ZcuWXadOnVpgZmaW5+Pjc2Lu3Llnx48ff1co\nFJr2co29Cg/BITTwPH9OBc+MGQA7d2L49IRuPQc0atSo5+PHj7+7Zs2aH7y9vWPV1NQaTE1NhRhA\nCKH+5NkzquUzZw7Al19i+PSUbj0HVFxcbLBhw4b9p0+fnm9ubv5kyZIlR2tra4c2NjbiHTEQQv1C\naSnAlCnUPX0wfPqeDvWCq6urG3LhwoWZUVFR/n/88ceb7u7uVyMjIxf1Qn29DltACA0MJSUAU6cC\n+PoCbN3KdDUDX7cegrt9+7brxIkTE1ve/6eiomLkmTNn5gUGBoa/Rq19FgYQQv1fcTEVPosWAXzx\nBdPVDA7dGkCrV68+nJyc7GxhYZHt7e0dO3369Dh9ff2Sbqm0D8MAQqh/E4up8AkMBPj0U6arGTx6\n5ELUx48fj4mNjfWOj4/3lMlk7KlTp16bPn163KRJk24pKyvLX6viPggDCKH+SySizvmsXAkQHMx0\nNYNLj4+EUFNTM+z69etTYmNjvRMTEyfevXt3fKer7OMwgBDqnwoLqfBZtQogKIjpagafHhkJoays\nTJue6urqhkycODFx+/btW+Pj4z3Lysq0u1KoTCZjv/vuuyfHjBnzeOzYsY+Sk5Ody8rKtD08PC5b\nWFhke3p6xstkMja9/K5du7YIBIIcKyurzPj4eE96/t27d8fb2tpmCASCnA0bNuyn59fX16v7+voe\nFwgEOS4uLklPnz41pt8LDw8PtLCwyLawsMgeqHd1RWiwefoUwM0NYO1aDJ9+hRDyj5OxsXE+i8VS\naGtrS7S1tSUsFkthYmIiNDExEZqamua1t35rU0BAQPiRI0eWE0KgsbFRRSaTaQYFBe3ZvXv3J4QQ\nCAkJCQ4ODg4hhMDDhw/H2tnZpTc0NKgKhUITc3PzXIVCwSKEgKOjY0pycrITIQS8vb0vxsbGTieE\nwMGDB9dhjs3uAAAgAElEQVSuWbPmECEEoqOjfX19faMJISCRSLTNzMyeSKVStlQqZdPPm9dGfSUI\nof5CKCTE1JSQb79lupLB7a/fzk5lQbsLrFy58sfffvttBv364sWL3u+///5/O7sjepLJZJqtBZel\npWVmSUkJhxACxcXF+paWlpmEENi5c+eWkJCQYHo5Ly+vuMTERJeioiIDKyurx/T8qKgov1WrVh2m\nl0lKSnImfwWcrq7uc0IIREZG+q9evfoHep1Vq1YdjoqK8nvpC8EAQqjfyMsjxNiYkO++Y7oS1JUA\navN+QLTExMSJP/744/v0a29v79igoKCvu9riEgqFpqNGjXq+bNmyn+/fv283fvz4u/v27dtYWlrK\n4XA4pQAAHA6ntLS0lAMAUFRUZOji4pJEr8/j8URisZirqqrayOPxRPR8LpcrFovFXAAAsVjMNTIy\nKgQAUFFRadLU1CyXSCQ6RUVFhs3XobfVssZt27b9/dzNzQ3c3Ny6+nERQj3kyROqt1twMHXoDfWu\nhIQESEhIeK1ttBtAhoaGRV999dXnixcvPkYIYUVGRi56ndGwm5qaVO7duzfuwIED6xwdHe9s3Lhx\nX0hIyObmy7BYLNLy+qPe1DyAEEJ9T24uFT6ffgqwejXT1QxOLf843759e6e30W4nhKioKP9nz57p\nzZs378z8+fNPP3v2TC8qKsq/03v6C4/HE/F4PJGjo+MdAIB333335L1798bp6+uXlJSU6ANQwwDp\n6ek9A6BaNoWFhUb0+iKRiMfj8URcLlcsEol4LefT6xQUFIwGoAKvvLxcU0dHR9JyW4WFhUbNW0QI\nob4vJ4fq7fb55xg+/V5nj9l1xzR58uQbWVlZFoQQ2Lp167agoKA9QUFBe+hzPbt27drcshNCfX29\nWl5enqmZmdkTuhOCk5NTclJSkrNCoWC17IRAn+uJiorya94JwdTUNE8qlbLLysq06OfNawM8B4RQ\nn5WZSQiXS8hPPzFdCWoJurMTwrJly0JTUlIc23o/KSnJeenSpT93doeEEEhPT7ebMGHCnTfeeOP+\nvHnzTstkMk2JRKLt7u5+RSAQZHt4eMQ3D4YdO3Z8am5unmtpaZkZFxfnRc9PTU0db2Njk2Fubp67\nfv367+j5dXV16gsXLjzB5/NznJ2dk4RCoQn9Xmho6DI+n5/D5/NzwsLCAl/5QjCAEOqTHj0ixNCQ\nkJ9/ZroS1JquBFCbF6JmZGTYfv3110FJSUkulpaWWQYGBsWEEFZJSYl+VlaWpaur6+1///vf39jY\n2DzoteZaL8ALURHqex49ou7nExICEIBX7/VJPTISQn19vXpaWprD06dPjVksFjE2Nn5qZ2d3f8iQ\nIXWvVW0fhQGEUN/y4AGApyfAnj0AixczXQ1qS48PxTMYYAAh1HdkZFDhs3cvNbI16rt6ZCielgID\nA8PXrFnzw4MHD2w6uy5CCHXU/ftU+Ozbh+EzUHW6BZSSkuJUUFAwOiUlxWnPnj2f9FBdjMEWEELM\nS0sD8PYG+P57gIULma4GdUSPHIKrq6sb0vJ8z/Pnz0eNGjXqeRdq7PMwgBBi1t27ADNmABw6BLBg\nAdPVoI7qkUNwjo6OdxITEyfSr0+dOrXA1dX1dlcKRAihf5KaSoXP4cMYPoNBu0PxREZGLlq+fHmo\nm5tbglgs5kokEp3r169P6Y3iEEKDR0oKwKxZAD/+CDB7NtPVoN7QoXNAZ86cmbdkyZKjI0aMqLx5\n8+ZkPp+f2wu1MQIPwSHU+5KSqNAJDQWYOZPpalBXdOUQXLstoBUrVhzJzc3lZ2Rk2GZnZ1vMnDnz\nwrp16w6sW7fuQNdLRQghyu3bAHPnAoSFUYff0ODR7jkgGxubBwkJCW6mpqZCLy+vS8nJyc5paWkO\nvVEcQmhgu3WLCp+ICAyfwQgvRG0BD8Eh1Dtu3qQ6Ghw7Rl3vg/q3HjkEZ2pqKmxlRyQvL8+sMztC\nCCHa779T1/dERlJjvKHBqd0AunPnjiP9vK6ubsjJkyfflUgkOj1bFkJooLp+HcDXFyA6mrqpHBq8\nunQIbty4cffu3bs3rgfqYRwegkOo51y9CuDnB/DrrwB4p/uBpUcOwd29e3c8fXtshUKhlJqaOkEu\nlyt3tUiE0OB0+TI1ptupUwBvvcV0NagvaDeAPv744710AKmoqDSZmJjknzhxwqfnS0MIDRSXLgEs\nWQJw5gzAm28yXQ3qK7AXXAt4CA6h7hUbCxAYCHD2LICrK9PVoJ7SrYfg9u7d+3GzDf/9i0wIYbFY\nLPLRRx/9p2tlIoQGiwsXAJYvB4iJAXBxYboa1Ne0GUBVVVUavVkIQmhgOX8eYMUKKoScnJiuBvVF\nbQZQdXX18D179nxy4sQJHx8fnxO9WRRCqH87dw7ggw8AfvsNwNGx/eXR4NTmOSAbG5sHGRkZtuPG\njbs3mIbewXNACL2e06cB1qwBuHgRYPx4pqtBvaVbzwF5e3vHamlpSauqqjRGjBhR2WJHpKKiYmRX\nC0UIDUwnTwKsWwcQFwfgMGj+bEVd1W4vuNmzZ8fExMQMmrtzYAsIoa45fhxgwwaqy7WdHdPVoN7W\nI7fkHmwwgBDqvKgogI8+osLnjTeYrgYxoUduyY0QQv/kl18APv6YGukAwwd1BgYQQqjLjh4FCAqi\nwsfGhulqUH/TbgDt379/Q0fmIYQGl7AwgM2bqQFGra2Zrgb1R+0GUFhY2NKW837++edlPVINQqhf\nCA0F+PxzgGvXAMaMYboa1F+12Q07KirKPzIycpFQKDSdNWvWeXp+ZWXlCB0dHUnvlIcQ6mt+/BHg\nf/+XCh8LC6arQf0aIaTVKT8/3/j69etuzs7OSQkJCW9fv37d7fr1626pqanjGxsbVdparyNTU1OT\nsr29fdrMmTPPE0JAIpFoT5s27bJAIMj28PCIl0qlbHrZnTt3buHz+TmWlpaZly5d8qTnp6amjrex\nscng8/k5H3744X56fl1dnbqPj89xPp+f4+zsnJSfn29MvxcWFhYoEAiyBQJBdnh4eEBrtVFfCUKo\nNYcPE2JkREh2NtOVoL7mr9/OTmVBl0Pkdaa9e/d+tGjRol9mzZoVQwiBoKCgPbt37/6EEAIhISHB\nwcHBIYQQePjw4Vg7O7v0hoYGVaFQaGJubp6rUChYhBBwdHRMSU5OdiKEgLe398XY2NjphBA4ePDg\n2jVr1hwihEB0dLSvr69vNPkr5MzMzJ5IpVK2VCpl089f+UIwgBBq1cGDhIweTUhuLtOVoL6oKwHU\n7jmgxMTEiY6Ojnc0NDSqVFVVG5WUlBQjR46s6GqLSyQS8S5evDhj5cqVP5G/+ozHxMTMDgwMDAcA\nCAwMDD979uxcAIBz587N8ff3j1JVVW00MTHJ5/P5ucnJyc7FxcUGlZWVI5ycnFIAAAICAiLodZpv\na8GCBaeuXr3qDgBw6dIlL09Pz3g2my1js9kyDw+Py3FxcdNbq3Hbtm1/TwkJCV39qAgNGAcOAOzZ\nQ91O29yc6WpQX5CQkPDSb2VXtHtDunXr1h2Ijo728/HxOZGamjohIiIiICsry7JLewOATZs2ffv1\n118HNR/Kp7S0lMPhcEoBADgcTmlpaSkHAKCoqMjQxcUliV6Ox+OJxGIxV1VVtZHH44no+VwuVywW\ni7kAAGKxmGtkZFQIQN1AT1NTs1wikegUFRUZNl+H3lZrNXb1y0RoINq/H2DfPoCEBAATE6arQX2F\nm5sbuDW7r/r27ds7vY0OXQckEAhy5HK5srKysnzZsmU/t9VyaM+FCxdm6unpPXNwcEgjbVwxy2Kx\nSPP7DyGEmPPtt1QAYfigntBuC2j48OHV9fX16nZ2dvc/+eSTPfr6+iVthUd7bt++7RoTEzP74sWL\nM+rq6oZUVFSMXLJkyVEOh1NaUlKir6+vX1JcXGygp6f3DIBq2RQWFhrR64tEIh6PxxNxuVyxSCTi\ntZxPr1NQUDDa0NCwqKmpSaW8vFxTR0dHwuVyxQkJCW70OoWFhUZTp0691pXPgdBg8M03AIcPU+Ez\nejTT1aABqb2TREKh0KSmpmaoTCbT3Lp167ZNmzb9Jycnh9/Zk00tp4SEhLfpXnBBQUF7QkJCggkh\nsGvXrs0tOyHU19er5eXlmZqZmT2hOyE4OTklJyUlOSsUClbLTgirV6/+gRACUVFRfs07IZiamuZJ\npVJ2WVmZFv28ZV2AnRAQIiEhhPD5hBQWMl0J6i+gp3rBVVdXD8vMzLTs7Mb/aUpISHib7gUnkUi0\n3d3dr7TWDXvHjh2fmpub51paWmbGxcV50fPpbtjm5ua569ev/46eX1dXp75w4cITdDdsoVBoQr8X\nGhq6jM/n5/D5/JywsLDAVr8QDCA0yO3YQYhAQIhIxHQlqD/pSgC1Oxp2TEzM7KCgoK/r6+vV8/Pz\nTdLS0hy2bt26faDeogFHw0aD2VdfARw7Rl1kamjIdDWoP+mR0bC3bdu2LTk52VlLS0sKAODg4JCW\nl5dn1tUiEUJ90/bt1MjW169j+KDe0W4nBFVV1UY2my1rPk9JSUnRcyUhhHoTIQDbtlF3M01IAOBw\nmK4IDRbtBpC1tfXDX3755b2mpiaVnJwcwXffffehq6vr7d4oDiHUswgB+OILgHPnqJaPnh7TFaHB\npN1DcN9///36hw8fWqurq9f7+/tHjRw5smLfvn0be6M4hFDPIQTg008BYmKocz4YPqi34S25W8BO\nCGgwIIS6l8+lSwBXrgDo6jJdEervutIJoc1DcM1vwfDXjzKr+euB2gsOoYGOEOoupteuUTeT09Fh\nuiI0WLUZQB9//PFeOnjef//9H3/66aeVdAjhUDkI9U+EAHz0EcDNm1TLR1ub6YrQYNahQ3AODg5p\naWlpDr1QD+PwEBwaqAgB2LgR4PZtgPh4AC0tpitCA0m3HoJDCA0chACsXw9w5w7A5csAbDbTFSH0\nDwFUVlamDQBACGHJ5XJl+jVNW1u7rKeLQwi9PoUCYN06gLQ0quWjqcl0RQhR2jwEZ2Jikk+f6yGE\nsJqf92GxWGSgjoaAh+DQQKJQAKxZA/DgAUBsLMDIke2vg1BXdOUQHHbDbgEDCA0UCgXAqlUAmZkA\nFy8CjBjBdEVoIMNzQAghAACQywHefx8gN5dq+WhoMF0RQq/CAEJogJHLAVasAMjPp1o+GD6or8IA\nQmgAkcsBli0DEIkAfvsNYPhwpitCqG0YQAgNEE1NAIGBAM+eAVy4ADBsGNMVIfTPMIAQGgCamgCW\nLAEoK6MGFx06lOmKEGofBhBC/VxjI8B77wFUVlK3VRgyhOmKEOoYDCCE+rHGRgB/f4DaWoAzZzB8\nUP+CAYRQP9XQAODnR4XQ6dMA6upMV4RQ52AAIdQPNTQA+PhQY7ydPInhg/qndu+IihDqW+rrARYs\nAGCxAH79FcMH9V8YQAj1I3V1APPnA6ipAZw4QT0i1F9hACHUT9TVAcybR11cGh0NoKrKdEUIvR4M\nIIT6gdpagDlzqFspREZi+KCBAQMIoT6upgZg9mwAXV2AY8cAVLDrEBogMIAQ6sOqqwFmzQLQ1weI\niMDwQQMLBhBCfVR1NcDMmQA8HkBYGICyMtMVIdS9ej2ACgsLjaZMmXLd2tr6oY2NzYPvvvvuQwDq\nFuAeHh6XLSwssj09PeNlMtnfd63ftWvXFoFAkGNlZZUZHx/vSc+/e/fueFtb2wyBQJCzYcOG/fT8\n+vp6dV9f3+MCgSDHxcUl6enTp8b0e+Hh4YEWFhbZFhYW2REREQG99bkR6oyqKoAZMwBMTABCQzF8\n0ABFCOnVqbi4WD8tLc2eEAKVlZUaFhYWWY8ePRoTFBS0Z/fu3Z8QQiAkJCQ4ODg4hBACDx8+HGtn\nZ5fe0NCgKhQKTczNzXMVCgWLEAKOjo4pycnJToQQ8Pb2vhgbGzudEAIHDx5cu2bNmkOEEIiOjvb1\n9fWNJoSARCLRNjMzeyKVStlSqZRNP29eH/WVIMScigpC3nyTkBUrCJHLma4GoY7567ezU3nQ6y0g\nfX39Ent7+3QAAA0NjaoxY8Y8FovF3JiYmNmBgYHhAACBgYHhZ8+enQsAcO7cuTn+/v5RqqqqjSYm\nJvl8Pj83OTnZubi42KCysnKEk5NTCgBAQEBABL1O820tWLDg1NWrV90BAC5duuTl6ekZz2azZWw2\nW+bh4XE5Li5uem9/Bwi1paICYPp0gDFjAP77XwAlPEiOBjBGT2nm5+ebpKWlOTg7OyeXlpZyOBxO\nKQAAh8MpLS0t5QAAFBUVGbq4uCTR6/B4PJFYLOaqqqo28ng8ET2fy+WKxWIxFwBALBZzjYyMCgEA\nVFRUmjQ1NcslEolOUVGRYfN16G21rGvbtm1/P3dzcwM3N7du/+wItVReToWPvT3AwYMYPqhvS0hI\ngISEhNfaBmMBVFVVpbFgwYJT+/fv3zBixIjK5u+xWCzCYrEIU7U1DyCEeoNMBuDlBTBhAsCBA9Qw\nOwj1ZS3/ON++fXunt8HI31iNjY2qCxYsOLVkyZKjc+fOPQtAtXpKSkr0AQCKi4sN9PT0ngFQLZvC\nwkIjel2RSMTj8XgiLpcrFolEvJbz6XUKCgpGAwA0NTWplJeXa+ro6EhabquwsNCoeYsIISbIZACe\nngDOzhg+aHDp9QAihLBWrFhxZOzYsY82bty4j54/e/bsmPDw8EAAqqcaHUyzZ8+OiY6O9mtoaFAT\nCoWmOTk5AicnpxR9ff2SkSNHViQnJzsTQlhHjx5dMmfOnHMtt3Xy5Ml33d3drwIAeHp6xsfHx3vK\nZDK2VCrVunz5soeXl9el3v4OEKKVlQFMmwYwaRLA/v0YPmiQ6Wyvhdedbt68+SaLxVLY2dml29vb\np9nb26fFxsZOl0gk2u7u7lcEAkG2h4dHfPPeaTt27PjU3Nw819LSMjMuLs6Lnp+amjrexsYmw9zc\nPHf9+vXf0fPr6urUFy5ceILP5+c4OzsnCYVCE/q90NDQZXw+P4fP5+eEhYUFtqwPsBcc6iUvXhDi\n4EDIRx8RolAwXQ1Crwe60AuORa2HaCwWi+B3gnraixdUy8fTE2D3bmz5oP6PxWIBIaRT/ydjPxuE\netnz5wDu7gDe3hg+aHDDAEKoFz17BjB1KjW+286dGD5ocMMAQqiXlJYCTJlC3VDuyy8xfBDCAEKo\nF5SUUOHj4wOwfTuGD0IAGEAI9bjiYgA3NwB/f4CtW5muBqG+A+8uglA3qa0FyMkByMykpqws6jE7\nG2DLFoBPP2W6QoS6R4O8AR49fwRpxWmQVpIG6SXpXdoOdsNuAbtho39CCHU4rWXIZGVR883NASwt\nAaysXn7U1GS6coS6pqqhCv4s/fPvsEkrSYPHzx+DCdsEHAwcwEGfmqaZT+t0N2wMoBYwgBAAQF0d\nQG7uqyGTmQkwdGjrIWNigncsRf3bi5oXLwVNWnEaFJQXgLWe9d9B42DgALZ6tjBcbfhL63blOiAM\noBYwgAYPQqhu0a2FjFgMYGr6ashYWgJoazNdOUKvhxACBeUFLwVNWkkaVNZXgr2+/UstGytdK1BV\nVm13mxhA3QADaOBpaKBaMy1DJjOTarG0DBkrKyp8VNv/N4dQnydXyCFLkvVKy0ZdRR0c9B1gnMG4\nv1s2pmxTYHWxiyYGUDfAAOqfCKGGt2ktZAoLAYyNWz9spqvLdOUIdZ+6pjrIKM14KWgePHsA+hr6\nL7VqHAwcQF9Dv1v3jQHUDTCA+rbGRoC8vFdDJisLQKGggqVlyJibA6ipMV05Qt1LVieD9JL0l1o2\nT8qegEBH8FLQ2HHsQHNIz/eCwQDqBhhAfUNZWeshk58PwOO1fths1Ci8wBMNLIQQKKkqgSxJFmS9\nyIJMSSZkvciCxy8ew/Pq5/AG542XWjY2ejagrqLOSK0YQN0AA6j3NDUBCIWvhkxmJnXeprWQ4fMB\n1Jn594VQj6lrqoMcSQ5kvsikwuavwMmSZIG6sjpY6lqCpQ41WelagaWuJZhrmYOykjLTpf8NA6gb\nYAB1P5ms9ZARCgEMDF4NGSsrAA4HWzNoYCGEQFFl0UvhQgdOSVUJmLJNwVL3r4D5K2wsdS1Be2j/\n6HaJAdQNMIC6Ri6nDo+17ASQlQVQXf1yuDRvzQwdynTlCHWvmsYayJHkvBQwWS+yIFuSDUNVh74S\nMJY6lmCqZQoqSv37IjIMoG6AAfTPKipaD5ncXAA9vdY7ARgaYmsGDSyEEBBXiqnzMs0Om2W+yIRn\n1c/AXMu81cNm7CFspkvvMRhA3QADiOpNVlDQ+gWa5eX/d0Fm87ARCACGD29/2wj1J7I6GQilwlcO\nm2VLsmGE+oi/WzFWOlZ/B44J26RPnZvpLRhA3WAwBVBVFRUsLUMmJwdAR6f1w2ZcLoASjqGOBgC5\nQg7FVcVQUF4AT2VPqcfylx8JIWDCNnmpNUM/742uzf0JBlA3GGgBpFAAiEStX6BZVka1XFqGjIUF\ngIYG05Uj9HpqGmugsLzwlVChw0ZcKQadoTowWnM0GLONqUfN/3s0ZhuDprpml0cGGGwwgLpBfw2g\nmhpq2P+WIZOTAzByZOvnZkaPxtYM6p8IISCplbTacqHnVdRXgJGm0f8FCh0uf4WN0Ugjxq6ZGYgw\ngLpBXw4gQgCKilq/QPPZM6pXWWuDZ44cyXTlCHVOo7wRxJXiVw6P0UFTUF4A6srqr7RemoeM3nA9\nUGLhX1i9BQOoG/SFAKJvbNYyZLKyqBP9rV2gaWwMoDz4znuifqa2sRZKq0uhtKr05ce/nhdVFsHT\n8qdQWlUKHA3Oy62WkdQjPW+E+gimPw5qBgOoG/RWADW/sVnL8zMlJQBmZq0PnskeuL04UT9V1VD1\naqC0CBb6sV5eD5zhHOBocF5+/Ou5gYYBGLONgTuC26FbAKC+AwOoG3R3ANXXv9yaaf6ort56yJia\n4o3NEHMIIVBeX95umJRWl8Kz6mdACHk1UFoEC/2IJ/UHLgygbtCVAKJvbNZayIhE1J0yWzs3o6PT\nM58BoebqmupAVicDaa2UeqyjHp9XP281WJ5VPwM1ZbVWw0RvuN4r8zXUNDBUEAZQd/inAGpoAHjy\npPXDZkpKrZ+bMTPDG5uh16MgCiivK38pPFqGCf3Y2ntyhRy0hmqB1hAtYA9hg9ZQ6lF3mG6rrRS9\n4XowTHUY0x8b9TMYQN2AxWKR589JqyFTUEB1XW5t8MyevLFZQkICuLm59dwOuqAv1gTQN+u6fv06\nOL/p3GZASGulIKt/dT79XmVDJYxQG/F3cLQMErY6u833tIZowRCVIa+0UPri94Q1dVxfrKsrATTo\nzjTExcVN37hx4z65XK68cuXKn4KDg3e3XIbuzkyHzLJl1HOmbmzWF/9n64s1AXS9LkII1Mvrobqh\nGqobq9t/7MgyDdVQ1VAFlfGVoOau9mpwNAsMQw1DGKs79pUgYQ9hw0j1kd0+tEtf/O+HNXVcX62r\nswZVAMnlcuV169YduHLlyjQulyt2dHS8M3v27JgxY8Y8br6cVIqDZzKJEAJNiiaol9dDg7wB6pvq\n//F5fdNfr+X1kFacBt8lf9fpoKhprAFlJWUYrjochqsN79CjvoZ+h5b7T+1/4MvPvmT6a0WozxlU\nAZSSkuLE5/NzTUxM8gEA/Pz8os+dOzenZQD1p/AhhICCKKBJ0QRyIge5Qv738yZFU6uvu/pe833c\nLboLB1MOth4MLUKhvQBpLUyUWEqgrqIOaspqoK6s/spzdeW/Xrd4XlBRANmS7L9//LWGaIGGmkaH\nQqWnhsNXZuEFWgi1ZlCdAzp58uS7ly5d8vrxxx/fBwA4duzY4uTkZOfvv/9+Pb0Mi8UaPF8IQgh1\nIzwH9A86Ei6d/QIRQgh1zaAaKInL5YoLCwuN6NeFhYVGPB5PxGRNCCE0WA2qAJowYUJqTk6OID8/\n36ShoUHt+PHjvrNnz45hui6EEBqMBtUhOBUVlaYDBw6s8/LyuiSXy5VXrFhxpGUHBIQQQr2EEIIT\nIbBs2bJQPT29Uhsbmwyma6GngoICIzc3t+tjx459aG1t/WD//v0fMl1TbW3tECcnp2Q7O7v0MWPG\nPNq8efMupmuip6amJmV7e/u0mTNnnme6FnoyNjbOt7W1/dPe3j7N0dExhel6CCEglUrZCxYsOGll\nZfV4zJgxjxITE12YrCczM9PS3t4+jZ5GjhxZ3hf+X9+5c+eWsWPHPrSxscnw9/ePrKurU2e6JkII\n7Nu3b4ONjU2GtbX1g3379m1goobWfi8lEon2tGnTLgsEgmwPD494qVTKbm87jH+ZfWW6cePG5Hv3\n7jn0pQAqLi7WT0tLsyeEQGVlpYaFhUXWo0ePxjBdV3V19TBCCDQ2Nqo4Ozsn3bx5802mayKEwN69\nez9atGjRL7NmzYphuhZ6MjExEUokEm2m62g+BQQEhB85cmQ5/d9QJpNpMl0TPcnlciV9ff3igoIC\nIybrEAqFJqampnl06Pj4+BwPCwsLZPr7ycjIsLGxscmora0d0tTUpDxt2rTLubm55r1dR2u/l0FB\nQXt27979CSEEQkJCgoODg0Pa286gOgf0TyZPnnxTS0tLynQdzenr65fY29unAwBoaGhUjRkz5nFR\nUZEh03UNGzasBgCgoaFBTS6XK2tra5cxXZNIJOJdvHhxxsqVK38ifawnY1+qp7y8XPPmzZuTly9f\nHgpAHZbW1NQsZ7ou2pUrV6aZm5s/MTIyKmSyjpEjR1aoqqo21tTUDGtqalKpqakZxuVyxUzWBACQ\nmZlp5ezsnDxkyJA6ZWVl+dtvv/376dOn5/d2Ha39XsbExMwODAwMBwAIDAwMP3v27Nz2toMB1E/k\n5+ebpKWlOTg7OyczXYtCoVCyt7dP53A4pVOmTLk+duzYR0zXtGnTpm+//vrrICUlJQXTtTTHYrHI\ntGnTrkyYMCGVvv6MSUKh0HTUqFHPly1b9vO4cePuvf/++z/W1NT0mZFHo6Oj/RYtWhTJdB3a2tpl\nH3rMn6EAAAwDSURBVH/88d7Ro0cXGBoaFrHZbNm0adOuMF2XjY3Ng5s3b04uKyvTrqmpGfbbb7+9\nIxKJeEzXBQBQWlrK4XA4pQAAHA6ntLS0lNPeOhhA/UBVVZXGu+++e3L//v0bNDQ0qpiuR0lJSZGe\nnm4vEol4N27ceCshIcGNyXouXLgwU09P75mDg0NaX2ptAADcunVrUlpamkNsbKz3wYMH/3Xz5s3J\nTNbT1NSkcu/evXFr1649dO/evXHDhw+vDgkJ2cxkTbSGhga18+fPz1q4cOGvTNfy5MkT83379m3M\nz883KSoqMqyqqtL45Zdf3mO6Lisrq8zg4ODdnp6e8d7e3rEODg5pfe2PLgDqD6+OXHeJAdTHNTY2\nqi5YsODU4sWLj82dO/cs0/U0p6mpWf7OO+/8lpqaOoHJOm7fvu0aExMz29TUVOjv7x917dq1qQEB\nARFM1kQzMDAoBgAYNWrU83nz5p1JSUlxYrIeHo8n4vF4IkdHxzsAAO++++7Je/fujWOyJlpsbKz3\n+PHj744aNeo507WkpqZOcHV1va2joyNRUVFpmj9//unbt2+7Ml0XAMDy5ctDU1NTJ/z+++9vs9ls\nmaWlZRbTNQFQrZ6SkhJ9AIDi4mIDPT29Z+2tgwHUhxFCWCtWrDgyduzYRxs3btzHdD0AAC9evNCV\nyWRsAIDa2tqhly9f9nBwcEhjsqadO3d+WlhYaCQUCk2jo6P9pk6dei0iIiKAyZoAAGpqaoZVVlaO\nAACorq4eHh8f72lra5vBZE36+volRkZGhdnZ2RYA1DkXa2vrh0zWRIuKivL39/ePYroOAKqlkZSU\n5FJbWzuUEMK6cuXKtL5wqBkA4NmzZ3oAAAUFBaPPnDkzry8csgQAmD17dkx4eHggAEB4eHhgh/5g\nZrpXR1+Z/Pz8ogwMDIrU1NTqeTxeYWho6DKma7p58+abLBZLYWdnl053UY2NjZ3OZE1//vmnrYOD\nwz07O7t0W1vbP/fs2RPE9PfUfEpISHi7r/SCy8vLM7Wzs0u3s7NLt7a2frBz584tTNdECIH09HS7\nCRMm3HnjjTfuz5s373Rf6AVXVVU1XEdH50VFRcUIpmuhp927d39Cd8MOCAgIb2hoUGW6JkIITJ48\n+cbYsWMf2tnZpV+7dm0KEzXQv5eqqqoN9O+lRCLRdnd3v9KZbtiDajBShBBCfQcegkMIIcQIDCCE\nEEKMwABCCCHECAwghBBCjMAAQgPWtGnTrhQUFIx2cHBIc3BwSDMwMCjm8XgiBweHtHHjxt1rbGxU\nfZ3tr1u37oCDg0OatbX1w2HDhtXQ+2k5NEp9fb36W2+9dUOhULT6723p0qVhp06dWvA6tTAhLCxs\n6fr1679v6/27d++O37Bhw/7erAn1L4Pqdgxo8Lh27dpUS0vLrNGjRxekpaU5AABs375964gRIyo/\n+uij/3THPg4cOLAOAODp06fGM2fOvEDvpyV1dfX6yZMn3zx79uzc+fPnn275fkevGm9PU1OTioqK\nStPrbqej2qt5/Pjxd8ePH3+3t+pB/Q+2gNCAFBkZuWjOnDnnWs4nhLCeP38+iv5hvH//vp2SkpKC\nHk/L3Nz8SV1d3ZDO7Is0G/7n4cOH1s7OzskODg5pdnZ293Nzc/kA1EV6UVFR/vTy69atO2BlZZXp\n4eFx+dmzZ3r0Nu7evTvezc0tYcKECanTp0+Po68sv3PnjuMbb7zxp4ODQ1pQUNDX9AWtYWFhS2fP\nnh3j7u5+1cPD43JNTc2w5cuXhzo7OyePGzfuXkxMzGwAALlcrhwUFPS1k5NTip2d3f3//ve/H7T2\nWSIiIgLs7Ozu29vbp9OjSTx//nzUu+++e9LJySnFyckppbURAX799deFtra2Gfb29ulubm4JAAAJ\nCQlus2bNOg8AsG3btm179+79mF7exsbmQUFBwejq6urh77zzzm/29vbptra2GSdOnPDpzHeP+jds\nAaEB6datW5P27NnzScv5LBaLjBo16nl9fb16ZWXliJs3b052dHS8c+PGjbcmTZp0i8PhlA4ZMqSu\nq/s9fPjw6g0bNuxftGhRZFNTk0pTU5MKAIC9vX06/cN95syZednZ2RaPHz8eU1JSoj927NhHK1as\nONLY2Ki6fv3678+fPz9LR0dHcvz4cd/PPvtsx5EjR1YsW7bs5yNHjqxwdnZO3rJly67mrY+0tDSH\njIwMWzabLfv00093uru7Xw0NDV0uk8nYzs7OydOmTbty7NixxWw2W5aSkuJUX1+v/uabb/7h6ekZ\nb2Jikk9v5+HDh9Y7duz4LDExcaK2tnYZPeLFhg0b9m/atOnbSZMm3SooKBg9ffr0uEePHo1tHrxf\nfvnlF/Hx8Z4GBgbFFRUVI1v73lu+JoSw4uLipnO5XPFvv/32DgBAa+uigQsDCA1IRUVFhq3dJoL+\n0XR1db1969atSTdv3py8ZcuWXXFxcdMJIazJkyfffJ39urq63t6xY8dnIpGIN3/+/NN8Pj8XgDoM\np1AolGpra4feuHHjrUWLFkWyWCxiYGBQPHXq1GsAAFlZWZYPHz60pkddlsvlyoaGhkXl5eWaVVVV\nGvRI6IsWLYq8cOHCTHqfHh4el9lstgwAID4+3vP8+fOzvvnmm38DUOefCgoKRsfHx3tmZGTYnjx5\n8l0A6oc+NzeX3zyArl27NtXHx+cE/b3R27xy5cq0x48fj6GXq6ysHFFdXT28+eeeNGnSrcDAwHAf\nH58TrR1mbA2LxSJvvPHGn//+97+/2bx5c8jMmTMvvPnmm390+ktH/RYGEBqU3nrrrRs3btx4q6Cg\nYPScOXPOhYSEbGaxWGTmzJkXWi47ffr0uNLSUo6jo+Odtg5d0fz9/aNcXFySLly4MHPGjBkX/397\ndxcSVR4FAPyYHzskgs0ikS9qcRPu3Hudq+nm9xc6kQ8yWbnggg+rxFQKi6KLziAyFrZsCJM6SPkQ\nGDhqRg9XtCjd0vVj1Tt5nYEc1PZlRcQxiJFcy+lh+NM0NAQW3ZjO72mG+3Xezj3/++ecrq6uC7m5\nuaMAnuRHvve4/XTtVqlUNt8lLlKJEL7XhoeHu7z/Dw4OnqEoyuF77/b29ssFBQUP/cXuLy632x00\nPT39U1hY2P++55PfZrNZNzMzkyIIQlFSUtLc3Nxckve5ISEhb7w3YZBlToqiHKIo8oIgFOn1+pb8\n/PxHBoPB6C9GFFjwGxAKSNHR0f9tbm7+6O94Zmbm056enl8oinIEBQW5lUqlc2ho6PTH3sCHh4dP\niaLIfyr5AACsrKwcjYuLW62qqrpRXFx8X5IkFsBTiQQHB79VKBSvs7KynlgsltK9vb0Da2trR0ZH\nR3MBAOLj459vbGxETU1NnQTwdEK32+10ZGTky4iIiFekk3Zvb+/P/p6v0WhGTCZTNflPNkZoNJqR\nzs7Oi2RJcGlp6bjvHKC8vLzH/f3955xOpxIAYGtr6xAAQGFh4QPve1qtVjXAh4lweXn5WEpKykxz\nc3NTVFTUhu+MmtjY2Bek6/b8/Hzi6upqHICna7JCoXhdVlZ2p7a29s9vpTM3+jowAaGAlJGRMf6x\nMRHkrT0mJuZfAE8lBPB+wuN+p4OS+/b19Z1nGGaR53nRZrOpyId8URT51NTUSQAArVZ7j6IoB03T\n9vLy8ttpaWl/AwCEhobuDgwMnK2vr7+mVqutPM+Lk5OTqQAA3d3dv1ZWVt7keV7c3t4+SOL03UFn\nMBiMu7u7oRzHLTAMs9jU1NQMAFBRUXGLpml7YmLiPMuykk6nM5NkRNA0bW9sbLySnZ39l1qtttbU\n1FwHADCZTNWzs7MnEhISnqlUKhtJxN7Prqur+4PjuAWWZaX09PQJjuMWvI+XlJTcdTqdSoZhFjs6\nOi6REQKSJLFk04bRaDRg9fN9wWakKCCNjY3lWCyWUrPZrJM7FgCAhoaGq8nJyf9otdp7+7ne5XKF\nk6W21tbW39fX1w+3tbX99mWjROjrwgoIBaScnJwxh8NBkXk8ctrZ2flhfHw843MGCgqCUMTzvMiy\nrDQxMZGu1+tbvmSMCMkBKyCEEEKywAoIIYSQLDABIYQQkgUmIIQQQrLABIQQQkgWmIAQQgjJAhMQ\nQgghWbwDrHA2pVW5S0IAAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x480b930>"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8.5 , Page no:337"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "D = 0.02 ; #m\n",
+ "l = 0.15 ; #m\n",
+ "T = 500+273 ; #K\n",
+ "Tc = -196+273 ; #K\n",
+ "e = 0.4;\n",
+ "#Properties\n",
+ "k = 0.0349 ; #W/m K\n",
+ "rho = 0.80 ; #kg/m^3\n",
+ "Cpavg = 1.048 ; #kJ/kg J\n",
+ "rholiq = 800 ; #kg/m^3\n",
+ "\n",
+ "#calculations\n",
+ "s = 5.670*10**-8;\n",
+ "#Film boiling will occur, hence eqn 8.7.9 is applicable\n",
+ "Tm = (T+Tc) /2; #Film boiling will occur\n",
+ "u = 23*10**-6 ; #kg/m s\n",
+ "latent = 201*10**3 ; #J/kg\n",
+ "hfg = (latent + Cpavg *(Tm -Tc) *1000); #Jk/g\n",
+ "hc = 0.62*((( k**3) *rho *799.2*9.81* hfg )/(D*u*(T-Tc)) )**(1/4) ; #W/m^2 K\n",
+ "#Taking the emissivity of liquid surface to be unity and using equation 3.9.1, the exchange of radiant heat flux\n",
+ "flux = s*(T**4- Tc**4) /(1/ e +1/1 -1) ; #W/m^2\n",
+ "hr = flux /(T-Tc);\n",
+ "#Since h_r < h_c, total heat transfer coefficient is determined from eqn 8.7.11\n",
+ "h = hc +3/4* hr ; #W/m^2 K\n",
+ "fluxi = h*(T-Tc);\n",
+ "Rate = fluxi *3.14*D*l; #W\n",
+ "\n",
+ "#result\n",
+ "print\"Initial heat flux =\",round(fluxi,4),\"W/m^2\";\n",
+ "print\"Initial heat transfer rate =\",round(Rate,4),\"W\";"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Initial heat flux = 69646.6128 W/m^2\n",
+ "Initial heat transfer rate = 656.0711 W\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file