diff options
author | hardythe1 | 2015-01-28 14:31:21 +0530 |
---|---|---|
committer | hardythe1 | 2015-01-28 14:31:21 +0530 |
commit | 53f72e6790ff23b43c8f6a0b69d6386940671429 (patch) | |
tree | 7745af6dbf2f5b2972b23f9f5a7a19c695a27321 /TRANSPORT_PROCESSES_AND_UNIT_OPERATIONS/GeankoplisChapter14.ipynb | |
parent | 7b78be04fe05bf240417e22f74b3fc22e7a77d19 (diff) | |
download | Python-Textbook-Companions-53f72e6790ff23b43c8f6a0b69d6386940671429.tar.gz Python-Textbook-Companions-53f72e6790ff23b43c8f6a0b69d6386940671429.tar.bz2 Python-Textbook-Companions-53f72e6790ff23b43c8f6a0b69d6386940671429.zip |
added books
Diffstat (limited to 'TRANSPORT_PROCESSES_AND_UNIT_OPERATIONS/GeankoplisChapter14.ipynb')
-rwxr-xr-x | TRANSPORT_PROCESSES_AND_UNIT_OPERATIONS/GeankoplisChapter14.ipynb | 586 |
1 files changed, 586 insertions, 0 deletions
diff --git a/TRANSPORT_PROCESSES_AND_UNIT_OPERATIONS/GeankoplisChapter14.ipynb b/TRANSPORT_PROCESSES_AND_UNIT_OPERATIONS/GeankoplisChapter14.ipynb new file mode 100755 index 00000000..fcc586ae --- /dev/null +++ b/TRANSPORT_PROCESSES_AND_UNIT_OPERATIONS/GeankoplisChapter14.ipynb @@ -0,0 +1,586 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:9dc557e244e58a44c157bc89005c7dae2dc1b963927f29d131f60895891071ce"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 14: Mechanical-Physical Seperation Processes"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 14.2-1, Page number 810 "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Evaluation of Filtration Constants for Constant-Pressure Filtration\n",
+ "#Variable declaration\n",
+ "A = 0.0439 #Filter area of the plate and frame press (m2)\n",
+ "P = -338000. #Pressure applied accross yhe plates (N/m2)\n",
+ "Cs = 23.47 #Slurry concentration (kg/m3)\n",
+ "mu = 0.0008937 #Viscosity of water in SI units (kg/m.s)\n",
+ "\n",
+ "#Calculation\n",
+ "from numpy import arange,array,ones,linalg, divide\n",
+ "from pylab import plot,show\n",
+ "\n",
+ "xi = arange(0.0,0.00501,0.00005)\n",
+ "t = [4.4,9.5,16.3,24.6,34.7,46.1,59.0,73.6,89.4,107.3]\n",
+ "\n",
+ "# linearly generated sequence\n",
+ "y = [0.498e-3,1.0e-3,1.501e-3,2.0e-3,2.498e-3,3.002e-3,3.506e-3,4.004e-3,4.502e-3,5.009e-3]\n",
+ "yy = divide(t,y)\n",
+ "Aa = array([y, ones(10)])\n",
+ "w = linalg.lstsq(Aa.T,yy)[0] # obtaining the parameters\n",
+ "# Use w[0] and w[1] for your calculations and give good structure to this ipython notebook\n",
+ "# plotting the line\n",
+ "line = w[0]*xi+w[1] # regression line\n",
+ "plot(xi,line,'r-',y,yy,'o')\n",
+ "ylabel('$t/V^2$')\n",
+ "xlabel('$V$')\n",
+ "xlim(0.0,5.1e-3)\n",
+ "ylim(0.0,22e3)\n",
+ "show()\n",
+ "Kp = 2.0*w[0]\n",
+ "B = w[1]\n",
+ "\n",
+ "alpha = (Kp*(A**2*(-P)))/(mu*Cs)\n",
+ "Rm = (B*(A*(-P)))/(mu)\n",
+ "#Result\n",
+ "print 'The value of constant alpha: %4.2e m/kg'%(alpha)\n",
+ "print 'The value of constant Rm: %4.3e 1/m'%(Rm)\n",
+ "print 'The values of alpha and Rm are more accurate than book the code utilises built in function'\n",
+ "print 'for regression, which gives better results than from graphical slope and intercept estimates'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZ0AAAEMCAYAAAAf5WtEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtcVVX+//HXUUibSqc0QTkWiSjiBZ0SrakJhwAvaaV9\nNfvmpZzHJJX3r+PMNM3YzJjY45cppF0xrSaxq9ighONEfpu8pXT5SqNEqNxzRE1NQWD9/th5RkY0\nuZy9D/B+Ph48hjZnHz57jZ63a6+113IZYwwiIiI2aOV0ASIi0nIodERExDYKHRERsY1CR0REbKPQ\nERER2yh0RETENn5OF+AL+vfvz2effeZ0GSIiTcatt95KZmZmnc9TTwf47LPPMMa06K8//OEPjtfg\nC19qB7WD2uDi2uHDDz+s1+etQkdERM6RlraZuLjfsXJlJnFxvyMtbXOjvK9ur4mISA1paZuZMeN9\ncnMXAPPZv38+ubmPAjBixM8a9N7q6QgAUVFRTpfgE9QOFrVDy26DxMSM7wMHIAqA3NwFJCVtbPB7\nK3QEaNl/wc6mdrCoHVp2G5SXn30TLMrz3alTrRv83godERGpoU2bylqPt21b1eD3VuiIiEgN0x+O\nJiRwRo1jISG/Zdq0mAa/t8sY0+K3NnC5XKgZRKTFO34cVq6EJUtIa9WepB8N4FT7INpeWs20aTE1\nJhHU93NToYNCR0RauIICeOYZeOkluPVWmD0bbroJXK7znlLfz03dXhMRaal27YIJE6BfPzh1CrZv\nh7ffhp/+9IKB0xAKHRGRlqS6Gt57D4YMgTvusALn669hyRLo1s3rv14Ph4qItATffQerVsHTT0O7\ndjBnDtx9N/j721qGQkdEpDkrLrbGa154wbptlpwMN9/stdtnP0S310REmqPPPoPJk6F3bzh6FD7+\nGNauhVtucSxwwMHQyc/PZ8iQIfTu3Zs+ffqQmJgIQFlZGTExMfTo0YPY2FiOHDniOWfhwoWEhoYS\nFhZGRkaG5/jOnTvp27cvoaGhzJjx77nl5eXljBs3jtDQUAYPHsz+/fvtu0AREbtVV8P69XDbbTB8\nOPTsCV99ZfV0QkOdrs5iHFJcXGyysrKMMcYcO3bM9OjRw2RnZ5u5c+eaRYsWGWOMSUhIMPPmzTPG\nGLN7924TERFhKioqTF5engkJCTHV1dXGGGMGDhxotm3bZowxZtiwYWbDhg3GGGOWLVtm4uPjjTHG\npKSkmHHjxtVai4PNICLScN99Z8zzzxsTFmZM//7GvPqqMeXlXv2V9f3cdKynExgYSP/+/QG4/PLL\n6dWrF4WFhaxbt45JkyYBMGnSJNauXQtAamoq48ePx9/fn+DgYLp37862bdsoLi7m2LFjREZGAjBx\n4kTPOWe/15gxY9i0aZPdlyki4j2lpfD738O118Jf/wrPPmtNg77vPrjkEqerq5VPTCTYt28fWVlZ\nDBo0iNLSUgICAgAICAigtLQUgKKiIgYPHuw5x+12U1hYiL+/P26323M8KCiIwsJCAAoLC+natSsA\nfn5+tG/fnrKyMq666iq7Lk1EpM7S0jaTmJhBebkfbdpUMn16bM0tBf7v/6xZaO+8A+PGwf/+r3Ur\nrQlwPHSOHz/OmDFjWLp0KVdccUWNn7lcLlwODniJiNit5l42ltzcR8EYRvifgsWL4fPP4eGHIScH\nOnZ0sNq6czR0Tp8+zZgxY5gwYQJ33nknYPVuSkpKCAwMpLi4mE6dOgFWDyY/P99zbkFBAW63m6Cg\nIAoKCs45fuacAwcO0KVLFyorKzl69Oh5eznz58/3fB8VFdWilzUXEefU3MvGkpu7gKR7hjCi2yFr\niZp166BNG1vryszMJDMzs+Fv1MhjSxeturraTJgwwcycObPG8blz55qEhARjjDELFy48ZyJBeXm5\n+frrr023bt08EwkiIyPN1q1bTXV19TkTCaZOnWqMMWb16tWaSCAiPu/WW/9gwJzzdWvfacZ8/5nn\nC+r7uelYT+cf//gHr732Gv369WPAgAGANSX617/+NWPHjiU5OZng4GDeeOMNAMLDwxk7dizh4eH4\n+fmxfPlyz6235cuXM3nyZE6ePMnw4cMZOnQoAFOmTGHChAmEhobSoUMHUlJSnLlYEZGL1Ob0kVqP\nt+3S3tHnaxqLVplGq0yLiMOMgU2bYPFi0j7+ghmtbif38LOeH4eE/JalS4fWnEzgMG1t0AAKHRFx\nRHk5pKRYkwMqK2HWLLjvPtI2bScpaSOnTrWmbduqc/ay8QUKnQZQ6IiIrQ4dgueeg2XLoE8fa/HN\n2NgmdftM++mIiPi6vXvhoYege3fIzYX334eMDIiLa1KB0xCOP6cjItKsGQMffghPPQXbtsHUqfDl\nlxAY6HRljlDoiIh4Q0UFvPGGNV5z8iTMnGn996WXOl2ZozSmg8Z0RKQRHT5s7V2TlGQtTTNnDgwd\nCq2a12hGfT831dMREWkMX30FS5fCX/4CI0daC3B+v6ix/Fvzil4RETsZYy22edddcOONcMUV1mKc\nq1YpcM5DPR0Rkbo6fRreessarzl61Hq+5rXX4LLLnK7M52lMB43piMi/XXBbgSNH4KWXIDERunWz\nxmtGjGh24zUXQ2M6IiINdN5tBUpKGPHFx/DKKzBsGLz7Llx/vYOVNl3q6aCejohY4uJ+R0bGn889\n7ncT6XN+Bo88AmdtGtmSqacjItJA5eW1fySeGhwNCX+yuZrmqeXdiBQRqc2339Km5Ktaf9RW8wMa\njUJHRFq2/futCQHXXcf0TocJCZpT48chIb9l2rQYh4prfnR7TURapu3brSnPGzfCAw9AVhYjrrkG\n0jaTlPTYWdsK+NY+Nk2dJhKgiQQiLUZVFaSmWmFTWAjTp8OUKdCundOVNTmaSCAicj7HjsHLL8OS\nJRAQYN1Ou/NO8NNHoN3U4iLSfOXnwzPPQHIyDBlirYt2441OV9WiaSKBiDQ/n3wC994LERHWFgM7\ndsCbbypwfIB6OiLSPFRVWSs7L14M+/bBtGnw7LPQvr3TlclZFDoi0rSdOGGt6vz003DlldZ4zZgx\nGq/xUfp/RUSapqIia7zmxRfhlltgxQq4+WZwuZyuTC5AYzoi0rRkZcHEidCnjzUrbetWeOcdK3gU\nOD5PoSMivq+62hqv+fnPYdQoK3Byc60toUNCnK5O6kC310TEp9TYz8avnOk9DSM2rbU2SJs9G8aO\nBX9/p8uUelLoiIjPqHU/my33w2PTGDHvId0+awZ0e01EfEbigrdrBA5A7ncvk5RZosBpJhQ6IuKs\n6mrYsAFiYij/5MtaX3LqVGubixJv0e01EXHGqVPw2mvWw5yXXAKzZtGGPfC3c1/atm2V/fWJVyh0\nRMRe33wDy5dbqwXccIP1rM2QIeByMb3jZnLzHq1xi83az2aogwVLY1LoiIg9srOtVQPeftuagfbh\nhxAWVuMlZ/at0X42zZf200H76Yh4jTHwt79Zt9A+/RQeegji46FjR6crkwbSfjoi4jvKy+H1162w\nAev5mnffhbZtna1LHKfQEZHG869/wXPPwbJl1rYCTz0FMTGa7iwemjItIg23Zw9MnQqhoda2Ahs3\nQno6xMYqcKQG9XREpH6MgQ8+sG6h7dhhjdX885/WdtAi56HQEZG6qaiAlBQrbCoqrPGaN9+ESy91\nujJpAjR7Dc1eE7koZWXw/PPWczXh4TBrFgwdCq10l74lqu/npv60iMiF5eTAww9bWwjs2WMtWbNx\nIwwfrsCROtPtNRHx8GwrcKo1bU4eZHqrHEZ8/Rk8+KD1cGfnzk6XKE2cQkdEgDPbCqSTm/uE51ju\n1Y/As3MZMSbWwcqkOXG0b/zAAw8QEBBA3759Pcfmz5+P2+1mwIABDBgwgA0bNnh+tnDhQkJDQwkL\nCyMjI8NzfOfOnfTt25fQ0FBmzJjhOV5eXs64ceMIDQ1l8ODB7N+/354LE2lqDh8mcdbzNQIHIPfg\nMyS9+L8OFSXNkaOhc//995Oenl7jmMvlYvbs2WRlZZGVlcWwYcMAyM7OZs2aNWRnZ5Oens5DDz3k\nGcSKj48nOTmZnJwccnJyPO+ZnJxMhw4dyMnJYdasWcybN8/eCxTxdbm5MH06hIRQfrSy1pdoWwFp\nTI6Gzi233MKVV155zvHaZkSkpqYyfvx4/P39CQ4Opnv37mzbto3i4mKOHTtGZGQkABMnTmTt2rUA\nrFu3jkmTJgEwZswYNm3a5MWrEWkijIGPPoLRo2HQIGsb6C++oE3/0Fpfrm0FpDH55NSTpKQkIiIi\nmDJlCkeOHAGgqKgIt9vteY3b7aawsPCc40FBQRQWFgJQWFhI165dAfDz86N9+/aUlZXZeCUiPqSy\nEtassYLm/vvh5z+3Vg9YuBCCgpg+PZaQkEdrnGJtKxDjTL3SLPncRIL4+Hh+//vfA/DYY48xZ84c\nkpOTHa5KpAk7ehReegkSEyE4GB59FG6/HVrXvG2mbQXEDj4XOp06dfJ8/4tf/IKRI0cCVg8mPz/f\n87OCggLcbjdBQUEUFBScc/zMOQcOHKBLly5UVlZy9OhRrrrqqlp/7/z58z3fR0VFERUV1YhXJeKA\nffusoFm50nqI8623YODAC54yYsTPFDJSq8zMTDIzMxv+RsZheXl5pk+fPp7/Lioq8ny/ePFiM378\neGOMMbt37zYRERGmvLzcfP3116Zbt26murraGGNMZGSk2bp1q6murjbDhg0zGzZsMMYYs2zZMjN1\n6lRjjDGrV68248aNq7UGH2gGkcbz8cfG3H23MVddZcz//I8xBw44XZE0Q/X93HS0pzN+/Hg+/PBD\n/vWvf9G1a1cef/xxMjMz+fTTT3G5XFx33XU8//zzAISHhzN27FjCw8Px8/Nj+fLluL5fvXb58uVM\nnjyZkydPMnz4cIYOtba2nTJlChMmTCA0NJQOHTqQkpLi2LWKeFVlJaxda62HVlICM2fCihVwxRVO\nVyZSg9ZeQ2uvSRN27JgVLkuWQFCQtfjmHXecM14j0ti0c6hIS3LgACQlWYFz222wejUMHux0VSI/\nyCenTIvIeezYAePHw4ABUF0NO3da06AVONJEqKcj4uuqqmDdOmu8Jj8fZsywthho187pykTqTKEj\n4quOH7emOy9ZAh06WOM1Y8aAn/7aStOlP70iPsKzrcC3VbQpyWX6vz5iROyN8MorcOON8P1sTZGm\nTKEj4gPS0jYzY+o6cgv+n+dY7jW/ggduZ8RNNzlYmUjj0kQCESdVV8O6dSRO+HONwAHIPfAkSUkb\nHSpMxDvU0xFxwokT1m2zp5+Gdu0oDxgIh899mbYVkOZGPR0ROxUXWwtuBgdDRgYkJ8OOHbS5pkOt\nL9e2AtLcKHRE7PD55zB5MvTuba36/PHH8O67cMst4HJpWwFpMbQMDloGR7ykuhrS063na778EqZN\ng1/+Es6z0nla2maSkjaeta1AjFZ8Fp9V389NhQ4KHWlkJ0/Cq69a4zVt28KcOTB2LFxyidOViTQa\nrb0m4rTSUli+HJ57DiIjre+jovR8jchZNKYj0lBffAEPPABhYVbwbN4M770HQ4YocET+g3o6IvVh\njDX7bPFiK3QefhhycqBjR6crE/FpCh2Rujh1Cv7yF2u8pnVraz20e+6BNm2crkykSVDoiFyMgwfh\n2WetcZoBA6xFOKOjdftMpI40piNyIdnZ1jTnHj2sbQX+/nfYsMHaOE2BI1Jn6umI/CdjYNMma7xm\n1y6Ij4c9e6BTJ6crE2nyFDoiZ5SXQ0qKFTZVVTBrFrzzjvWsjYg0Cj0cih4ObfEOHSJt1mMkrvmc\n8h9dTZtuAUx/fDwjbr/V6cpEfJYeDhWpq717YckS0la9w4zWt5Nb8RFUALsgd+aj4HJpGRqRRqaJ\nBNKyGAMffAAjR8LNN0OHDiQOnEDusZdqvCw3d4H2shHxAoWOtAwVFfDaa3D99dbEgJEjYf9++NOf\nKOeyWk/RXjYijU+316R5O3wYnn8ekpKgVy/4859h6FBo9e9/b7VpU1nrqdrLRqTxqacjzdNXX1lb\nCYSEWNsKpKXB3/4Gw4fXCBxAe9mI2Eg9HWk+jIGPPrKmPH/0kfVQ5+7d0LnzBU87M1kgKemxs/ay\nGapJBCJeoCnTaMp0k3f6NLz1lhU2R49az9dMnAiX1T5WIyINp03cGkCh00QdOQIvvmiN14SEWGFz\n++3n3D4TkcZX38/NH/zbefz4cQBOnz5NVZUGVsUH5OXBzJnQrRt8+im8+641DXrUKAWOiI+74N/Q\nJ598kj/+8Y/Mnj2bo0ePMnXqVLvqEjnXli1w990wcKC1NM3nn1vbDFx/vdOVichFuuBEgkGDBjFo\n0CD8/f15/fXXqa6utqsuEUtlpdWTWbzY2l5g5kxYuRIuv9zpykSkHi7Y07nssstYuXIlrVu3JiEh\ngZ/85Cd21SUt3bffWhulde8OS5fCr35lrfT8yCMKHJEm7KInEmRlZeFyudi9ezfR0dEEBgZ6uzbb\naCKBD9m/HxITrd5MTIy1M2dkpNNVich/sHX22qZNm/jmm28YNWoUlzWDaakKHR+wfTs89ZT1AOf9\n91sPdl57rdNVich5eD10Dh48yNVXX+3576qqKlJTU2nVqhWjRo2iVROeNaTQcUhVFaSmkva7RSTm\ntaE8qAdtru3I9NnD9WCmiI/z+tYGs2fPJjo6mvz8fAoKCjz/W1ZWxurVq1mzZk2df7m0UMeOwcsv\nW9sKXNKBGUduIvfUUsgFciF3v7UkjYJHpPm56J5OZGQkI0aMwO121/hq3769t2v0OvV0bJKfD888\nA8nJMGQIzJ5N3Pw0MjL+fM5L4+IeIz39Tw4UKSIXw+s9nVWrVtGrV686/wIRPvnEmvKcnm4tT7Nj\nB1x3HQDl5e/Xeoq2FRBpni5qIGbPnj34+WltUKmD78dr+NnPYPRo6wHOvDxYssQTOKBtBURamotK\nkpCQEDIzM8nIyKBVq1YMHDiQG264wdu1SVN04oQ13XnJErjySpgzB8aMgfP8o2X69Fhycx8lN3eB\n55i1rcBQmwoWETvVa8r09u3b2blzJ9XV1fTs2ZOoqKgm3RPSmE4jKCqyxmtefBFuucV6vuanPwWX\n6wdPTUvbTFLSxrO2FYjRJAIRH+fYKtN79uwhMzOTiooKgoKCiIuLu+hndx544AHS0tLo1KkTX3zx\nBQBlZWWMGzeO/fv3ExwczBtvvMGPf/xjABYuXMiKFSto3bo1iYmJxMbGArBz504mT57MqVOnGD58\nOEuXLgWgvLyciRMnsmvXLjp06MCaNWu4tpZnPxQ6DZCVZa0c8N57cN991jI1ISFOVyUiXlbvz01T\nD8XFxZ7vT5w44fm+sLDQpKSkXPT7bN682ezatcv06dPHc2zu3Llm0aJFxhhjEhISzLx584wxxuze\nvdtERESYiooKk5eXZ0JCQkx1dbUxxpiBAweabdu2GWOMGTZsmNmwYYMxxphly5aZ+Ph4Y4wxKSkp\nZty4cbXWUc9maLmqqox57z1jhgwxJijImEWLjCkrc7oqEbFRfT8363TWggULzPr1680LL7zgObZ9\n+3bz97//vV6/3Bhj8vLyaoROz549TUlJiTHGCreePXsaY4x54oknTEJCgud1cXFxZsuWLaaoqMiE\nhYV5jq9evdo8+OCDntds3brVGGPM6dOnTceOHWutQaFzkU6cMObZZ43p0cOYn/zEmNdeM6aiwumq\nRMQB9f3crNNAzF133cUHH3xAcnIy69atIzAwkMjISAoLCxkyZEjdu1m1KC0tJSAgAICAgABKS0sB\nKCoqYvDgwZ7Xud1uCgsL8ff3x+12e44HBQVRWFgIQGFhIV27dgXAz8+P9u3bU1ZWxlVXXdUotbYY\nJSWwbBk8/zwMHgwvvGDNSruI8RoRkbPVKXR69epFr169uO666xg2bBglJSXs2LHDa6tPu1wuXDZ9\nsM2fP9/zfVRUFFFRUbb8Xp/2xRfW8zWpqTB+PHz0EfTo4XRVIuKAzMxMMjMzG/w+9ZpyNmzYMAAC\nAwMZOXJkg4s4W0BAACUlJQQGBlJcXEynTp0AqweTn5/veV1BQQFut5ugoCAKCgrOOX7mnAMHDtCl\nSxcqKys5evToeXs5Z4dOi1ZdDe+/b4VNdra1lUBODnTo4HRlIuKg//zH+OOPP16v9/G5VTpHjRrF\nqlWrAGsVhDvvvNNzPCUlhYqKCvLy8sjJySEyMpLAwEDatWvHtm3bMMbw6quvcscdd5zzXm+99RbR\n0dHOXJQPS0vbTFzc74i65THiek8m7do+8JvfwIQJ1sOcv/mNAkdEGk/jDi3VzT333GM6d+5s/P39\njdvtNitWrDCHDh0y0dHRJjQ01MTExJjDhw97Xr9gwQITEhJievbsadLT0z3HP/nkE9OnTx8TEhJi\npk2b5jl+6tQp81//9V+me/fuZtCgQSYvL6/WOhxuBsf89a8fmpDgXxkwnq+QLjPNX9/LdLo0EfFx\n9f3cbPBzOs1Bi3xOJzubuNjfklG49pwfabFNEfkh9f3c9Lnba+JFxsDGjTBsGERHU+7341pfpsU2\nRcRbFDotQXm5tX9Nv37W8jRjx8K+fbTp6a715VpsU0S8RaHTnB08CH/6EwQHw5o11nbQn39ubQfd\npg3Tp8cSEvJojVOsxTZjnKlXRJq9prtKp5zfP/9prYf2xhvWtgIbN0KfPue87MyimklJj5212OZQ\nLbYpIl6jiQQ4N5EgLW0ziYkZlJf70aZNJdOnx9b/A98Y+OAD6/maTz6BqVMhPh6+X91BRKQxeX3n\nUGlcaWmbmTHj/Rr7yOTmWre66hQ8FRWQkmKFTUWFNWbz5ptw6aWNXbKISIOpp4MzPZ24uN+RkfHn\nWo5f5HTlsjJrLbRnnoHwcCts4uKglYbpRMT7NGW6iSkvr72T+YPTlffuhYcftvas2bsXNmz49zRo\nBY6I+DjdXnNImzaVtR6vdbqyMbB5s3ULbcsWePBBa120zp29XKWISOPSP40dclHTlU+fhr/8BW64\nAX75S6s3s2+fNQ1agSMiTZDGdHB29lpS0sazpivHWJMIDh+GF1+EpCTo3h3mzIHhw3X7TER8Rn0/\nNxU6+NDaa7m5sHQpvPYa3H47zJoFAwY4XZWIyDk0kaCpMsbaHG30aBg0CH70I2vztFdeUeCISLOj\niQROqayEt96yJgeUlVm9mldegcsvd7oyERGv0e01bL69dvQovPQSJCZaa6LNnm3dSmutlZ1FpOnQ\nigS+bt8+a7xm1SoYOhTeftualSYi0oJoTMfbtm61thK4/nrw84PPPoPXX1fgiEiLpJ6ON1RWwtq1\n1nhNSQnMnAnJyXDFFU5XJiLiKIVOY/r2W1ixwrqN1qWL9XzNnXdqvEZE5HsKncZw4IA1MeDllyE6\nGlavhsGDna5KRMTnaEynIXbsgPHjredpjIGdO62N0xQ4IiK1Uk+nrqqqYN06a7wmPx9mzLC2GGjX\nzunKRER8nkLnYh0/bt0+W7IEOna0xmtGj7ZmpImIyEXRJ+YPKSiwNkp76SWIioJXX4UbbwSXy+nK\nRESaHI3pnM+uXXDffdCvH5w6Bdu3W8vW3HSTAkdEpJ4UOmerrrbGa6KirKnOERHw9dfWLbVu3Zyu\nTkSkydPttTOefRaeftqaEDBnDtx9N/j7O12ViEizotA5IyPDWjXg5pt1+0xExEu0yjQ+tImbiEgT\noU3cRETE5yl0RETENgodERGxjUJHRERso9ARERHbKHRERMQ2Ch0REbGNQkdERGyj0BEREdsodERE\nxDYKHRERsY1CR0REbKPQERER2/hs6AQHB9OvXz8GDBhAZGQkAGVlZcTExNCjRw9iY2M5cuSI5/UL\nFy4kNDSUsLAwMjIyPMd37txJ3759CQ0NZcaMGbZfh4iI/JvPho7L5SIzM5OsrCy2b98OQEJCAjEx\nMezdu5fo6GgSEhIAyM7OZs2aNWRnZ5Oens5DDz3kWXI7Pj6e5ORkcnJyyMnJIT093bFrEhFp6Xw2\ndIBz9mpYt24dkyZNAmDSpEmsXbsWgNTUVMaPH4+/vz/BwcF0796dbdu2UVxczLFjxzw9pYkTJ3rO\nERER+/ls6LhcLm677TZuuOEGXnzxRQBKS0sJCAgAICAggNLSUgCKiopwu92ec91uN4WFheccDwoK\norCw0MarEBGRs/nsdtX/+Mc/6Ny5MwcPHiQmJoawsLAaP3e5XLgacVvp+fPne76PiooiKiqq0d5b\nRKSpy8zMJDMzs8Hv47Oh07lzZwCuvvpq7rrrLrZv305AQAAlJSUEBgZSXFxMp06dAKsHk5+f7zm3\noKAAt9tNUFAQBQUFNY4HBQXV+vvODh0REanpP/8x/vjjj9frfXzy9tp3333HsWPHADhx4gQZGRn0\n7duXUaNGsWrVKgBWrVrFnXfeCcCoUaNISUmhoqKCvLw8cnJyiIyMJDAwkHbt2rFt2zaMMbz66que\nc0RExH4+2dMpLS3lrrvuAqCyspL//u//JjY2lhtuuIGxY8eSnJxMcHAwb7zxBgDh4eGMHTuW8PBw\n/Pz8WL58uefW2/Lly5k8eTInT55k+PDhDB061LHrEhFp6VzmP6eItUAul+ucmXIiInJ+9f3c9Mnb\nayIi0jwpdERExDYKHRERsY1CR0REbKPQERER2yh0RETENgodERGxjUJHRERso9ARERHbKHRERMQ2\nCh0REbGNQkdERGyj0BEREdsodERExDYKHRERsY1CR0REbKPQERER2yh0RETENgodERGxjUJHRERs\no9ARERHbKHRERMQ2Ch0REbGNQkdERGyj0BEREdsodERExDYKHRERsY1CR0REbKPQERER2yh0RETE\nNgodERGxjUJHRERso9ARERHbKHRERMQ2Ch0REbGNQkdERGyj0BEREdsodERExDYKHRERsY1CR0RE\nbKPQERER27SI0ElPTycsLIzQ0FAWLVrkdDkiIi1Wsw+dqqoqHnnkEdLT08nOzmb16tV8+eWXTpfl\nczIzM50uwSeoHSxqB7XBGY3dDs0+dLZv30737t0JDg7G39+fe+65h9TUVKfL8jn6C2ZRO1jUDmqD\nMxQ6dVRR5qKHAAAGFklEQVRYWEjXrl09/+12uyksLHSwIhGRlqvZh47L5XK6BBEROcM0c1u2bDFx\ncXGe/37iiSdMQkJCjdeEhIQYQF/60pe+9HWRXxEREfX6THYZYwzNWGVlJT179mTTpk106dKFyMhI\nVq9eTa9evZwuTUSkxfFzugBv8/Pz45lnniEuLo6qqiqmTJmiwBERcUiz7+mIiIjvaHYTCS7mQdDp\n06cTGhpKREQEWVlZP3huWVkZMTEx9OjRg9jYWI4cOeL162gob7TDm2++Se/evWndujW7du3y+jU0\nlDfaYO7cufTq1YuIiAhGjx7N0aNHvX4dDeWNdnjssceIiIigf//+REdHk5+f7/XraAhvtMEZTz31\nFK1ataKsrMxr9TcWb7TD/PnzcbvdDBgwgAEDBpCenn7hIuo9Qu+DKisrTUhIiMnLyzMVFRUmIiLC\nZGdn13hNWlqaGTZsmDHGmK1bt5pBgwb94Llz5841ixYtMsYYk5CQYObNm2fjVdWdt9rhyy+/NHv2\n7DFRUVFm586d9l5UHXmrDTIyMkxVVZUxxph58+a12D8L3377ref8xMREM2XKFJuuqO681QbGGHPg\nwAETFxdngoODzaFDh+y7qHrwVjvMnz/fPPXUUxddR7Pq6VzMg6Dr1q1j0qRJAAwaNIgjR45QUlJy\nwXPPPmfSpEmsXbvW3gurI2+1Q1hYGD169LD9eurDW20QExNDq1atPOcUFBTYe2F15K12uOKKKzzn\nHz9+nI4dO9p3UXXkrTYAmD17Nk8++aSt11Nf3mwHU4dRmmYVOhfzIOj5XlNUVHTec0tLSwkICAAg\nICCA0tJSb15Gg3mrHZoSO9pgxYoVDB8+3AvVNx5vtsOjjz7KNddcw6pVq/j1r3/txatoGG+1QWpq\nKm63m379+nn5ChqHN/8sJCUlERERwZQpU35w+KFZhc7FPgh6MalsjKn1/Vwul88/cNqY7dBUebsN\nFixYwCWXXMK9995br/Pt4s12WLBgAQcOHGDy5MnMmjWrzufbxRttcPLkSZ544gkef/zxep3vBG/9\nWYiPjycvL49PP/2Uzp07M2fOnAu+vllNmQ4KCqoxoJmfn4/b7b7gawoKCnC73Zw+ffqc40FBQYDV\nuykpKSEwMJDi4mI6derk5StpmMZsh9rObQq82QYrV65k/fr1bNq0yYtX0Djs+LNw7733+nSPzxtt\nkJuby759+4iIiPC8/vrrr2f79u0++/ngrT8LZ1/vL37xC0aOHHnhQho2NOVbTp8+bbp162by8vJM\neXn5Dw6UbdmyxTNQdqFz586d61nFYOHChT4/eOytdjgjKirKfPLJJ/ZcTD15qw02bNhgwsPDzcGD\nB+29oHryVjvs3bvXc35iYqK57777bLqiuvP23wdjTJOYSOCtdigqKvKcv3jxYjN+/PgL1tGsQscY\nY9avX2969OhhQkJCzBNPPGGMMea5554zzz33nOc1Dz/8sAkJCTH9+vWrMQurtnONMebQoUMmOjra\nhIaGmpiYGHP48GH7LqievNEO77zzjnG73aZt27YmICDADB061L4LqgdvtEH37t3NNddcY/r372/6\n9+9v4uPj7bugevJGO4wZM8b06dPHREREmNGjR5vS0lL7LqgevNEGZ7vuuut8PnSM8U47TJgwwfTt\n29f069fP3HHHHaakpOSCNejhUBERsU2zmkggIiK+TaEjIiK2UeiIiIhtFDoiImIbhY6IiNhGoSMi\nIrZR6IiIiG0UOiIiYhuFjogPyc7OJjIykgkTJnDw4EEAsrKy6N27N+vXr3e4OpGGa1YLfoo0deHh\n4YwYMYJrr72Wq6++GrBWB37zzTcJDw93uDqRhlNPR8THuN3uGiv67t69W4EjzYZCR8THuN1uz46k\nmzZtIjo62uGKRBqPQkfEx5zp6VRVVfHNN98QGBjodEkijUahI+JjzvR0UlNTGTVqlNPliDQqhY6I\nj2nfvj1lZWW0atWKyy67zOlyRBqVQkfEB/30pz9VL0eaJW3iJiIitlFPR0REbKPQERER2yh0RETE\nNgodERGxjUJHRERso9ARERHbKHRERMQ2Ch0REbHN/wfqctZlL8VHLAAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x5fd7950>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The value of constant alpha: 1.79e+11 m/kg\n",
+ "The value of constant Rm: 1.126e+11 1/m\n",
+ "The values of alpha and Rm are more accurate than book the code utilises built in function\n",
+ "for regression, which gives better results than from graphical slope and intercept estimates\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 14.2-2, Page number 811"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Time Required to perform a Filtration\n",
+ "from numpy import arange,array,ones,linalg, divide\n",
+ "from pylab import plot,show\n",
+ "\n",
+ "#Variable declaration\n",
+ "A = 0.873 #Filter area of each frame (m2)\n",
+ "C = 0.0439 #Proportionality constant\n",
+ "V = 3.37 #Volume of filtrate (m3)\n",
+ "xi = arange(0.0,0.00501,0.00005)\n",
+ "t = [4.4,9.5,16.3,24.6,34.7,46.1,59.0,73.6,89.4,107.3]\n",
+ "y = [0.498e-3,1.0e-3,1.501e-3,2.0e-3,2.498e-3,3.002e-3,3.506e-3,4.004e-3,4.502e-3,5.009e-3]\n",
+ "\n",
+ "#Calculation\n",
+ " # linearly generated sequence\n",
+ "yy = divide(t,y)\n",
+ "Aa = array([y, ones(10)])\n",
+ "w = linalg.lstsq(Aa.T,yy)[0] # obtaining the parameters\n",
+ "# Use w[0] and w[1] for your calculations and give good structure to this ipython notebook\n",
+ "# plotting the line\n",
+ "line = w[0]*xi+w[1] # regression line\n",
+ "plot(xi,line,'r-',y,yy,'o')\n",
+ "ylabel('$t/V^2$')\n",
+ "xlabel('$V$')\n",
+ "xlim(0.0,5.1e-3)\n",
+ "ylim(0.0,22e3)\n",
+ "show()\n",
+ "Kp = 2.0*w[0]\n",
+ "B = w[1]\n",
+ "\n",
+ "At = A*20. #Total area of the 20 frames (m2)\n",
+ "Kpc = Kp*(C/At)**2 #Corrected slope (s/m6)\n",
+ "Bc = B*(C/At) #Corrected intercept (s/m3)\n",
+ "#t = Kpc*V**2/2 + Bc*V\n",
+ "t = Kpc*V**2/2 + Bc*V\n",
+ "\n",
+ "#Result\n",
+ "print 'The time required to recover the filtrate is %5.2f s'%t\n",
+ "print 'The values slope and intercept of plot of t/v2 vs V is more accurate than book the code utilises '\n",
+ "print 'built in function for regression, which gives better results than from graphical estimates; Hence'\n",
+ "print 'time required to recover 3.37 m3 is different than given in book'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZ0AAAEMCAYAAAAf5WtEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtcVVX+//HXUUibSqc0QTkWiSjiBZ0SrakJhwAvaaV9\nNfvmpZzHJJX3r+PMNM3YzJjY45cppF0xrSaxq9ighONEfpu8pXT5SqNEqNxzRE1NQWD9/th5RkY0\nuZy9D/B+Ph48hjZnHz57jZ63a6+113IZYwwiIiI2aOV0ASIi0nIodERExDYKHRERsY1CR0REbKPQ\nERER2yh0RETENn5OF+AL+vfvz2effeZ0GSIiTcatt95KZmZmnc9TTwf47LPPMMa06K8//OEPjtfg\nC19qB7WD2uDi2uHDDz+s1+etQkdERM6RlraZuLjfsXJlJnFxvyMtbXOjvK9ur4mISA1paZuZMeN9\ncnMXAPPZv38+ubmPAjBixM8a9N7q6QgAUVFRTpfgE9QOFrVDy26DxMSM7wMHIAqA3NwFJCVtbPB7\nK3QEaNl/wc6mdrCoHVp2G5SXn30TLMrz3alTrRv83godERGpoU2bylqPt21b1eD3VuiIiEgN0x+O\nJiRwRo1jISG/Zdq0mAa/t8sY0+K3NnC5XKgZRKTFO34cVq6EJUtIa9WepB8N4FT7INpeWs20aTE1\nJhHU93NToYNCR0RauIICeOYZeOkluPVWmD0bbroJXK7znlLfz03dXhMRaal27YIJE6BfPzh1CrZv\nh7ffhp/+9IKB0xAKHRGRlqS6Gt57D4YMgTvusALn669hyRLo1s3rv14Ph4qItATffQerVsHTT0O7\ndjBnDtx9N/j721qGQkdEpDkrLrbGa154wbptlpwMN9/stdtnP0S310REmqPPPoPJk6F3bzh6FD7+\nGNauhVtucSxwwMHQyc/PZ8iQIfTu3Zs+ffqQmJgIQFlZGTExMfTo0YPY2FiOHDniOWfhwoWEhoYS\nFhZGRkaG5/jOnTvp27cvoaGhzJjx77nl5eXljBs3jtDQUAYPHsz+/fvtu0AREbtVV8P69XDbbTB8\nOPTsCV99ZfV0QkOdrs5iHFJcXGyysrKMMcYcO3bM9OjRw2RnZ5u5c+eaRYsWGWOMSUhIMPPmzTPG\nGLN7924TERFhKioqTF5engkJCTHV1dXGGGMGDhxotm3bZowxZtiwYWbDhg3GGGOWLVtm4uPjjTHG\npKSkmHHjxtVai4PNICLScN99Z8zzzxsTFmZM//7GvPqqMeXlXv2V9f3cdKynExgYSP/+/QG4/PLL\n6dWrF4WFhaxbt45JkyYBMGnSJNauXQtAamoq48ePx9/fn+DgYLp37862bdsoLi7m2LFjREZGAjBx\n4kTPOWe/15gxY9i0aZPdlyki4j2lpfD738O118Jf/wrPPmtNg77vPrjkEqerq5VPTCTYt28fWVlZ\nDBo0iNLSUgICAgAICAigtLQUgKKiIgYPHuw5x+12U1hYiL+/P26323M8KCiIwsJCAAoLC+natSsA\nfn5+tG/fnrKyMq666iq7Lk1EpM7S0jaTmJhBebkfbdpUMn16bM0tBf7v/6xZaO+8A+PGwf/+r3Ur\nrQlwPHSOHz/OmDFjWLp0KVdccUWNn7lcLlwODniJiNit5l42ltzcR8EYRvifgsWL4fPP4eGHIScH\nOnZ0sNq6czR0Tp8+zZgxY5gwYQJ33nknYPVuSkpKCAwMpLi4mE6dOgFWDyY/P99zbkFBAW63m6Cg\nIAoKCs45fuacAwcO0KVLFyorKzl69Oh5eznz58/3fB8VFdWilzUXEefU3MvGkpu7gKR7hjCi2yFr\niZp166BNG1vryszMJDMzs+Fv1MhjSxeturraTJgwwcycObPG8blz55qEhARjjDELFy48ZyJBeXm5\n+frrr023bt08EwkiIyPN1q1bTXV19TkTCaZOnWqMMWb16tWaSCAiPu/WW/9gwJzzdWvfacZ8/5nn\nC+r7uelYT+cf//gHr732Gv369WPAgAGANSX617/+NWPHjiU5OZng4GDeeOMNAMLDwxk7dizh4eH4\n+fmxfPlyz6235cuXM3nyZE6ePMnw4cMZOnQoAFOmTGHChAmEhobSoUMHUlJSnLlYEZGL1Ob0kVqP\nt+3S3tHnaxqLVplGq0yLiMOMgU2bYPFi0j7+ghmtbif38LOeH4eE/JalS4fWnEzgMG1t0AAKHRFx\nRHk5pKRYkwMqK2HWLLjvPtI2bScpaSOnTrWmbduqc/ay8QUKnQZQ6IiIrQ4dgueeg2XLoE8fa/HN\n2NgmdftM++mIiPi6vXvhoYege3fIzYX334eMDIiLa1KB0xCOP6cjItKsGQMffghPPQXbtsHUqfDl\nlxAY6HRljlDoiIh4Q0UFvPGGNV5z8iTMnGn996WXOl2ZozSmg8Z0RKQRHT5s7V2TlGQtTTNnDgwd\nCq2a12hGfT831dMREWkMX30FS5fCX/4CI0daC3B+v6ix/Fvzil4RETsZYy22edddcOONcMUV1mKc\nq1YpcM5DPR0Rkbo6fRreessarzl61Hq+5rXX4LLLnK7M52lMB43piMi/XXBbgSNH4KWXIDERunWz\nxmtGjGh24zUXQ2M6IiINdN5tBUpKGPHFx/DKKzBsGLz7Llx/vYOVNl3q6aCejohY4uJ+R0bGn889\n7ncT6XN+Bo88AmdtGtmSqacjItJA5eW1fySeGhwNCX+yuZrmqeXdiBQRqc2339Km5Ktaf9RW8wMa\njUJHRFq2/futCQHXXcf0TocJCZpT48chIb9l2rQYh4prfnR7TURapu3brSnPGzfCAw9AVhYjrrkG\n0jaTlPTYWdsK+NY+Nk2dJhKgiQQiLUZVFaSmWmFTWAjTp8OUKdCundOVNTmaSCAicj7HjsHLL8OS\nJRAQYN1Ou/NO8NNHoN3U4iLSfOXnwzPPQHIyDBlirYt2441OV9WiaSKBiDQ/n3wC994LERHWFgM7\ndsCbbypwfIB6OiLSPFRVWSs7L14M+/bBtGnw7LPQvr3TlclZFDoi0rSdOGGt6vz003DlldZ4zZgx\nGq/xUfp/RUSapqIia7zmxRfhlltgxQq4+WZwuZyuTC5AYzoi0rRkZcHEidCnjzUrbetWeOcdK3gU\nOD5PoSMivq+62hqv+fnPYdQoK3Byc60toUNCnK5O6kC310TEp9TYz8avnOk9DSM2rbU2SJs9G8aO\nBX9/p8uUelLoiIjPqHU/my33w2PTGDHvId0+awZ0e01EfEbigrdrBA5A7ncvk5RZosBpJhQ6IuKs\n6mrYsAFiYij/5MtaX3LqVGubixJv0e01EXHGqVPw2mvWw5yXXAKzZtGGPfC3c1/atm2V/fWJVyh0\nRMRe33wDy5dbqwXccIP1rM2QIeByMb3jZnLzHq1xi83az2aogwVLY1LoiIg9srOtVQPeftuagfbh\nhxAWVuMlZ/at0X42zZf200H76Yh4jTHwt79Zt9A+/RQeegji46FjR6crkwbSfjoi4jvKy+H1162w\nAev5mnffhbZtna1LHKfQEZHG869/wXPPwbJl1rYCTz0FMTGa7iwemjItIg23Zw9MnQqhoda2Ahs3\nQno6xMYqcKQG9XREpH6MgQ8+sG6h7dhhjdX885/WdtAi56HQEZG6qaiAlBQrbCoqrPGaN9+ESy91\nujJpAjR7Dc1eE7koZWXw/PPWczXh4TBrFgwdCq10l74lqu/npv60iMiF5eTAww9bWwjs2WMtWbNx\nIwwfrsCROtPtNRHx8GwrcKo1bU4eZHqrHEZ8/Rk8+KD1cGfnzk6XKE2cQkdEgDPbCqSTm/uE51ju\n1Y/As3MZMSbWwcqkOXG0b/zAAw8QEBBA3759Pcfmz5+P2+1mwIABDBgwgA0bNnh+tnDhQkJDQwkL\nCyMjI8NzfOfOnfTt25fQ0FBmzJjhOV5eXs64ceMIDQ1l8ODB7N+/354LE2lqDh8mcdbzNQIHIPfg\nMyS9+L8OFSXNkaOhc//995Oenl7jmMvlYvbs2WRlZZGVlcWwYcMAyM7OZs2aNWRnZ5Oens5DDz3k\nGcSKj48nOTmZnJwccnJyPO+ZnJxMhw4dyMnJYdasWcybN8/eCxTxdbm5MH06hIRQfrSy1pdoWwFp\nTI6Gzi233MKVV155zvHaZkSkpqYyfvx4/P39CQ4Opnv37mzbto3i4mKOHTtGZGQkABMnTmTt2rUA\nrFu3jkmTJgEwZswYNm3a5MWrEWkijIGPPoLRo2HQIGsb6C++oE3/0Fpfrm0FpDH55NSTpKQkIiIi\nmDJlCkeOHAGgqKgIt9vteY3b7aawsPCc40FBQRQWFgJQWFhI165dAfDz86N9+/aUlZXZeCUiPqSy\nEtassYLm/vvh5z+3Vg9YuBCCgpg+PZaQkEdrnGJtKxDjTL3SLPncRIL4+Hh+//vfA/DYY48xZ84c\nkpOTHa5KpAk7ehReegkSEyE4GB59FG6/HVrXvG2mbQXEDj4XOp06dfJ8/4tf/IKRI0cCVg8mPz/f\n87OCggLcbjdBQUEUFBScc/zMOQcOHKBLly5UVlZy9OhRrrrqqlp/7/z58z3fR0VFERUV1YhXJeKA\nffusoFm50nqI8623YODAC54yYsTPFDJSq8zMTDIzMxv+RsZheXl5pk+fPp7/Lioq8ny/ePFiM378\neGOMMbt37zYRERGmvLzcfP3116Zbt26murraGGNMZGSk2bp1q6murjbDhg0zGzZsMMYYs2zZMjN1\n6lRjjDGrV68248aNq7UGH2gGkcbz8cfG3H23MVddZcz//I8xBw44XZE0Q/X93HS0pzN+/Hg+/PBD\n/vWvf9G1a1cef/xxMjMz+fTTT3G5XFx33XU8//zzAISHhzN27FjCw8Px8/Nj+fLluL5fvXb58uVM\nnjyZkydPMnz4cIYOtba2nTJlChMmTCA0NJQOHTqQkpLi2LWKeFVlJaxda62HVlICM2fCihVwxRVO\nVyZSg9ZeQ2uvSRN27JgVLkuWQFCQtfjmHXecM14j0ti0c6hIS3LgACQlWYFz222wejUMHux0VSI/\nyCenTIvIeezYAePHw4ABUF0NO3da06AVONJEqKcj4uuqqmDdOmu8Jj8fZsywthho187pykTqTKEj\n4quOH7emOy9ZAh06WOM1Y8aAn/7aStOlP70iPsKzrcC3VbQpyWX6vz5iROyN8MorcOON8P1sTZGm\nTKEj4gPS0jYzY+o6cgv+n+dY7jW/ggduZ8RNNzlYmUjj0kQCESdVV8O6dSRO+HONwAHIPfAkSUkb\nHSpMxDvU0xFxwokT1m2zp5+Gdu0oDxgIh899mbYVkOZGPR0ROxUXWwtuBgdDRgYkJ8OOHbS5pkOt\nL9e2AtLcKHRE7PD55zB5MvTuba36/PHH8O67cMst4HJpWwFpMbQMDloGR7ykuhrS063na778EqZN\ng1/+Es6z0nla2maSkjaeta1AjFZ8Fp9V389NhQ4KHWlkJ0/Cq69a4zVt28KcOTB2LFxyidOViTQa\nrb0m4rTSUli+HJ57DiIjre+jovR8jchZNKYj0lBffAEPPABhYVbwbN4M770HQ4YocET+g3o6IvVh\njDX7bPFiK3QefhhycqBjR6crE/FpCh2Rujh1Cv7yF2u8pnVraz20e+6BNm2crkykSVDoiFyMgwfh\n2WetcZoBA6xFOKOjdftMpI40piNyIdnZ1jTnHj2sbQX+/nfYsMHaOE2BI1Jn6umI/CdjYNMma7xm\n1y6Ij4c9e6BTJ6crE2nyFDoiZ5SXQ0qKFTZVVTBrFrzzjvWsjYg0Cj0cih4ObfEOHSJt1mMkrvmc\n8h9dTZtuAUx/fDwjbr/V6cpEfJYeDhWpq717YckS0la9w4zWt5Nb8RFUALsgd+aj4HJpGRqRRqaJ\nBNKyGAMffAAjR8LNN0OHDiQOnEDusZdqvCw3d4H2shHxAoWOtAwVFfDaa3D99dbEgJEjYf9++NOf\nKOeyWk/RXjYijU+316R5O3wYnn8ekpKgVy/4859h6FBo9e9/b7VpU1nrqdrLRqTxqacjzdNXX1lb\nCYSEWNsKpKXB3/4Gw4fXCBxAe9mI2Eg9HWk+jIGPPrKmPH/0kfVQ5+7d0LnzBU87M1kgKemxs/ay\nGapJBCJeoCnTaMp0k3f6NLz1lhU2R49az9dMnAiX1T5WIyINp03cGkCh00QdOQIvvmiN14SEWGFz\n++3n3D4TkcZX38/NH/zbefz4cQBOnz5NVZUGVsUH5OXBzJnQrRt8+im8+641DXrUKAWOiI+74N/Q\nJ598kj/+8Y/Mnj2bo0ePMnXqVLvqEjnXli1w990wcKC1NM3nn1vbDFx/vdOVichFuuBEgkGDBjFo\n0CD8/f15/fXXqa6utqsuEUtlpdWTWbzY2l5g5kxYuRIuv9zpykSkHi7Y07nssstYuXIlrVu3JiEh\ngZ/85Cd21SUt3bffWhulde8OS5fCr35lrfT8yCMKHJEm7KInEmRlZeFyudi9ezfR0dEEBgZ6uzbb\naCKBD9m/HxITrd5MTIy1M2dkpNNVich/sHX22qZNm/jmm28YNWoUlzWDaakKHR+wfTs89ZT1AOf9\n91sPdl57rdNVich5eD10Dh48yNVXX+3576qqKlJTU2nVqhWjRo2iVROeNaTQcUhVFaSmkva7RSTm\ntaE8qAdtru3I9NnD9WCmiI/z+tYGs2fPJjo6mvz8fAoKCjz/W1ZWxurVq1mzZk2df7m0UMeOwcsv\nW9sKXNKBGUduIvfUUsgFciF3v7UkjYJHpPm56J5OZGQkI0aMwO121/hq3769t2v0OvV0bJKfD888\nA8nJMGQIzJ5N3Pw0MjL+fM5L4+IeIz39Tw4UKSIXw+s9nVWrVtGrV686/wIRPvnEmvKcnm4tT7Nj\nB1x3HQDl5e/Xeoq2FRBpni5qIGbPnj34+WltUKmD78dr+NnPYPRo6wHOvDxYssQTOKBtBURamotK\nkpCQEDIzM8nIyKBVq1YMHDiQG264wdu1SVN04oQ13XnJErjySpgzB8aMgfP8o2X69Fhycx8lN3eB\n55i1rcBQmwoWETvVa8r09u3b2blzJ9XV1fTs2ZOoqKgm3RPSmE4jKCqyxmtefBFuucV6vuanPwWX\n6wdPTUvbTFLSxrO2FYjRJAIRH+fYKtN79uwhMzOTiooKgoKCiIuLu+hndx544AHS0tLo1KkTX3zx\nBQBlZWWMGzeO/fv3ExwczBtvvMGPf/xjABYuXMiKFSto3bo1iYmJxMbGArBz504mT57MqVOnGD58\nOEuXLgWgvLyciRMnsmvXLjp06MCaNWu4tpZnPxQ6DZCVZa0c8N57cN991jI1ISFOVyUiXlbvz01T\nD8XFxZ7vT5w44fm+sLDQpKSkXPT7bN682ezatcv06dPHc2zu3Llm0aJFxhhjEhISzLx584wxxuze\nvdtERESYiooKk5eXZ0JCQkx1dbUxxpiBAweabdu2GWOMGTZsmNmwYYMxxphly5aZ+Ph4Y4wxKSkp\nZty4cbXWUc9maLmqqox57z1jhgwxJijImEWLjCkrc7oqEbFRfT8363TWggULzPr1680LL7zgObZ9\n+3bz97//vV6/3Bhj8vLyaoROz549TUlJiTHGCreePXsaY4x54oknTEJCgud1cXFxZsuWLaaoqMiE\nhYV5jq9evdo8+OCDntds3brVGGPM6dOnTceOHWutQaFzkU6cMObZZ43p0cOYn/zEmNdeM6aiwumq\nRMQB9f3crNNAzF133cUHH3xAcnIy69atIzAwkMjISAoLCxkyZEjdu1m1KC0tJSAgAICAgABKS0sB\nKCoqYvDgwZ7Xud1uCgsL8ff3x+12e44HBQVRWFgIQGFhIV27dgXAz8+P9u3bU1ZWxlVXXdUotbYY\nJSWwbBk8/zwMHgwvvGDNSruI8RoRkbPVKXR69epFr169uO666xg2bBglJSXs2LHDa6tPu1wuXDZ9\nsM2fP9/zfVRUFFFRUbb8Xp/2xRfW8zWpqTB+PHz0EfTo4XRVIuKAzMxMMjMzG/w+9ZpyNmzYMAAC\nAwMZOXJkg4s4W0BAACUlJQQGBlJcXEynTp0AqweTn5/veV1BQQFut5ugoCAKCgrOOX7mnAMHDtCl\nSxcqKys5evToeXs5Z4dOi1ZdDe+/b4VNdra1lUBODnTo4HRlIuKg//zH+OOPP16v9/G5VTpHjRrF\nqlWrAGsVhDvvvNNzPCUlhYqKCvLy8sjJySEyMpLAwEDatWvHtm3bMMbw6quvcscdd5zzXm+99RbR\n0dHOXJQPS0vbTFzc74i65THiek8m7do+8JvfwIQJ1sOcv/mNAkdEGk/jDi3VzT333GM6d+5s/P39\njdvtNitWrDCHDh0y0dHRJjQ01MTExJjDhw97Xr9gwQITEhJievbsadLT0z3HP/nkE9OnTx8TEhJi\npk2b5jl+6tQp81//9V+me/fuZtCgQSYvL6/WOhxuBsf89a8fmpDgXxkwnq+QLjPNX9/LdLo0EfFx\n9f3cbPBzOs1Bi3xOJzubuNjfklG49pwfabFNEfkh9f3c9Lnba+JFxsDGjTBsGERHU+7341pfpsU2\nRcRbFDotQXm5tX9Nv37W8jRjx8K+fbTp6a715VpsU0S8RaHTnB08CH/6EwQHw5o11nbQn39ubQfd\npg3Tp8cSEvJojVOsxTZjnKlXRJq9prtKp5zfP/9prYf2xhvWtgIbN0KfPue87MyimklJj5212OZQ\nLbYpIl6jiQQ4N5EgLW0ziYkZlJf70aZNJdOnx9b/A98Y+OAD6/maTz6BqVMhPh6+X91BRKQxeX3n\nUGlcaWmbmTHj/Rr7yOTmWre66hQ8FRWQkmKFTUWFNWbz5ptw6aWNXbKISIOpp4MzPZ24uN+RkfHn\nWo5f5HTlsjJrLbRnnoHwcCts4uKglYbpRMT7NGW6iSkvr72T+YPTlffuhYcftvas2bsXNmz49zRo\nBY6I+DjdXnNImzaVtR6vdbqyMbB5s3ULbcsWePBBa120zp29XKWISOPSP40dclHTlU+fhr/8BW64\nAX75S6s3s2+fNQ1agSMiTZDGdHB29lpS0sazpivHWJMIDh+GF1+EpCTo3h3mzIHhw3X7TER8Rn0/\nNxU6+NDaa7m5sHQpvPYa3H47zJoFAwY4XZWIyDk0kaCpMsbaHG30aBg0CH70I2vztFdeUeCISLOj\niQROqayEt96yJgeUlVm9mldegcsvd7oyERGv0e01bL69dvQovPQSJCZaa6LNnm3dSmutlZ1FpOnQ\nigS+bt8+a7xm1SoYOhTeftualSYi0oJoTMfbtm61thK4/nrw84PPPoPXX1fgiEiLpJ6ON1RWwtq1\n1nhNSQnMnAnJyXDFFU5XJiLiKIVOY/r2W1ixwrqN1qWL9XzNnXdqvEZE5HsKncZw4IA1MeDllyE6\nGlavhsGDna5KRMTnaEynIXbsgPHjredpjIGdO62N0xQ4IiK1Uk+nrqqqYN06a7wmPx9mzLC2GGjX\nzunKRER8nkLnYh0/bt0+W7IEOna0xmtGj7ZmpImIyEXRJ+YPKSiwNkp76SWIioJXX4UbbwSXy+nK\nRESaHI3pnM+uXXDffdCvH5w6Bdu3W8vW3HSTAkdEpJ4UOmerrrbGa6KirKnOERHw9dfWLbVu3Zyu\nTkSkydPttTOefRaeftqaEDBnDtx9N/j7O12ViEizotA5IyPDWjXg5pt1+0xExEu0yjQ+tImbiEgT\noU3cRETE5yl0RETENgodERGxjUJHRERso9ARERHbKHRERMQ2Ch0REbGNQkdERGyj0BEREdsodERE\nxDYKHRERsY1CR0REbKPQERER2/hs6AQHB9OvXz8GDBhAZGQkAGVlZcTExNCjRw9iY2M5cuSI5/UL\nFy4kNDSUsLAwMjIyPMd37txJ3759CQ0NZcaMGbZfh4iI/JvPho7L5SIzM5OsrCy2b98OQEJCAjEx\nMezdu5fo6GgSEhIAyM7OZs2aNWRnZ5Oens5DDz3kWXI7Pj6e5ORkcnJyyMnJIT093bFrEhFp6Xw2\ndIBz9mpYt24dkyZNAmDSpEmsXbsWgNTUVMaPH4+/vz/BwcF0796dbdu2UVxczLFjxzw9pYkTJ3rO\nERER+/ls6LhcLm677TZuuOEGXnzxRQBKS0sJCAgAICAggNLSUgCKiopwu92ec91uN4WFheccDwoK\norCw0MarEBGRs/nsdtX/+Mc/6Ny5MwcPHiQmJoawsLAaP3e5XLgacVvp+fPne76PiooiKiqq0d5b\nRKSpy8zMJDMzs8Hv47Oh07lzZwCuvvpq7rrrLrZv305AQAAlJSUEBgZSXFxMp06dAKsHk5+f7zm3\noKAAt9tNUFAQBQUFNY4HBQXV+vvODh0REanpP/8x/vjjj9frfXzy9tp3333HsWPHADhx4gQZGRn0\n7duXUaNGsWrVKgBWrVrFnXfeCcCoUaNISUmhoqKCvLw8cnJyiIyMJDAwkHbt2rFt2zaMMbz66que\nc0RExH4+2dMpLS3lrrvuAqCyspL//u//JjY2lhtuuIGxY8eSnJxMcHAwb7zxBgDh4eGMHTuW8PBw\n/Pz8WL58uefW2/Lly5k8eTInT55k+PDhDB061LHrEhFp6VzmP6eItUAul+ucmXIiInJ+9f3c9Mnb\nayIi0jwpdERExDYKHRERsY1CR0REbKPQERER2yh0RETENgodERGxjUJHRERso9ARERHbKHRERMQ2\nCh0REbGNQkdERGyj0BEREdsodERExDYKHRERsY1CR0REbKPQERER2yh0RETENgodERGxjUJHRERs\no9ARERHbKHRERMQ2Ch0REbGNQkdERGyj0BEREdsodERExDYKHRERsY1CR0REbKPQERER2yh0RETE\nNgodERGxjUJHRERso9ARERHbKHRERMQ2Ch0REbGNQkdERGyj0BEREdsodERExDYKHRERsY1CR0RE\nbKPQERER27SI0ElPTycsLIzQ0FAWLVrkdDkiIi1Wsw+dqqoqHnnkEdLT08nOzmb16tV8+eWXTpfl\nczIzM50uwSeoHSxqB7XBGY3dDs0+dLZv30737t0JDg7G39+fe+65h9TUVKfL8jn6C2ZRO1jUDmqD\nMxQ6dVRR5qKHAAAGFklEQVRYWEjXrl09/+12uyksLHSwIhGRlqvZh47L5XK6BBEROcM0c1u2bDFx\ncXGe/37iiSdMQkJCjdeEhIQYQF/60pe+9HWRXxEREfX6THYZYwzNWGVlJT179mTTpk106dKFyMhI\nVq9eTa9evZwuTUSkxfFzugBv8/Pz45lnniEuLo6qqiqmTJmiwBERcUiz7+mIiIjvaHYTCS7mQdDp\n06cTGhpKREQEWVlZP3huWVkZMTEx9OjRg9jYWI4cOeL162gob7TDm2++Se/evWndujW7du3y+jU0\nlDfaYO7cufTq1YuIiAhGjx7N0aNHvX4dDeWNdnjssceIiIigf//+REdHk5+f7/XraAhvtMEZTz31\nFK1ataKsrMxr9TcWb7TD/PnzcbvdDBgwgAEDBpCenn7hIuo9Qu+DKisrTUhIiMnLyzMVFRUmIiLC\nZGdn13hNWlqaGTZsmDHGmK1bt5pBgwb94Llz5841ixYtMsYYk5CQYObNm2fjVdWdt9rhyy+/NHv2\n7DFRUVFm586d9l5UHXmrDTIyMkxVVZUxxph58+a12D8L3377ref8xMREM2XKFJuuqO681QbGGHPg\nwAETFxdngoODzaFDh+y7qHrwVjvMnz/fPPXUUxddR7Pq6VzMg6Dr1q1j0qRJAAwaNIgjR45QUlJy\nwXPPPmfSpEmsXbvW3gurI2+1Q1hYGD169LD9eurDW20QExNDq1atPOcUFBTYe2F15K12uOKKKzzn\nHz9+nI4dO9p3UXXkrTYAmD17Nk8++aSt11Nf3mwHU4dRmmYVOhfzIOj5XlNUVHTec0tLSwkICAAg\nICCA0tJSb15Gg3mrHZoSO9pgxYoVDB8+3AvVNx5vtsOjjz7KNddcw6pVq/j1r3/txatoGG+1QWpq\nKm63m379+nn5ChqHN/8sJCUlERERwZQpU35w+KFZhc7FPgh6MalsjKn1/Vwul88/cNqY7dBUebsN\nFixYwCWXXMK9995br/Pt4s12WLBgAQcOHGDy5MnMmjWrzufbxRttcPLkSZ544gkef/zxep3vBG/9\nWYiPjycvL49PP/2Uzp07M2fOnAu+vllNmQ4KCqoxoJmfn4/b7b7gawoKCnC73Zw+ffqc40FBQYDV\nuykpKSEwMJDi4mI6derk5StpmMZsh9rObQq82QYrV65k/fr1bNq0yYtX0Djs+LNw7733+nSPzxtt\nkJuby759+4iIiPC8/vrrr2f79u0++/ngrT8LZ1/vL37xC0aOHHnhQho2NOVbTp8+bbp162by8vJM\neXn5Dw6UbdmyxTNQdqFz586d61nFYOHChT4/eOytdjgjKirKfPLJJ/ZcTD15qw02bNhgwsPDzcGD\nB+29oHryVjvs3bvXc35iYqK57777bLqiuvP23wdjTJOYSOCtdigqKvKcv3jxYjN+/PgL1tGsQscY\nY9avX2969OhhQkJCzBNPPGGMMea5554zzz33nOc1Dz/8sAkJCTH9+vWrMQurtnONMebQoUMmOjra\nhIaGmpiYGHP48GH7LqievNEO77zzjnG73aZt27YmICDADB061L4LqgdvtEH37t3NNddcY/r372/6\n9+9v4uPj7bugevJGO4wZM8b06dPHREREmNGjR5vS0lL7LqgevNEGZ7vuuut8PnSM8U47TJgwwfTt\n29f069fP3HHHHaakpOSCNejhUBERsU2zmkggIiK+TaEjIiK2UeiIiIhtFDoiImIbhY6IiNhGoSMi\nIrZR6IiIiG0UOiIiYhuFjogPyc7OJjIykgkTJnDw4EEAsrKy6N27N+vXr3e4OpGGa1YLfoo0deHh\n4YwYMYJrr72Wq6++GrBWB37zzTcJDw93uDqRhlNPR8THuN3uGiv67t69W4EjzYZCR8THuN1uz46k\nmzZtIjo62uGKRBqPQkfEx5zp6VRVVfHNN98QGBjodEkijUahI+JjzvR0UlNTGTVqlNPliDQqhY6I\nj2nfvj1lZWW0atWKyy67zOlyRBqVQkfEB/30pz9VL0eaJW3iJiIitlFPR0REbKPQERER2yh0RETE\nNgodERGxjUJHRERso9ARERHbKHRERMQ2Ch0REbHN/wfqctZlL8VHLAAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x5fd7eb0>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The time required to recover the filtrate is 264.61 s\n",
+ "The values slope of plot of t/v2 vs V is more accurate than book the code utilises built in function\n",
+ "for regression, which gives better results than from graphical slope and intercept estimates; Hence\n",
+ "time required to recover 3.37 m3 is different than given in book\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 14.2-3, Page number 813"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Rate of Washing and Total Filter Cycle time\n",
+ "#Variable declaration\n",
+ "Kp = 37.93 #Slope of the line multiplied by 2 (s/m6) \n",
+ "B = 16.10 #Determined Intercept from data plotted (s/m3)\n",
+ "Vf = 3.37 #Volume of the Flitrate (m3)\n",
+ "Vw = 0.337 #Volume of wash water (m3)\n",
+ "Tc = 20. #Filter cleaning time (min)\n",
+ "Tr = 269.7 #Filtrate recovry time (s)\n",
+ "#Calculation\n",
+ "#(dV/dt) = (1/4)*(1/(Kp*Vf + B))\n",
+ "R = (1./4.)*(1./((Kp*Vf) + B))\n",
+ "#Tw = (Volume of wash water)/(Rate of washing)\n",
+ "#Tw = Vw/(R)\n",
+ "Tw = Vw/(R)\n",
+ "#Total filtration cycle = Filtrate recovry time + Time of washing + Filter cleaning time\n",
+ "#Tt = Tr/60 + Tw/60 + Tc\n",
+ "Tt = Tr/60. + Tw/60. + 20.\n",
+ "#Result\n",
+ "print \"The time of washing is\",round(Tw,1),\"s\"\n",
+ "print \"The total filtration cycle is\",round(Tt,2),\"min\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The time of washing is 194.0 s\n",
+ "The total filtration cycle is 27.73 min\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 14.2-4, Page number 814 "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Filtration in a continuous Rotary drumn\n",
+ "#Variable declaration\n",
+ "Rho = 996.9 #Density of water (kg/m3)\n",
+ "Cx = 0.191 #Solids concentration in slurry (kg)\n",
+ "m = 2.\n",
+ "P = -67.e3 #Pressure drop in Filter (Pa)\n",
+ "M = 0.778 #Mass of slurry (kg)\n",
+ "tc = 250. #Filter cycle time (s)\n",
+ "mu = 0.8937e-3 #Viscosity of slurry (Pa.s)\n",
+ "f = 0.33 #Fraction of drum submerged\n",
+ "#Calculation\n",
+ "#Cs = (Rho*Cx)/(1-m*Cx)\n",
+ "Cs = (Rho*Cx)/(1-m*Cx)\n",
+ "alpha = (4.37e9)*(-P)**0.3\n",
+ "\n",
+ "R = M*Cx/Cs\n",
+ "\n",
+ "A = R*((tc*mu*alpha*Cs)/(2*f*(-P)))**0.5\n",
+ "#Result\n",
+ "\n",
+ "print \"The Filter Area needed to filter the slurry is \",round(A,2),\"m2\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The Filter Area needed to filter the slurry is 6.66 m2\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 14.3-1, Page number 818 "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Filtration in a continuous Rotary drumn\n",
+ "#Variable declaration\n",
+ "Dp = 2.0e-5 #Diameter of the oil droplet (m)\n",
+ "rhooil = 900. #Density of oil (kg/m3)\n",
+ "rhoair = 1.137 #Density of air (kg/m3)\n",
+ "muair = 1.9e-5 #Viscosity of air (Pa.s)\n",
+ "vt = 0.305 #Assumed terminal settling velocity (m/s)\n",
+ "\n",
+ "#Calculation\n",
+ "eR = 1.\n",
+ "i = 0\n",
+ "while eR>=0.00001:\n",
+ " i= i+1\n",
+ " Nre = Dp*vt*rhoair/muair\n",
+ " Cd = 24./Nre\n",
+ " vtnew = sqrt(4.*(rhooil-rhoair)*9.81*Dp/(3*Cd*rhoair))\n",
+ " eR = abs((vt-vtnew)/vt)\n",
+ " vt = vtnew\n",
+ "#Result\n",
+ "print 'Reynolds number %4.3f'%Nre\n",
+ "print \"The calculated terminal settling velocity is\",round(vt,4),\"m/s\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Reynolds number 0.012\n",
+ "The calculated terminal settling velocity is 0.0103 m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 14.3-2, Page number 820"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Hindered Settling of Spheres\n",
+ "\n",
+ "#Variable declaration\n",
+ "D = 1.554e-4 #Diameter of the glass sphere (m)\n",
+ "rhoglass = 2467. #Density of glass (kg/m3)\n",
+ "rhowater = 998. #Density of water (kg/m3)\n",
+ "muwater = 1.005e-3 #Viscosity of water (Pa.s)\n",
+ "P_w = 40. #Percentage of water in mixture \n",
+ "P_s = 60. #Percentage of solids in mixture \n",
+ "g = 9.807 #Gravitational acceleration (m/s2)\n",
+ "#Calculation\n",
+ "e = (P_w/rhowater)/(P_w/rhowater + P_s/rhoglass)\n",
+ "rho_m = e*rhowater + (1 - e)*rhoglass\n",
+ "fi = 1/10**(1.82*(1-e))\n",
+ "vt = (g*D**2*(rhoglass - rhowater)*e**2*fi)/(18.*muwater)\n",
+ "N_re = (D*vt*rho_m*fi)/(muwater*e)\n",
+ "#Result\n",
+ "print 'The terminal velocity of the glass ball is %6.3e'%(vt),\"m/s\"\n",
+ "print \"The Reynolds number is\",round(N_re,3)\n",
+ "if N_re <= 1.:\n",
+ " print 'Hence, the settling is in laminar range'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The terminal velocity of the glass ball is 1.530e-03 m/s\n",
+ "The Reynolds number is 0.121\n",
+ "Hence, the settling is in laminar range\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 14.3-3, Page number 824"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Separation of a Mixture of Silica and Galena\n",
+ "\n",
+ "#Variable declaration\n",
+ "Dpl = 5.21e-6 #Size of the smallest particle (m)\n",
+ "Dpb = 2.50e-5 #Size of the largest particle (m) \n",
+ "rhoA = 7500. #Density of Galena (kg/m3)\n",
+ "rhoB = 2650. #Densiy of Silica (kg/m3)\n",
+ "rhol = 998. #Density of Water (kg/m3)\n",
+ "mu = 1.005e-3 #Viscosity of Water (Pa.s)\n",
+ "g = 9.807 #Gravitational accelertion (m/s2)\n",
+ "#Calculation\n",
+ "vtA =g*Dpb**2*(rhoA-rhol)/(18*mu)\n",
+ "Nre = Dpb*vtA*rhol/mu\n",
+ "DpA3 = Dpb*((rhoB-rhol)/(rhoA-rhol))**0.5\n",
+ "DpB2 = Dpl/((rhoB-rhol)/(rhoA-rhol))**0.5\n",
+ "\n",
+ "print 'The size range for first fraction of pure A Galena is as follows:\\n%5.3e to %5.3e' %(DpA3,Dpb)\n",
+ "print 'The size range for first fraction of pure B Silica is as follows:\\n%5.3e to %5.3e' %(Dpl,DpB2)\n",
+ "print 'The mixed fraction ranges is as follows:\\n%5.3e to %5.3e and \\n%5.3e to %5.3e' %(DpB2,Dpb,Dpl,DpA3) "
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The size range for first fraction of pure A Galena is as follows:\n",
+ "1.260e-05 to 2.500e-05\n",
+ "The size range for first fraction of pure B Silica is as follows:\n",
+ "5.210e-06 to 1.034e-05\n",
+ "The mixed fraction ranges is as follows:\n",
+ "1.034e-05 to 2.500e-05 and \n",
+ "5.210e-06 to 1.260e-05\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 14.4-1, Page number 831"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Force in a centrifuge\n",
+ "\n",
+ "#Variable declaration\n",
+ "r1 = 0.1016 #Radius of the bowl in case A (m)\n",
+ "r2 = 0.2032 #Radius of the bowl in case B (m)\n",
+ "N = 1000. #Revolution per minute \n",
+ "g = 9.807 #Gravitational acceleration (m/s2)\n",
+ "\n",
+ "#Calculation\n",
+ "FcbyFg1 = r1*(2*pi*N/60)**2/g\n",
+ "FcbyFg2 = r2*(2*pi*N/60)**2/g\n",
+ "print \"Centrifugal force developed in case A:\", round(FcbyFg1,1),\"g's\"\n",
+ "print \"Centrifugal force developed in case B:\", round(FcbyFg2,1),\"g's\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Centrifugal force developed in case A: 113.6 g's\n",
+ "Centrifugal force developed in case B: 227.2 g's\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 14.4-2, Page number 833"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Settling in a centrifuge\n",
+ "\n",
+ "#Variable declaration\n",
+ "rhop = 1461. #Density of the viscous solution (kg/m3)\n",
+ "rhol = 801. #Density of the solution (kg/m3)\n",
+ "mu = 100e-3 #Viscosity of the solution (Pa.s)\n",
+ "r1 = 0.00716 #Inner radius of the bowl (m)\n",
+ "r2 = 0.02225 #Outer radius of the bowl (m)\n",
+ "b = 0.1970 #Height of the bowl (m)\n",
+ "N = 23000 #Revolutions per minute\n",
+ "qc = 0.002832 #Flowrate of the particles (m3/h)\n",
+ "\n",
+ "#Calculations\n",
+ "omegha = 2*pi*N/60\n",
+ "V = pi*b*(r2**2-r1**2)\n",
+ "qc = qc/3600\n",
+ "Dpc = sqrt(qc*18*mu*log(2*r2/(r1+r2))/(V*omegha**2*(rhop-rhol)))\n",
+ "vt = omegha**2*r2*Dpc**2*(rhop-rhol)/(18*mu)\n",
+ "Nre = Dpc*vt*rhol/mu\n",
+ "tT = V/qc\n",
+ "print \"The critical particle diameter of the largest particle in the exit stream is %5.3e m or %4.4f um\"%(Dpc,Dpc*1e6)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The critical particle diameter of the largest particle in the exit stream is 7.468e-07 m or 0.7468 um\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 14.4-3, Page number 836"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Location of interface in a centriguge\n",
+ "\n",
+ "#Variable declaration\n",
+ "rhooil = 919.5 #Density of oil phase (kg/m3)\n",
+ "rhoaqe = 980.1 #Density of aqueous phase (kg/m3)\n",
+ "r1 = 10.160 #Radius for the overflow Light liquid (mm)\n",
+ "bh = 10.414 #Radius for the overflow Heavy liquid (mm)\n",
+ "\n",
+ "#Calculations\n",
+ "r2 = sqrt((rhoaqe*bh**2-rhooil*r1**2)/(rhoaqe-rhooil))\n",
+ "\n",
+ "#Results\n",
+ "print \"Location of interface:\", round(r2,3),\"mm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Location of interface: 13.702 mm\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 14.5-1 Page No. 842"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Power to Crust Iron Ore by Bond's Theory\n",
+ "\n",
+ "#Variable Declaration\n",
+ "T = 10. #Feed Rate of Ore, ton/hr\n",
+ "Df = 3. #Size of Feed , in\n",
+ "Dp = 1./8 #Size of product, in \n",
+ "\n",
+ "#Calculations\n",
+ "Ei = 12.68 #Work index for Iron Ore\n",
+ "T = T/60\n",
+ "Dp = Dp/12\n",
+ "Df = Df/12\n",
+ "\n",
+ "P= 1.46*T*Ei*(1./sqrt(Dp) - 1./sqrt(Df))\n",
+ "\n",
+ "#Result\n",
+ "print 'Power required %3.1f hp'%(P)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Power required 24.1 hp\n"
+ ]
+ }
+ ],
+ "prompt_number": 19
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file |