diff options
author | hardythe1 | 2015-01-28 14:31:21 +0530 |
---|---|---|
committer | hardythe1 | 2015-01-28 14:31:21 +0530 |
commit | 53f72e6790ff23b43c8f6a0b69d6386940671429 (patch) | |
tree | 7745af6dbf2f5b2972b23f9f5a7a19c695a27321 /TRANSPORT_PROCESSES_AND_UNIT_OPERATIONS/GeankoplisChapter05.ipynb | |
parent | 7b78be04fe05bf240417e22f74b3fc22e7a77d19 (diff) | |
download | Python-Textbook-Companions-53f72e6790ff23b43c8f6a0b69d6386940671429.tar.gz Python-Textbook-Companions-53f72e6790ff23b43c8f6a0b69d6386940671429.tar.bz2 Python-Textbook-Companions-53f72e6790ff23b43c8f6a0b69d6386940671429.zip |
added books
Diffstat (limited to 'TRANSPORT_PROCESSES_AND_UNIT_OPERATIONS/GeankoplisChapter05.ipynb')
-rwxr-xr-x | TRANSPORT_PROCESSES_AND_UNIT_OPERATIONS/GeankoplisChapter05.ipynb | 895 |
1 files changed, 895 insertions, 0 deletions
diff --git a/TRANSPORT_PROCESSES_AND_UNIT_OPERATIONS/GeankoplisChapter05.ipynb b/TRANSPORT_PROCESSES_AND_UNIT_OPERATIONS/GeankoplisChapter05.ipynb new file mode 100755 index 00000000..163b766b --- /dev/null +++ b/TRANSPORT_PROCESSES_AND_UNIT_OPERATIONS/GeankoplisChapter05.ipynb @@ -0,0 +1,895 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:2e72bac4245ea0d7ffb20474fbd7477dd537a5d43e72a324996bb189620d2ad0"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 5: Principles of Unsteady-State Heat Transfer"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.2-1, Page number 333"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Cooling of a Steel Ball\n",
+ "from math import pi, exp\n",
+ "\n",
+ "\n",
+ "#Variable declaration #English Units\n",
+ "r = 1./12 #Radius of a Steel Ball, ft\n",
+ "Tbi = 800. #Initial uniform temperature of the steel ball, \u00b0F\n",
+ "Tinf = 250. #Temeperature of a constant temperature bath, \u00b0F\n",
+ "h = 2.0 #Convective Heat Transfer Coefficient, Btu/(h.ft2\u00b0F)\n",
+ "t = 1. #Time at which temperature of the ball is to be determined, s\n",
+ "k = 25. #Thermal conductivity of the steel ball, Btu/(h.ft\u00b0F)\n",
+ "rho = 490. #Density of a steel ball, lbm/ft3\n",
+ "cp = 0.11 #Specific heat of steel ball, Btu/(lbm.\u00b0F)\n",
+ "\n",
+ "#Calculation\n",
+ "\n",
+ "x1 = r/3\n",
+ "NBi = h*x1/k\n",
+ "A = 4*pi*r**2\n",
+ "V = 4*pi*r**3/3.\n",
+ "tau = h*A/(cp*rho*V)\n",
+ "Tb = Tinf + (Tbi - Tinf)*exp(-tau*t)\n",
+ "#Result\n",
+ "print \"Temperature of ball after one hour: \", round(Tb),\"\u00b0F\"\n",
+ "\n",
+ "\n",
+ "#Variable declaration # SI Units\n",
+ "\n",
+ "r = 0.0254 #Radius of a Steel Ball, m\n",
+ "Tbi = 699.9 #Initial uniform temperature of the steel ball, K\n",
+ "Tinf = 394.3 #TEmeperature of a constant temperature bath, K\n",
+ "h = 11.36 #Convective Heat Transfer Coefficient, W/(m2K)\n",
+ "t = 3600. #Time at which temperature of the ball is to be determined, s\n",
+ "k = 43.3 #Thermal conductivity of the steel ball, W/(mK)\n",
+ "rho = 7849. #Density of a steel ball, kg/m3\n",
+ "cp = 460.6 #Specific heat of steel ball, J/(kg.K)\n",
+ "\n",
+ "#Calculation\n",
+ "\n",
+ "x1 = r/3\n",
+ "NBi = h*x1/k\n",
+ "A = 4*pi*r**2\n",
+ "V = 4*pi*r**3/3.\n",
+ "tau = h*A/(cp*rho*V)\n",
+ "Tb = Tinf + (Tbi - Tinf)*exp(-tau*t)\n",
+ "#Result\n",
+ "print \"Temperature of ball after one hour: \", round(Tb,1),\"\u00b0C\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Temperature of ball after one hour: 395.0 \u00b0F\n",
+ "Temperature of ball after one hour: 474.6 \u00b0C\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.2-2, Page Number 334"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Total amount of heat in cooling\n",
+ "from math import pi \n",
+ "\n",
+ "#Variable declaration\n",
+ "r = 0.0254 #Radius of a Steel Ball, m\n",
+ "Tbi = 699.9 #Initial uniform temperature of the steel ball, K\n",
+ "Tinf = 394.3 #TEmeperature of a constant temperature bath, K\n",
+ "h = 11.36 #Convective Heat Transfer Coefficient, W/(m2K)\n",
+ "t = 3600. #Time at which temperature of the ball is to be determined, s\n",
+ "k = 43.3 #Thermal conductivity of the steel ball, W/(mK)\n",
+ "rho = 7849. #Density of a steel ball, kg/m3\n",
+ "cp = 460.6 #Specific heat of steel ball, J/(kg.K)\n",
+ "\n",
+ "#Calculation\n",
+ "\n",
+ "x1 = r/3\n",
+ "NBi = h*x1/k\n",
+ "A = 4*pi*r**2\n",
+ "V = 4*pi*r**3/3.\n",
+ "tau = cp*rho*V/(h*A)\n",
+ "Q = cp*rho*V*(Tbi-Tinf)*(1-exp(-t/tau))\n",
+ "#Result\n",
+ "\n",
+ "print 'Amount of Heat Transffered %6.4e'%(Q),\"J\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Amount of Heat Transffered 5.5901e+04 J\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.3-1, Page number 336"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Freezing Temperature in the ground\n",
+ "from math import pi, erfc, exp\n",
+ "\n",
+ "# Variable declaration\n",
+ "Ti = 15.6 #Earths constant temperature, degC\n",
+ "Tc = -17.8 #Cold wave temperature, deg C\n",
+ "h = 11.36 #Convective heat transfer coefficient, W/(m2K)\n",
+ "alpha = 4.65e-7 #THermal diffusivity of soil, m2/s\n",
+ "k = 0.865 #Thermal conductivity of soil, W/(mK)\n",
+ "t = 5*3600 #Time in seconds\n",
+ "x = 0. #Surface position , m\n",
+ "T0 = 0. #Freezing temperature for water\n",
+ "\n",
+ "# Calculation SI units\n",
+ "absc = x/(2*sqrt(alpha*t))\n",
+ "param = h*sqrt(alpha*t)/k\n",
+ "corr = erfc(absc) - exp(param*(2*absc+param))*erfc(absc+param)\n",
+ "T = Ti + (Tc - Ti)*(erfc(absc) - exp(param*(2*absc+param))*erfc(absc+param))\n",
+ "\n",
+ "ordi = (T0-Ti)/(Tc-Ti)\n",
+ "abscOrd = .16\n",
+ "x0 = 2*sqrt(alpha*t)*abscOrd\n",
+ "\n",
+ "#Results\n",
+ "print \"(a) Temperature of the surface after 5 hour:\", round(T,1), \"\u00b0C\"\n",
+ "print \"(b) Location of Freezing Temperature after 5 hour:\",round(x0,4),\"m\"\n",
+ "\n",
+ "\n",
+ "# Variable declaration English units\n",
+ "Ti = 60. #Earths constant temperature, degF\n",
+ "Tc = -0. #Cold wave temperature, deg F\n",
+ "h = 2. #Convective heat transfer coefficient, Btu/(ft2Fhr)\n",
+ "alpha = 0.018 #THermal diffusivity of soil, ft2/hr\n",
+ "k = 0.5 #Thermal conductivity of soil, Btu/(ft F)\n",
+ "t = 5 #Time in hr\n",
+ "x = 0. #Surface position , ft\n",
+ "T0 = 32. #Freezing temperature for water\n",
+ "\n",
+ "# Calculation SI units\n",
+ "absc = x/(2*sqrt(alpha*t))\n",
+ "param = h*sqrt(alpha*t)/k\n",
+ "corr = erfc(absc) - exp(param*(2*absc+param))*erfc(absc+param)\n",
+ "T = Ti + (Tc - Ti)*(erfc(absc) - exp(param*(2*absc+param))*erfc(absc+param))\n",
+ "\n",
+ "ordi = (T0-Ti)/(Tc-Ti)\n",
+ "abscOrd = .16\n",
+ "x0 = 2*sqrt(alpha*t)*abscOrd\n",
+ "\n",
+ "#Result\n",
+ "print \"(a) Temperature of the surface after 5 hour:\", round(T,1), \"\u00b0F\"\n",
+ "print \"(b) Location of Freezing Temperature after 5 hour:\",round(x0,4),\"ft\"\n",
+ "print 'The answers are different than book, because of book uses rounded numbers and rounded values of \\ncomplimentary error function whereas code used built in erfc function'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(a) Temperature of the surface after 5 hour: -5.2 \u00b0C\n",
+ "(b) Location of Freezing Temperature after 5 hour: 0.0293 m\n",
+ "(a) Temperature of the surface after 5 hour: 22.7 \u00b0F\n",
+ "(b) Location of Freezing Temperature after 5 hour: 0.096 ft\n",
+ "The answers are different than book, because of book uses rounded numbers and rounded values of \n",
+ "complimentary error function whereas code used built in erfc function\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.3-2, Page number 338"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Heat Conduction in the slab\n",
+ "\n",
+ "# Variable declaration\n",
+ "x1 = .0462 #Thickness of the slab, m\n",
+ "T0 = 277.6 #Uniform temperature of the slab, K\n",
+ "T1 = 297.1 #Ambient temperature of the fluid, K\n",
+ "h = 8.52 #Convective heat transfer coefficient, W/m2.K\n",
+ "t = 5*3600 #Time, s\n",
+ "rho = 998. #Density of H2O at 4 deg C (kg/m3)\n",
+ "k = 0.197 #Thermal conductivity of butter, W/m.K\n",
+ "cp = 2300 #Specific heat of butter, J/kg.K\n",
+ "\n",
+ " \n",
+ "# Calculation\n",
+ "alpha = k/(rho*cp) #Thermal diffusivity, m2/s\n",
+ "\n",
+ "#PART A Calculation of temperature at the surface\n",
+ "param = k/(h*x2)\n",
+ "X = alpha*t/x2**2\n",
+ "x = 0.0462 #Distance from surface at which temperature needs to be calculated, m\n",
+ "n = x/x2\n",
+ "Y = 0.25 #From fig 5.3-5 \n",
+ "T = T1 - Y*(T1-T0)\n",
+ "\n",
+ "#Result\n",
+ "\n",
+ "print \"Answers to part A\"\n",
+ "print \"Paramenter m for fig 5.3-5:\", round(param,3)\n",
+ "print \"Abscisa X for fig 5.3-2:\", round(X,3) \n",
+ "print \"Parameter n for fig 5.3-2:\", round(n,3)\n",
+ "print \"Temeprature of the surface at .0462 m after 5 hour\", round(T,1), \"K\", round(T-273.2,1), \"\u00b0C\"\n",
+ "\n",
+ "#PART B Calculation of temperature at 25.4 mm below the surface \n",
+ "param = k/(h*x2)\n",
+ "X = alpha*t/x2**2\n",
+ "x = 0.0208 #Distance from surface at which temperature needs to be calculated, m\n",
+ "n = x/x2\n",
+ "Y = 0.45 #From fig 5.3-5 \n",
+ "T = T1 - Y*(T1-T0)\n",
+ "\n",
+ "#Result\n",
+ "\n",
+ "print \"Answers to part B\"\n",
+ "print \"Paramenter m for fig 5.3-5:\", round(param,3)\n",
+ "print \"Abscisa X for fig 5.3-2:\", round(X,3) \n",
+ "print \"Parameter n for fig 5.3-2:\", round(n,3)\n",
+ "print \"Temeprature of the surface at .0208 m after 5 hour\", round(T,1), \"K\", round(T-273.2,1), \"\u00b0C\"\n",
+ "\n",
+ "#PART C Calculation of temperature at 46.2 mm below the surface\n",
+ "param = k/(h*x1)\n",
+ "X = alpha*t/x1**2\n",
+ "n = x/x1\n",
+ "Y = 0.5 #From fig 5.3-5 \n",
+ "T = T1 - Y*(T1-T0)\n",
+ "\n",
+ "#Result\n",
+ "print \"Answers to part B\"\n",
+ "print \"Paramenter m for fig 5.3-5:\", round(param,2)\n",
+ "print \"Abscisa X for fig 5.3-2:\", round(X,2) \n",
+ "print \"Parameter n for fig 5.3-2:\", round(n,1)\n",
+ "print \"Temeprature of the surface at .0462 m after 5 hour\", round(T,1), \"K\", round(T-273.2,1), \"\u00b0C\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Answers to part A\n",
+ "Paramenter m for fig 5.3-5: 0.5\n",
+ "Abscisa X for fig 5.3-2: 0.724\n",
+ "Parameter n for fig 5.3-2: 1.0\n",
+ "Temeprature of the surface at .0462 m after 5 hour 292.2 K 19.0 \u00b0C\n",
+ "Answers to part B\n",
+ "Paramenter m for fig 5.3-5: 0.5\n",
+ "Abscisa X for fig 5.3-2: 0.724\n",
+ "Parameter n for fig 5.3-2: 0.45\n",
+ "Temeprature of the surface at .0208 m after 5 hour 288.3 K 15.1 \u00b0C\n",
+ "Answers to part B\n",
+ "Paramenter m for fig 5.3-5: 0.5\n",
+ "Abscisa X for fig 5.3-2: 0.72\n",
+ "Parameter n for fig 5.3-2: 0.5\n",
+ "Temeprature of the surface at .0462 m after 5 hour 287.4 K 14.2 \u00b0C\n"
+ ]
+ }
+ ],
+ "prompt_number": 21
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.3-3, Page number 342"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Transient Heat Conduction in a Can of Pea Puree\n",
+ "\n",
+ "# Variable declaration\n",
+ "D = 0.0681 #Diameter of a Can, m\n",
+ "T0 = 29.4 #Uniform temperature of the slab, deg C\n",
+ "T1 = 115.6 #Ambient temperature of the steam, deg C\n",
+ "h = 4540 #Convective heat transfer coefficient, W/m2.K\n",
+ "t = 0.75*3600 #Time, s\n",
+ "x = 0.0 #Centre of the Can, m\n",
+ "k = 0.830 #Thermal conductivity of butter, W/m.K\n",
+ "alpha = 2.007e-7 #THermal diffusivity, m2/s\n",
+ " \n",
+ "# Calculation\n",
+ "x1 = D/2.\n",
+ "n = x/x1\n",
+ "param = k/(h*x1)\n",
+ "X = alpha*t/x1**2\n",
+ "Y = 0.13 #From fig 5.3-8\n",
+ "T = T1 - Y*(T1-T0)\n",
+ " \n",
+ "#Result\n",
+ "print \"Paramenter m for fig 5.3-8:\", round(param,5)\n",
+ "print \"Abscisa X for fig 5.3-8:\", round(X,3) \n",
+ "print \"Parameter n for fig 5.3-8:\", n\n",
+ "print \"Temeprature at the centre after 0.75 hour\", round(T,1),\"\u00b0C \""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Paramenter m for fig 5.3-8: 0.00537\n",
+ "Abscisa X for fig 5.3-8: 0.467\n",
+ "Parameter n for fig 5.3-8: 0.0\n",
+ "Temeprature at the centre after 0.75 hour 104.4 \u00b0C \n"
+ ]
+ }
+ ],
+ "prompt_number": 22
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.3-4, Page number 347"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Two-Dimensional Conduction in a Short Cylinder \n",
+ "\n",
+ "# Variable declaration\n",
+ "\n",
+ "D = 0.0681 #Diameter of a Can, m\n",
+ "H = 0.1016 #Height of a Can, m\n",
+ "T0 = 29.4 #Uniform temperature of the slab, deg C\n",
+ "T1 = 115.6 #Ambient temperature of the steam, deg C\n",
+ "h = 4540 #Convective heat transfer coefficient, W/m2.K\n",
+ "t = 0.75*3600 #Time, s\n",
+ "x = 0.0 #Centre of the Can in radial direction, m\n",
+ "y = 0.0 #Centre of the Can in axial direction, m\n",
+ "k = 0.830 #Thermal conductivity of butter, W/m.K\n",
+ "alpha = 2.007e-7 #THermal diffusivity, m2/s\n",
+ "\n",
+ "# Calculation\n",
+ "\n",
+ "x1 = D/2.\n",
+ "y1 = H/2.\n",
+ "\n",
+ "#Radial direction\n",
+ "n = x/x1\n",
+ "m = k/(h*x1)\n",
+ "X = alpha*t/x1**2\n",
+ "Yx = 0.13 #From fig 5.3-8\n",
+ "\n",
+ "print \"Prameters for Radial Direction\"\n",
+ "print \"Paramenter m for fig 5.3-8:\", round(m,5)\n",
+ "print \"Abscisa X for fig 5.3-8:\", round(X,4) \n",
+ "print \"Parameter n for fig 5.3-8:\", n\n",
+ "print \"Parameter Yx from figure 5.3-8:\", round(Yx,3)\n",
+ "\n",
+ "#Axial Direction\n",
+ "n = y/y1\n",
+ "m = k/(h*y1)\n",
+ "X = alpha*t/y1**2\n",
+ "Yy = 0.8 #From Fig 5.3.6\n",
+ "\n",
+ "print \"\\nPrameters for Axial Direction\"\n",
+ "print \"Paramenter m for fig 5.3-8:\", round(m,5)\n",
+ "print \"Abscisa X for fig 5.3-8:\", round(X,4) \n",
+ "print \"Parameter n for fig 5.3-8:\", n\n",
+ "print \"Parameter Yy from figure 5.3-8:\", round(Yy,3)\n",
+ "Yxy = Yx*Yy\n",
+ "Txy = T1 - Yxy*(T1-T0)\n",
+ "#Result\n",
+ "\n",
+ "print \"\\nThe Temperature at the Centre of short cylinder:\", round(Txy,1), \"\u00b0C\" "
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Prameters for Radial Direction\n",
+ "Paramenter m for fig 5.3-8: 0.00537\n",
+ "Abscisa X for fig 5.3-8: 0.4674\n",
+ "Parameter n for fig 5.3-8: 0.0\n",
+ "Parameter Yx from figure 5.3-8: 0.13\n",
+ "\n",
+ "Prameters for Axial Direction\n",
+ "Paramenter m for fig 5.3-8: 0.0036\n",
+ "Abscisa X for fig 5.3-8: 0.21\n",
+ "Parameter n for fig 5.3-8: 0.0\n",
+ "Parameter Yy from figure 5.3-8: 0.8\n",
+ "\n",
+ "The Temperature at the Centre of short cylinder: 106.6 \u00b0C\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.4-1, Page number 353"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Unsteady State Conduction and the Schmidt Numerical Method\n",
+ "import matplotlib.pyplot as plt\n",
+ "import copy \n",
+ "\n",
+ "#Variable declaration\n",
+ "thk = 1.0 #Thickness of slab, m\n",
+ "Ti = 100. #Initial uniform temperature of slab, \u00b0C\n",
+ "Ta = 0. #Constant Temperature of environment, \u00b0C\n",
+ "alpha = 2.0e-5 #Thermal diffusivity of slab, m2/s\n",
+ "ns = 5 #Number of slices\n",
+ "M = 2.0 #M for Schmidt numerical method\n",
+ "tmax = 6000 #Time at which temperature of the slab at various location to be calculated, s\n",
+ "#Calculation and Result\n",
+ "\n",
+ "dx = thk/ns\n",
+ "x = [0,.2,.4,.6,.8,1.]\n",
+ "dt = dx**2/(alpha*M)\n",
+ "ylim(-1.,110.)\n",
+ "xlim(0,1.1)\n",
+ "#m = tmax/dt\n",
+ "t=0\n",
+ "T = [Ti,Ti,Ti,Ti,Ti,Ti]\n",
+ "plt.plot(x,T,'ko-',label='Initial Temperature Profile')\n",
+ "T[0] = Ta\n",
+ "Tcal = [0,0,0,0,0,0]\n",
+ "for i in range(1,7,1):\n",
+ " t = int(dt*i)\n",
+ " for j in range(len(T)):\n",
+ " if j==0:\n",
+ " Tcal[j]= Ta\n",
+ " #print Tcal[j]\n",
+ " elif j>=1 and j<(len(T)-1):\n",
+ " Tcal[j]=(T[j-1]+T[j+1])/2.\n",
+ " #print T[j-1], T[j+1],Tcal[j]\n",
+ " else:\n",
+ " Tcal[j]=((M-2)*T[j]+2*T[j-1])/M\n",
+ " #print Tcal[j]\n",
+ " T = copy.copy(Tcal)\n",
+ " plt.plot(x,T, 'o-',label=str(i)+'th iteration Temp. Profile.')\n",
+ "print \"At 6000s\"\n",
+ "for i in range(1,7,1):\n",
+ " print \"Temperature of the node\",i,\"is\", round(T[i-1],2),\"\u00b0C\"\n",
+ "plt.xlabel('Node number')\n",
+ "plt.ylabel('Temperature, degC')\n",
+ "plt.legend(loc='lower right',fontsize='small' )\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "At 6000s\n",
+ "Temperature of the node 1 is 0.0 \u00b0C\n",
+ "Temperature of the node 2 is 31.25 \u00b0C\n",
+ "Temperature of the node 3 is 54.69 \u00b0C\n",
+ "Temperature of the node 4 is 78.13 \u00b0C\n",
+ "Temperature of the node 5 is 85.94 \u00b0C\n",
+ "Temperature of the node 6 is 93.75 \u00b0C\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "pyout",
+ "prompt_number": 7,
+ "text": [
+ "<matplotlib.legend.Legend at 0x8a65e30>"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEKCAYAAAD0Luk/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXdYVEcXh39LUbog0iwIonQUQeyRYpDEgl2ssWs0dk00\nGhOMDdTYI7YofnaNsWEsUUDF3pWuSJPeWfqW+f64uIIssGxhQeZ9nn2EuVPOXS9z5p45cw6LEEJA\noVAolCaJgrwFoFAoFIr8oEqAQqFQmjBUCVAoFEoThioBCoVCacJQJUChUChNGKoEKBQKpQmjJG8B\n6oK9vT1evXolbzEoFAqlUeHs7Izg4GCh1xrVm8CrV69ACGlSn99++03uMtB7pvdM77lx3/Pt27er\nnVcblRKgUCgUinShSoBCoVCaMFQJNHBcXFzkLUK9Q++5aUDvuWHAIoQ0mthBLBYLjUhcCoVCaRDU\nNHfSNwEKhUJpwlAlQKFQKE0YqgQoFAqlCUOVAIVCoTRhqBKgUCiUJgxVAhQKhdKEoUqAQqFQmjBU\nCVAoFEoThioBCoVCacLITAlMmzYNBgYGsLOzE5RlZ2fD3d0d5ubmGDBgAHJzcwXXNm7ciE6dOsHS\n0hI3btyQlVgUCoVCqYDMlMDUqVNx7dq1SmU+Pj5wd3dHdHQ0+vfvDx8fHwBAeHg4Tp8+jfDwcFy7\ndg1z584Fn8+XlWgUCoVCKUdmSuCrr76Cjo5OpbJLly5h8uTJAIDJkyfjwoULAICLFy9i3LhxUFZW\nhomJCTp27IjHjx8L7dfDwwNXrlyRldgNhitXrsDDwwMuLi5N5p69vbegVatvoK09DK1afQNv7y3y\nFknmjJ86DcomraDUsRWUTVph/NRp8hZJ5gz+2h3dVZXhqqqM7qrKGPy1u7xFkjlOvXqjhbUVtB26\nooW1FZx69Za3SALqNbNYWloaDAwMAAAGBgZIS0sDACQnJ6Nnz56Cem3btkVSUpLQPm7cuIGYmBgA\nwKBBg2QssXy4cuUKFi5cKLhPAF/8PXt7b8H69S/B5X56e1y/fiKALfD2XiY/wWTI+KnTcPLJWWBq\ngaDs5NmzwFTgxOFDcpRMdgz+2h3qd27hMedTMDOvO7cw+Gt3BNz8T46SyQ6nXr0RodochRv9BGUR\nv6+BU6/eePLgvhwlY5BbekkWiwUWi1Xj9eqIiYnBrl27vtgJcefOnZUUAPDl3/Pu3TcrKQAA4HKP\nYd26JfhSX4KeptwCZhZULhxdgJP/HsfFxW/kI5SMsX7yFE84lctOcwgWBN3EM0N1+QglIwiA1FZ6\niNUyQuGvv1W6Vvjrb4ieO0c+gn1GvSoBAwMDpKamwtDQECkpKdDX1wcAtGnTBomJiYJ6Hz58QJs2\nbWrs6/r16zUqii+RL/uenYWW8nhv8fSpUz3LUk+YsIWX56qg6Exh/coiYzT5PEwszoN6vvDrsUoK\n+J6nX79CSRlOCy0UmpmisKMpCs1MUWRmAhAC/M9faH2WiorMZAkODq42p/Dn1KsS8PT0xJEjR7B8\n+XIcOXIEw4YNE5SPHz8eS5YsQVJSEt6+fYvu3bvX2JeHh0eVjecvBQ8PD6EeUl/yPbdq9Q2ysqqW\n6+pykZn5pP4FkjHJ7GS0cTcWek2pVBmcpPB6lkhGvH4N+PkBp08D7v3xzaXzQBmvSrU0BQU8yYiV\ng4Dikcvh4CmbjadsNp6Uf9g8HrppasKpwqdN8+bQXrkCwnQfKSmRmXwuLi6VEtisWbOm2roy2xge\nN24cevfujaioKLRr1w6HDx/GihUr8N9//8Hc3ByBgYFYsWIFAMDa2hpjxoyBtbU1vv32W+zZs6fG\nFa+ZmRnmz58vK9HlzoIFC2BmZlap7Eu/5wkTBgFYUalMSWkC5s3rLx+BZMiTpCfocbAHOlvZA2c1\nKl88q4HRrp7yEUxalJYCJ04AffsCAwcCRkZAaChw9iyUvnKFl3Llv+0xyizo93GRj6wiUMTj4V5e\nHrYnJmJCeDjMHz1C2wcPsCY+HukcDkbp6SGwSxdk9+mD/7p0wYYOHTBcTw9tVVTAYrFg3kIH6r9X\nnoTV16yBeQudakasXxpdZjEPDw/Mnz//i7WNf+TKlSvYtWsXSkpKoKKi8sXf87BhQF7eCbx5cxRc\nbnMoKZVi3rz+X9ym8Mk3J7Hw2kIcGHIAQy2HYvzUaTgbdAlECWBxgdGuno13UzguDti/H/jrL6Bz\nZ2DuXGDIEECpssFh8NfuSL8XDHUAhQD0+7g0mE3hMj4fbwoL8SQ/X7DCf1dcDBt1dcHqvpumJqzU\n1KCkIPoa2qlXb0Tn5YClogJSUgLzFjr1uilcU2axRqcEGpG4FBG5cgVYvBh48wZo3lze0sgGPuFj\ndeBqnAw9iYtjL8LOwK72Ro0BPh+4fh3Yswd48ACYNAn4/nvAwkLektUKjxBEFhUJJvynbDZCCwvR\nQVVVMNk7aWqis4YGmtdhwm+I1DR3ys07iEIBgOJiYP58YO/eL1cBsEvZmHR+ErKLs/FoxiPoqevJ\nWyTJycwEDh1i/uNatmRW/adPA2pq8pZMKIQQvC8pwZP8fIEd/3lBAQyUleGkpQUnTU2M1ddHVw0N\naCg1rWmxad0tpcHh4wM4OgIDBshbEtkQlxsHz5Oe6NGmB86MPoNmis3kLZL4EAI8esSs+i9fZmx4\np08DTg3PeyuptJSZ7Cus8lUVFAQT/i/t28NRUxMtlZXlLarcoeYgitx49w7o2RN4+RJo21be0kif\nO/F34PW3F37u+zPmd5/feN17CwuZjd49e4CCAmDOHGDKFOYNoAGQVe6pU9GOX8bnCyb8j2Ydoy/1\nVVME6J4ApcFBCOM44uYG/PijvKWRPgefH8SqwFU4NvwY3M0aaViEiAjGvfP4ceCrrxiTz9dfA3K0\nj7O5XDwvKKi0ws/gcOCgoSGY9J00NWFS7plDYaB7ApQGx/nzQEICsGiRvCWRLlw+F8tuLMPVd1dx\nd+pdmOuay1ukusHhABcvMqv+iAhgxgzmVa1dO6kN4bthOy7t/RfKPGVwFDnw/H4glq+s+iCU8Hh4\nVVhYaZUfV1ICO3V1OGlpYZCuLrxNTGChpgaFBj7hb/fdgH8v7YWyMg8cjiIGen6PRctXylssAFQJ\nUORAYSHjDXTkCPAlmWRzinPg9bcXFFgKeDTjEbRVtOUtkuh8+AAcOMB8zM2ZVf+wYUAz6e5h+G7Y\njls+QVjP/jQBbvDZBj6fj0GLZjHmnPIJP6KoCOaqqnDS0kLvFi2wsG1b2Kiro1kj89TZ7rsBQbd8\nsHL9pxPi2zYwEZQbgiKg5iBKvbNiBTPnHDsmb0mkR1RmFDxPeWJgx4HYPGAzlBQawfqKzwcCA5lV\nf3AwMGEC495pYyOzIfsYD8D6xKoT3zJdH+j5/AprdXVYqqnBSk0dnVRVoaLYuCZ8YYxaZIdVvolV\nyjeuMsb1e/H1IgM1B1EaDBERzFmiN19QfLQbMTcw6fwkbOy/EdO6NoJQ0Dk5gL8/496posKs+v/3\nP0BDo9amdYUQgsTSUsEKn1sifMrpmK+Ln/5SAcADwAbAhvA4wo0Hvk4SuGZP0NIoXeh1JWVuPUsk\nHKoEKPUGIcAPPwCrVwOGhvKWRnIIIdj5aCd87vng3Jhz6GvcV94i1cyzZ8yq/59/gEGDgMOHgV69\nACna0zPKygQeOh/NOgDQl6jD8xRBfKZwE1miUSYcHjhITQ55UFqajNzcIOTkBCI3NxB8fgm0td1Q\nvEQNQGmV+lxOw5h+G4YUlCbBqVPMInTuXHlLIjllvDLMvTIXT5Kf4OH0h2iv3V7eIgmnuJjx5d+z\nB8jIYMw90dGAnuQH1vK4XDz7bMLP43IZl0wtLUw1MsJuIzNgXwaSdiRB11MXaUu7Y8O+bVjJXizo\nZ73mVnjO/lZieeobDicLubnBgkm/rCwN2tou0NZ2Q7t2S6GmZgUWiwU31w3YtsEHi1d+2hPYul4T\n33rOlqP0n6B7ApR6IT8fsLIC/v6bWXw2ZtIL0zHyzEi0UmuFo8OPQqOZ9M0oEvP2LWPu+d//gO7d\nGc37zTeAoqJY3RXzeHhRUCBwy3ySn48PpaWw19AQTPpOmproqKoKBRYLvGIekvckI2FTAnS+1oHJ\nbyZQM2dOE/tu2I5L+65CmasEjhIXnrO/Feod1NDgctnIy7srmPSLi9+hRYu+0NZ2g46OGzQ0uoDF\nEv79bvfdgKuX9kFJmQsuRwnfes6u101hek6AIncWL2YUwV9/yVsSyXid9hpDTw3FRLuJWOO6Bgqs\nBrRxyeUCAQGMb/+LF8C0acDs2YCpaZ264fD5CC0srGTWiS4uhpWaGuOHXz7hWwsJosYv5SPlYAri\nN8RDq4cWTH43gYZtA1SSIsDjFSM//4Fg0i8oeA0tre6CSV9T0wkKCo3DvY0qAYpcef2aOWMUFiYV\nK4TcuBB5AbMuz8LOb3dirO1YeYvzidRU4OBBYN8+wNiYWfWPGiVSMCY+IYgqKqo04b8pLISJikql\nCb+zujpUaniL4HP5SDuShrjf46Buow7TtabQdNSU5l3KHD6fAzb7iWDSz89/DA0NO2hr94eOjhu0\ntHpBUVFV3mKKBVUCFLnB5wP9+jHBJWc3DBNonSGEYMPdDdj7bC/Oe51Ht9bd5C0Ss8t+5w5j679x\nA/DyYsI5dOlSQxOCuJKSTyYdNhvP2Wy0Ulb+FF5BSwsOGhrQFDGIGuERpJ9OR9xvcWjetjlM15mi\nRZ8W0rpLmUIIDwUFrwSTfl5eCFRVzQQr/RYtvoKSkpa8xZQKVAlQ5Ia//6cow2Kao+VKMacY0y5N\nw/uc9zjvdR6tNVvLV6D8fODoUeZLJYRZ9U+aBLSoOvGmfnTNLP88ZbOhzGJ9ynylpYVumprQFePE\nHiEEmeczEftrLJQ0lWC63hQ6bg0jSUp1EEJQVBQhmPRzc4PRrJmBYNLX1naBsrKuvMWUCVQJUORC\nTg6zGRwQAHRrAIvnupKUn4Rhp4fBQtcCB4YcgKqyHE0Br14xtv4zZwB3d2by79dP4N6Z8zGIWoUJ\nv6hiusNys05rCYOoEUKQfTUbsatjAQKYrjNFy29bNtg4PcXFscjNDRRM/CxWc+jo9C+f9F3RvLmc\nlXo9QZUARS58dAXds0e+cojD46THGHF6BOZ1n4flfZbLZ5IrLWXcqfz8gPh4xp42fToK9fXx/LP8\ntqllZUwQtQor/A5SDqKWE5iD2F9iwc3jwvR3U7Qa3goshYY1+Vfnq89M+m5QVa3bJvmXAlUClHrn\n6VMms2B4OKDTsK0EVTjx5gQWXVuEvzz/whCLITIdy9fXF/suXQJfWRkKHA5me3piuZcXs8l76BDK\nHBzweu5cPLG3x5Nyj533xcWwVVevtMq3VFODoowUVd79PMSujkVJfAlM15hCf6w+WIoNY/Kv6quf\nDm1tF8Gkr6Zm2WDfUuoTqgQo9QqPx5wFmDuXCTvfWOATPlbdWoXTYadxadwl2OrbynQ8X19f+Ny6\nhdyVn/zFNTduhAeHA73vvsPTTp0QxuPBrDzd4ccJ366egqixn7MRuzoWhaGFMPnVBAbfGUBBWb4u\nsVxu/me++jEi++o3ZagSoNQr+/Yxe5d37sg19HydYJeyMfH8ROSV5OHvMX+jlVormY/ZoU8fxK5f\nX6VcfccOrNu5E05aWrDX0IB6Pe+oF4QWIO63OOQ/yEf7Ve1hNMMICs3l8x/5JfnqyxMaQI5Sb2Rk\nMLGBbt5sPAogNicWnqc80bttb5wdfVb2KSAJAR48AI/DEXq5VU4OFkkxfr+oFL0tQpx3HHJu5qDd\nj+1gddQKimrSV0CBgVdw4cJOsFilIKQ5hg1bADe3QQCq89XvDG1tN5iarmvUvvoNFaoEKFJlxQom\nInHnzvKWRDRux93G2HNjseqrVfjB6QfZ2o8LCgRpGgt4PGR26CC0mmI1ykFWlMSXIG5tHDIvZKLt\norYw32sOJU3ZTA2BgVdw8uRCTJgQIyg7ejQcGRnusLJKreCr3x/t2i0r99VvXIfOGhtUCVCkxv37\nwLVrTLjoxsD+Z/uxOmg1jo84jq87fC27gcLDGQ+fEycAZ2fEbdmCoS1awPrOHbzbuBG5P/8sqKq9\nfj1meXrKTpYKlCaXIn5DPNJPpqP1nNbo8bYHlHVka1q5cGFnJQUAAJMmfcDx4zfh5rYNVlZHv1hf\n/YYKVQIUqcDlMhvBW7YAWg38kCWXz8WS60twI+YGQqaGoJNuJ+kPUlYGXLjATP5RUcDMmcCrV7ir\noYEx4eFYYWSEBUuWYBOXi/2rVoGnrAxFDgezPD2xfPly6ctTUbSMMiT4JiD1UCoMpxmie2R3NNOT\nnQmsoq8+mx0ktI6aWgfo6Y2UmQyU6qFKgCIV9uwBWrYExjagkDrCyCnOwZi/x0CRpYiHMx5KPwVk\nYiKwfz8TKc/S8lOaRmVl/JWSgp/DwnDUygoeLVsCAJYvXy7zSf8jnBwOEv9IRLJfMvTH6sPpjROa\nt5Hs8JgwavLVV1dPBHBXSCsVqctBEQ2qBCgSk5ICrF3LeAM1ZJfsyMxIeJ70xGDzwdjkvkl6KSD5\nfGYn3M+P+RImTGB+t7YGAHD5fCx7+xb/ZmfjbteusFBTk864IsJlc5G0Mwkftn+ArqcuHJ85QtVE\nepurNfnqt2u3rJKv/ogRhjh+PLmSSejYMTOMHz9favJQ6gZ1EaVIzMSJQNu2gI+PvCWpnmvvruG7\n89/B52sf6aWAzM5mgiP5+TGpGefOBcaNq5SmMZfDgVd4OAiA09bW0BEjTo+41BTTXxIk9dUPDLyC\nixd3ASgBoIKhQ+cLvIMosoGeE6DIjOBgYPJkZu9TXV3e0lSFEILtD7dj0/1NODv6rHRSQD55wti/\nLlxgjkXPmQP07FnlNSi6qAhD3rzBty1bYouZWZXY+7JC2jH9qa9+44cqAYpM4HAAe3vGFDRihLyl\nqUoptxRzrszB85TnuDj2omQpIIuKmPyYfn5AVhaTpnHq1GoTJNzIzsakiAisNzXFjNb1E6RMWjH9\na/LVb+xx9Zsq9LAYRSZs387kMBk+XN6SVCW9MB0jTo+Avro+QqaFiJ8CMjr6U5rGXr2ANWsAD49q\n42ITQrAzKQk+CQk4a2ODftpS3ngWNuZnMf2tT1jXKaZ/9XH1qa9+U4C+CVDE4sMH5i3g4UOgY0d5\nS1OZV6mvMPTUUHzX5Tt4u3jXPQUklwtcvsyYfF6//pSm0cSkxmZlfD5+ePsWj/LzccnWFiaqsl0t\nixvTvynH1W+qNDhz0MaNG3Hs2DEoKCjAzs4Ohw8fRmFhIby8vBAfHw8TExOcOXMG2p+toqgSaDiM\nHs04v6xZI29JKnM+4jxmBczC7m93w8vWq26NU1KAAweYT/v2zEbvyJEipWnMKCvDyLAwtFRSwlEr\nK5Ezc4mDODH9aVz9pk2DUgJxcXFwc3NDREQEmjdvDi8vLwwcOBBhYWFo1aoVfvrpJ/j6+iInJwc+\nn7mbUCXQMLhxg9kLDQ0FZLzYFRlCCNbdWYf9z/fjgtcFOLZ2FLUhs7vt5wf89x9z0GHOnDrFvXhd\nUIChoaEYr6+PtaamUJChn6yoMf1pXH1KRRrUnoCWlhaUlZVRVFQERUVFFBUVoXXr1ti4cSNu374N\nAJg8eTJcXFyqKAGK/CktBebNA3bubDgKoIhThGkXpyE2NxaPZzyGkaZR7Y3y8hg7v58fE+luzhwm\nWXsdjztfzMzEjKgo7OjYEeMNDMS8g9qpLaZ/XXz1KZSK1LsSaNmyJZYuXQpjY2OoqqrCw8MD7u7u\nSEtLg0H5H5GBgQHS0tLqWzSKCGzezJiBBjUQt+4P+R8w7NQwWOlZ4faU21BRquXk6cuXjK3/7Flm\ng3fvXuCrr+p8yo0Qgo0JCdiTlIQrdnboLqNYGdXF9Ody85GXJdxX38rqOI2rTxGZelcCMTEx2L59\nO+Li4tCiRQuMHj0ax44dq1SHxWJVu2rx9vYW/Ozi4gIXFxcZSkupSGws4xH07Jm8JWF49OERRpwZ\ngQXdF+CnPj9Vv9ItKWEmfT8/Zkd79mwmyp2hoVjjFvN4mB4VhbfFxXjk6Ig2EubtFcbnMf2tzpqh\noPQR4hL/rOKr36nTn9RXn1KJ4OBgBAcHi1S33vcETp8+jf/++w8HDx4EABw9ehQPHz5EYGAggoKC\nYGhoiJSUFLi6uiIyMrKysHRPQK54ejJnoiokwpIbx14fw+Lri3HI81D1KSDfv2cy3Bw+DDg4MCaf\nQYMACTZtk0pLMSw0FB1VVXHIwgKqEiZ82e67Af9e2gtlZR44HEV83WcaBieNQXZQBvRXZ0H561Dk\nFQZTX32KRDSoPQFLS0usXbsWxcXFUFFRwc2bN9G9e3eoq6vjyJEjWL58OY4cOYJhw4bVt2iUGrh8\nmQmGefasfOXg8XlYFbgKZ8LOIGhyUNUUkDwecPUqY/J58oQ5znz/vlT8WB/n52NEaCjmtmmDn42N\nJbaxb/fdgKBbPli5ni0o2/3HRrC6HEHP2VnIVzODNov66lNki1xcRDdt2oQjR45AQUEBDg4OOHjw\nINhsNsaMGYOEhATqItrAKCoCbGwYz8mvZRh2vzbYpWxM+GcC8kvzq6aATE9nInfu2wcYGDDunWPG\nSG33+kRaGha+e4cD5uYYVs0p4boyoI8xVq5PrFK+dWMrnAuIpL76FKnRoFxEJYEqAfmwejVzcPb0\nafnJ8D7nPTxPeqKvcV/s/HYnkwKSEODePWbVf/Uq49M/Zw7gKKJ7qAjwCcEvsbE4mZ6Oi7a26Kwh\nfgyeipRllGH40Hb4cUN6lWubvVvjSnCSVMahUAAxzUFv375FWloa+vatHHArJCQERkZGMDMzk66U\nlAbJ27fMfuqrV/KT4XbcbXj97YXV/VZjrtNcsAoKgGN/MYKVljIT/59/Ajq1n5atC2wuF5MiIpDN\n5eKxgwP0mkmeeOVjTP+kG7egZZoptA6XQ6O5UOqPas/TL1q0CFpC3N60tLSwaNEimQpFaRgQwpwJ\n+PlnoE0b+ciw/9l+jPl7DI6POI4f1JzBmjePOc178yawbRsQGQksWiR1BRBbXIzeL15Ar1kz3OzS\nRWIFwGVzEb8+Ho/MHyFX4yhYW1ahR7ex2Lahsp1/63pNfOs5W6KxKJS6UO2SIy0tDZ2FnJrs3Lkz\nYmNjZSoUpWFw7hyQlAQsWFA/421Z642be3dDhcdFiaIiyr7ugEwHNl62WAGjKWuAd++AWbOAN29k\nqpXu5OZiTFgYVrZvj/lt2ki0AVwxpr+2hwpaBPihROE1HGxC0LefOcDfgI2r9kFJmQsuRwnfes7G\nouUNwP2K0mSodk+gY8eOePfundBGNV2TJXRPoP4oKACsrIDjx4F+/WQ/3pa13njpux7HCrmCsrlK\nwPBmanDv2ZPZ6PX0BGSclOVAcjJWxcbimJUVBpSngBSHz2P6G/7GRWzZZGhodIa5+V4oKjbA5AuU\nL5aa5s5qzUHdunXD/v37q5QfOHAAjlLceKM0TH7/HXB1rR8FAAA39+6upAAAYA8X2KPRDLh1i9n0\nlaEC4PL5WPj2LbYkJuJu165iKwA+l4+Uv1LwyPwRsq5kwe6SHQz2vUNUwQC0bv09LC3/RxUApUFR\nrTlo+/btGD58OI4fPy6Y9J89e4bS0lKcP3++3gSk1D9hYcz5qtDQ+htThccVWk5Ysn/zyylPAckC\n8NDBQawUkMJi+mv2Ukds7CqkvzsFO7sAaGl1l77wFIqEVKsEDA0Ncf/+fQQFBSE0NBQsFguDBw+G\nm5tbfcpHqWcIAX74AfjtN8bdvn7GJMjlc4ReK1WUradMVHkKyEG6utjcoUOdU0B+HtPffJ85dNx0\nUFaWhtevh4HFUoaj4zM0a9aq9s4oFDlQ418Yi8VCly5d0KVLF8Hv2dnZ0NTUhHI9Jsym1B8nTgD5\n+YzXZX1Qyi3F91e+R1ddYFkmsKXCwn+CmhL6fz9PZmNfL08BubFDB0w3EiHyaAU+j+lvtslMENM/\nL+8ewsK8YGQ0HSYmv9JAbpQGTa2HxUxMTJCQkACdche8nJwcGBoawtDQsN73B+jGsGzJy2M2g//5\nh4kRJGvSCtIw4swIDIkk+OlEPHaNH4trx4+gOY+LUkVGASxb7S31cQkh2PHhA3wTE3HG2hpf1TEF\nZHUx/Qkh+PBhBxISNsLS8jB0dQdKXXYKRRwkOjE8c+ZMjBo1Ch4eHgCAGzdu4O+//8bUqVOxcOFC\nPH78WPoSVwNVArJl4UImRMSBA7If62XqSww7NQxLtQdi3o9nwQoIAHr0kPm4ZXw+5kZH4zGbXecU\nkDXF9Ody2YiKmoHi4newsfmbJm2hNChqnDtJLdjY2FQps7W1JYQQ0qVLl9qaSxURxKWIyYsXhOjr\nE5KRIfuxzoWfI3qb9Mj5+4cJMTcn5NAh2Q9KCEkrLSV9nz8nQ1+/JmwOR+R2+c/yyauBr8h94/sk\n+WAy4ZXxKl0vKAgjjx5ZksjImYTLLZa22BSKxNQ0d9a662ZkZARfX1+MHTsWhBCcOXMGBgYG4PF4\nUKjjJhqlYcLnM27469YBrWS4f0kIwdo7a3Hw+UFcG3cFDrN+YxK7TJ0qu0HL+ZgCcoK+Pn4XMQXk\n5zH9bf+xhULzys98evppvH07Dx06bIKRkezvg0KRNrUqgRMnTmDNmjWC0M59+vTByZMnwePxcObM\nGZkLSJE9/v6MIpg+XXZjFHGKMOXCFCTmJ+LxzMcw3LATKC4G/vhDdoOWcyEjAzOjo7GzY0eME8Hl\nqehtEeK845BzMwftfmwHq6NWUFSrvLnL55chJuYnZGVdRufO/0FT015W4lMoMkXkKKKFhYVQV5fv\nIRe6JyB9srOZdJH//svkXZEFiXmJGHpqKGz1bbF/yH6o/HMJ+OknJt6/lMIyC4MQgg0JCdibnIx/\nbGzgVEsKyJL4EsStjUPmhUy0XdQWbRe2hZJm1XVSaWkSwsLGQFlZF5aWR6CsLN24RRSKtBHrxPBH\n7t+/D2tra1haWgIAXr16hblz50pXQorcWLkSGDVKdgrg4YeH6PlXT4yzHYcjw45AJSyKOYhw/rxM\nFUAxj4efPhUZAAAgAElEQVTxERG4mJmJRw4ONSqA0uRSRM+LxlOHp2hm2Aw93vaAyS8mQhVATk4g\nnj1zgq7uYNjaXqAKgNL4qW1DwcnJicTHxxN7e3tBmbW1tYTbFOIhgriUOvD4MSGGhoTk5Mim/yMv\njxC9TXrkctRlpiAjgxBTU0JOnJDNgOV8KCkh3Z4+JePDwkgRl1ttvdL0UvJ26VtyV+cuebv0LSlN\nL622Lp/PI3FxG8m9e4YkO/umLMSmUGRGTXOnSMcxjY2NK/2uJEGOVkrDgMdjDoT5+gJ1dJOvvW8+\nDz/f+hnnIs4haHIQbPRtAC4X8PICRo8Gxo2T7oAV+JgCcl6bNlheTQrIjzH9k/2SoT9WH05vnNC8\nTfXJ4jmcXERGTgaHkw4HhydQUWkrM/kplPqm1tnc2NgY9+7dAwCUlZVh586dsLKykrlgFNmyfz+g\npgZMmiTdfvNL8zH+3HgUcgrxeMZj6KqVp0j88UcmANyGDdIdsAIn0tKw6N07HLSwgKcQNycum4uk\nnUn4sP0DdD114fjMEaomNZ8TYLNfIixsFHR1B8LG5iwUFCRPLEOhNChqe41IT08n48aNI3p6eqRV\nq1Zk/PjxJDMzU6qvKqIigrgUEUhLI0RPj5DXr6Xb77usd8T6T2syJ2AOKeOWfbpw5AghHTsSkp0t\n3QHL4fH5ZEVMDDF98IC8ZrOrXOcWcUnClgQSoh9CwsaHkcKoQpH6TUnxJyEhrUhqqmzNVxSKrKlp\n7qQ5hpsgU6cCLVtK1zszKDYI486Nw6/Ov2KuUwXHgcePgUGDgOBgJlu9lGFzuZgYEYFcLhd/29hU\nygD2eUx/k99NoGFbe45gHq8E794tRG7ubdjanoO6uvTlplDqE7FyDM+fP79KBxXtqzt37pSiiJT6\n4t494L//gIgI6fXp98QPa26vwYmRJ+BmWiHKbGoqkwfgwAGZKIDY4mJ4hoail5YWztrYoFn54UU+\nl4+0I2mI+z0O6jbqsLtkB01HzVp6YygujkNY2CioqprC0fEJlJREa0ehNFaqVQIfA8Pdv38f4eHh\n8PLyAiEEZ8+ehY0M/qApsofLZU4G//EHoCmFuY3D42DRtUUIigtCyLQQdGzZ8dPFsjLG93T6dKD8\noKE0uZ2bi7Hh4VhpbIx55SkgK8X0b8fE9G/Rp4XIfWZlXUVk5BQYG69A27aLJEorSaE0Fmo1B/Xo\n0QMhISGC0NEcDgd9+/bFo0eP6kXAilBzkGRs3w5cuQLcuAFIOr9lFWVh9NnRUFVWxYkRJ9BC5bPJ\ndvZsID2dSVQs5fAi+5OTsbo8BaR7y5aVY/prKcF0nSl03ET33yeEh7i4tUhJOQhr65PQ1v5KqvJS\nKPJGLHPQR3Jzc5Gfnw9dXcbLg81mIzc3V7oSUmROcjITG+jePckVQHhGODxPemK45XD4fO0DRYXP\n4uXv2weEhAAPH0pVAXD5fCyJicGN7Gzc7doVnVRVkfVvltCY/qJSVpaJiIiJ4PNL4Oj4FM2bG0pN\nXgqlMVCrElixYgUcHBzg6uoKQghu374Nb2/vehCNIk2WLQNmzQIsLCTr59+3/2LKhSnY7L4Zk+0n\nV60QEgL8+ivzrzRsTuXkcDgYEx4ORTApIMndArz4JZKJ6b+2PKZ/HbVbfv4ThIWNhr7+GJiaboCC\nAj3/Qml6iOQdlJKSgkePHoHFYqF79+4wqmMWJmlBzUHiERgITJvG5A4WN/wTIQR/PPgDWx9sxbkx\n59CrXa+qlRITmZwAhw4B33wjmdAViCwshGdoKAbr6uKXVF0k/BaP0oRSmKwxgb7Xp5j+okIIQUrK\nfsTGroa5+V7o6Y2QmqwUSkNEoqQyDQmqBOpOWRnQpQuwcaP4+7Ml3BLMDpiNN2lvcHHsRbRr0a5q\npeJi4KuvgDFjmOBwUuJaVha+i4zE1oLW6LyTjcLQQpj8agKD7wygoFx3UxOPV4To6DkoKHgOG5tz\nUFMzl5qsFEpDRaI9AUrjZts2oEMHYOhQ8dqnFqRi+OnhaKvVFnen3oV6MyGvEoQwG8GdOjEng8XE\nd8N2XNr7L5R5yuAocqA3rjeS7L7G2TPqUH6WAt2VwmP6i0pR0VuEhY2EhkYXODg8hKKifKPiUigN\nAaoEvmASEoDNm4FHj8TbDH6R8gLDTg/DNPtpWO28Ggqsaibf7duBN28k2nX23bAdt3yCsJ69UlC2\nc6sfxjfTRoffR6L1qdZVYvrXhYyMC4iOngUTkzVo3fp76v5JoZRDzUFfMCNHAp07A7/9Vve2Z8PO\nYu6/c+E3yA+jrEdVX/HmTWDiREbTtG8vtqx9jAdgfeLKKuWr2/ngbsI1sfvl87mIjV2F9PRTsLE5\nCy2t7mL3RaE0VqRqDvqYV2DevHmYN2+eZJJRZMa1a8CrV8Dx43Vrxyd8/H77dxx6cQjXJ16Hg1EN\niQbev2cUwKlTEikAAFDmKQstV+SJv/ovK0tDePhYsFjKcHR8hmbNZJg7k0JppNTZuBoZGYmQkBCY\nmpqKPWhubi5GjRoFKysrWFtb49GjR8jOzoa7uzvMzc0xYMAAehZBAkpKgHnzgF27ABUV0dsVlhVi\nzNkxuB5zHY9nPq5ZARQUMDvNq1YBLi4Sy1wMjtByjhJXrP7y8u7h6VNHtGjRD507X6UKgEKpBpGU\nQFxcHG7evAkAKCoqQvPmzTFo0CCxB124cCEGDhyIiIgIvH79GpaWlvDx8YG7uzuio6PRv39/+Pj4\niN1/U2fTJsYM9O23ordJyEtA38N9od5MHUGTg2CoUcOhKUKYKHSOjoy2kQBCCDaEvkc/7tfYqbyn\n0rX1mlvhObsON1HeX2LidoSGjoCFxX6Ymq4BiyX+2wSF8sVTWwjSffv2kW7dupEOHToQQgiJiooi\nbm5udYtjWoHc3FxiampapdzCwoKkpqYSQghJSUkhFhYWVeqIIG6TJyaGEF1dQuLjRW9zL+EeMdpi\nRDbf20z4fH7tDdavJ6R7d0KKi8UXlBBSyOWSCU/ekIMOd8jzaWHEZ+020tt4AHFuPZD0Nh5AfNZv\nq1N/HE4+CQ0dQ548cSBFRe8lko1C+ZKoae6sdVbt3LkzKSkpqZRe0tbWVmxhXrx4Qbp3706mTJlC\nunbtSmbMmEEKCgqItra2oA6fz6/0u0BYqgRqhM8nZNAgQjZuFL2N/wt/ordJjwREBYjWICCAkNat\nCfnwQTwhy0ksLiY9Qh6TY73vkTcTwwifJ4LyqYGCgjDy6JEliYycSbhcyZQThfKlUdPcWevGcPPm\nzdG8+afUe1wuVyL3Oi6Xi+fPn2P37t1wcnLCokWLqph+WCxWtWNUDFnh4uICFynYo78ULl0CYmKA\nf/6pvS6Pz8Pym8txIfICgqcEw1rPuvZGUVGMGejCBaBNG7HlfJSfj9Ev3mDH78owb9cCVoctwVIQ\n/5lKSzuFd+/mo0OHTTAymip2PxTKl0JwcDCCg4NFq1ybBlm2bBlZt24dMTc3Jzdu3CDDhg0jK1eu\nFFsjpaSkEBMTE8Hvd+/eJQMHDiSWlpYkJSWFEEJIcnIyNQfVkcJCQtq3J+TWrdrr5hbnkoHHBxJX\nf1eSWShilrjcXEIsLAg5cEAiOY+mpBCD4LvkxqBn5M2wN4RXxhO7Lx6vlERHLyAPHnQg+fkvJJKL\nQvmSqWnurHVj2NfXF3p6erCzs8O+ffswcOBArFu3TmwNZWhoiHbt2iE6OhoAcPPmTdjY2GDIkCE4\ncuQIAODIkSMYJoMY9F8y69cDvXoBbm4113uX/Q69/uoFkxYmuD7x+qccwDXB5zOuoP37AzNmiCUf\njxCsiInBbzGx+Ge3Fgz4SrA+ZS1W6AcAKC1NwsuXrigpiYWj41NoatqL1Q+F0tSp8bAYl8uFra0t\nIiMjpTroq1evMGPGDJSVlcHMzAyHDx8Gj8fDmDFjkJCQABMTE5w5cwba2tqVhaWHxYQSFQX06QO8\nfg20bl19vcDYQIw7Nw7ezt6Y4zRH9AFWrwZu32YOhjWre6L1fC4XEyIiUFDGwbYdzYFkDuwu20FR\nVTyvnZycQERETESbNvNhbLwcrOpOMlMoFAASBpAbOnQodu7cifYSHgaSBlQJVIUQYMAAYOBAYPHi\n6uvtebIHv9/+HSdHnoSrqavoA5w7ByxZAjx5Aujr11m+98XF8HzzBn21tLBwK1ASWYzOVztDUb3u\nCoAQPhISNiEpaQesrI5BR6d/nfugUJoiEp0Yzs7Oho2NDbp37w718jjELBYLly5dkq6UFLE4exZI\nSwMqpISuBIfHwYKrC3A7/jbuTbsHs5Zmonf+5g3w/ffM8WMxFEBwTg7Ghodjdfv2GLCpGOw3bHS+\nIZ4C4HByERk5GRxOOhwcnkBFpW2d+6BQKFWpVQmsXbu2PuSgiAGbzSzST50ClIT8T2YVZWHU2VFQ\nV1bHwxkPodVcS/TOs7OZE8HbtzOHwurIvuRk/BobixNWVjDxyUHOvTx0udUFSpp1j1nIZr9EWNgo\n6OoOhI3NWSgo1N0kRaFQhEMDyDVili0DMjMBf/+q18LSw+B5yhMjrUZiY/+NVVNA1gSXyxw37tIF\n2LKlTjJx+HwsfvcOt3JzccnWFkq+acg8nwn7IHso6wqPD1QTqalHEBOzDB077oSBwbg6t6dQKBKa\ngzQ0NAQ++2VlZeBwONDQ0EB+fr50paTUidBQ4H//Y/79nIDoAEy9OBV/DPgD33X5ru6dr1jBhISu\nY+iObA4HY8LCoKyggIcODsjdlIS0Mxmwvy2aAggMvIILF3aCxSoFn6+M7t0VYW4eB3v7YKir29T9\nPigUSq3UqgQKCgoEP/P5fFy6dAkPHz6UqVCUmiEE+OEHwNu7sqmeEILN9zdjx6MduDT2kvAUkLVx\n/Dhw/jyzESzMxlQNEeUpIIfq6sLXzAzJ2z4g9XAq7G/bo5l+7eabwMArOHlyISZMiBGUHT6sDiOj\nw1QBUCgyRCxzkL29PV6+fCkLeWqEmoMYjh4FduxgQvgrllt5SrglmHV5FkLTQ6tPAVkbz54xuYGD\nggBbW5GbXc3KwuTISGzq0AFTjIyQ9GcSErckwv6OPVTaiRbGdMECD4wYcaNK+fnzHtixQ/x8AhQK\nRUJz0Llz5wQ/8/l8PHv2DKqqqtKTjlIncnOB5cuZyA0fFUAKOwXDTw+HcQvj6lNA1kZaGjB8OLBv\nn8gKgBCCrR8+4I/ERFywtUXvFi2Q8lcKEnwTYH9bdAUAACxWSTVXqiunUCjSoFYlcPnyZcGegJKS\nEkxMTHDx4kWZC0YRzurVwJAhQPfyBFnPkp9h+OnhmOEwA6v7rRYvrlNZGTB6NDB5MjBihEhNSvl8\nfB8djRdsNh46OMBYRQWpx1IR+2ss7IPsoWoq+kKhrCwT+flh1VytQ0IECoVSZ2pVAjNmzEDfvn0r\nld27dw/6YviNUyTj+XPmXEBY+Xx5JuwMfvj3B+wdtBcjrUeK3/GiRYC2NrBmjUjV08rKMCI0FEbN\nmuGegwPUFRWRfjYd7398jy63ukDNXE3kofPznyAsbDTc3Z1x/PirSnsCx46ZYfz4ag5AUCgUqVDr\nnoCDgwOeP39eqaxr16548eKFTAUTRlPeE+Dzgd69gZkzganT+PAO9saRV0dwcexF2BtKEDfnwAFg\n61Zmg0Gr9nMEL9hsDAsNxRRDQ/xmYgIFFguZFzMRNSsKXW50gUYXDZGGJYQgJWU/YmNXw9x8L/T0\nRiAw8AouXtwFxgSkgqFD58PNTfzkRRQKhUGsPYEHDx7g/v37SE9Px9atWwUdsNls8Pl82UhKqZZD\nhwAFBWDMhEKMPvsdUtgpeDzjMQw0DMTv9P59Jj3k3bsiKYBzGRn4Pjoaezp1wujyN8Gsq1mImhkF\nu3/tRFYAPF4RoqPnoKDgObp2DYGamjkAwM1tEJ30KZR6plolUFZWBjabDR6PBzabLSjX0tLC33//\nXS/CURiyspi5+vD5eHzlPxRdjbrixIgTaK7UvPbG1ZGUxOwD+PsDFhY1ViWEYG18PA6mpOB6585w\n0NQEAOTcykHkd5GwvWQLrW6inUYuKnqLsLCR0NDoAgeHh1BUFGMTm0KhSI1azUFxcXEwMTGpJ3Fq\npimZg7w3+GL3qX3gKvBRkq8AUzMP5H1zEUt7LcWSXkskSuyDkhLA2ZkJC/HzzzVWLeLxMCUyEoml\npThvYwPD8gRDuXdzETYiDDZ/20DbWbvGPj6SkXEB0dGzYGKyBq1bfy/ZPVAoFJGRKIpoeno6Nm3a\nhPDwcBQXFws6DAwMlL6ktdBUlID3Bl+sP+MD7vDcT4X/AeOdp+D4+sOSdU4IMG0aUFgInD7NnAyu\nhsSSEgwNDYWtujr2m5tDpdwnNe9hHkI9Q2F1wgotv25Z65B8PhexsauQnn4KNjZnoaXVXbJ7oFAo\ndaKmubPWQOwTJkyApaUl3r9/D29vb5iYmKBbt25SF5Lyid2n9lVWAADgDlwPuCN557t2MW5Ghw/X\nqAAe5uWh5/PnGKevjyOWlgIFwH7ORujQUFgethRJAZSVpeH1a3cUFLyAo+MzqgAolAZGrUogKysL\nM2bMQLNmzeDs7IzDhw/L5S2gKcFVEL7xzmXxJOs4KAjYsIE5aaZevS3+f6mp8AwNxT5zc/xobCww\n2xS8KcDrga9hvtccuoNqz0iWl3cPT586okWLfujc+SqaNWslmfwUCkXq1HpOoFl5JilDQ0MEBASg\ndevWyMnJkblgTRklvnDdrETEy8QFAIiLA8aNY2IDmZoKrcIjBD+/f49zGRkIsreHTQVFURhZiNce\nr9FpRyfoDdercShCCD582IGEhI2wtDwMXd2B4stNoVBkSq1K4JdffkFubi7++OMPzJ8/H/n5+di2\nbVt9yNZkmTd2NtZc+hX4tkxQpnReG/O8ZonXYWEhswm8YgWTJ1gI+VwuxoeHo5DPx2NHR+gqf4r6\nWfSuCK/dX6ODTwfoe9V8SJDLZSMqagaKi9/BweEhVFWFKxwKhdIwqFEJ8Hg8REdHY/DgwdDW1kZw\ncHA9idW0aWXXG3itAp1/WoPPIlAiipjnNQveK5fXvTNCgOnTmdwACxcKrRJTngLSWVsbOzp2hLLC\npzeRkvgSvPr6Fdqvbg/D7wxrHKqwMBxhYSPRosVX6Nr1HhQVacgHCqXBQ2qhW7dutVWpN0QQt9FT\nWFxGmi+2JYsOnJZOhz4+hHTrRkhRkdDLgdnZxCAkhPz54UOVa8WJxeRBhwckcWdircOkpp4kISGt\nSHLyIYlFplRGR0eHAKAf+hH5o6OjU+kZAqqfO2t1EV28eDE4HA68vLygrq4OQghYLBYcHBxqaiYT\nmoKL6FCfrQhJu4qMP25AQUFCP/qrV4EZM5iQEG2r5uT1S0rCmrg4nLC2hpuOTqVrpamleOn8EkYz\njWC8zLjaIfj8MsTE/IisrADY2PwNTc2ukslMqUJTeO4p0uXzZ0aicwIuLi5CD/UEBQVJKGbd+dL/\nGJ5GJ6H7oS74d9Q9fNOt5lO8tfL2LdCnD5Mgpk+fSpc4fD4WvXuHoPIUkB3VKgd8K8sow0uXl9Af\npw+TX0yqHaK0NAlhYWOgrKwLS8sjUFbWqbYuRXy+9OeeIn2kqgQaEl/6H4PxkrFop2GGe7+vl6yj\n/HygZ09mD2D27EqXsjgcjA4Lg6qCAk5YW6PFZ9nDONkcvOr/Ci0HtUSHdR2qHSInJxARERPQps18\nGBuvAItVq7cxRUy+9OeeIn3qogRq/ctNTU3F9OnT8c033wAAwsPD8ddff0lJVMpHNp+7hWTFh7i4\ndJVkHfH5wKRJQL9+VRRAeGEhejx7BkdNTVyys6uiALh5XLz+5jW0+2vDdK1wrx5C+IiP90FExARY\nWh5F+/YrqQKoZ65cuQIPDw+4uLjAw8MDV65ckVr9uLg4jB49utrr169fx4ULFwAA+/fvF5QvXrwY\nJSXCEwAFBwfjxx9/FPxeUlICV1dXuLq6QktLS/Bzbm6u0Pb1xYEDB6Tan6amJlxdXdGtWzdcvXpV\npDYvX75Ejx49sGzZMvj6+iIuLq7K9yd1atuU8vDwIKdOnSJ2dnaEEELKysqIjY1NXfa1pIYI4jZK\n8gpKSLMlFmTlkQuSd/bbb4T06UNIaWml4iuZmUQvJIT4p6QIbcZhc8iz3s9I1A9RhM/nC61TVpZD\nXr/2JM+e9STFxbVvFlOkQ8XnPiAggJiZmVXaBDQzMyMBAQFC29a1fmxsLBk1apRIconqNBIcHEyW\nLVsmUR/Sorpnm5C6yVJTP5/39+HDhypzZnXtN2zYQM6fP1+prKbvrzo+nytrmjtrXcJlZmbCy8sL\niuVhA5SVlaFUhwTklNoZvW0rtPkdsW6Sp2QdnT/PxJz++2+g/JAfIQRbEhIwIyoKF21tMdmwqpsn\nr4iH0CGhULdWR6ednYTuAbHZL/HsWTeoqLSHvf1tqKhU3WimyJ6dO3ciJiamUllMTAx27dollfoV\ncXFxwdKlS+Hs7Iz585nkPv7+/vjzzz+xd+9eREVFwc3NDUFBQXB1dUVhYSHevHkDFxcX9O7dW9CG\niGDKev/+Pb755hu4urpiyZIlgrFGjBgBT09PODs749SpU3B3d0f//v3B5XIRHByMAQMGwNPTE927\nd0doaCgA4Nq1a+jXrx/69OmDU6dOAQCmTJmCefPmwcPDA+np6XB3d4eLiwsGDBgANpsNPz+/KvdT\nVFQEABg9ejTi4+Ph7++PsWPHwtPTE9euXYO/v79gnJr2SNu0aYOioiLEx8ejX79+GDt2LHx9fREU\nFIRevXqhV69eOHr0KCIiIrB//378+uuvOHDgAKZOnYqwsMoZ94Tdm8TUplGcnZ1JZmYmsbe3J4QQ\n8uDBA9KvX786aSVpIYK4jY6Q0DjCWt6SBL+Kkayj0FBCWrUi5PFjQVExl0u+Cw8nXZ88IQnFxUKb\ncYu55OWAlyR8Ujjhc4WvTlJS/ElISCuSmnpCMhkpYlHxuXd2dpaKC6Gzs7PQsSq+Cbi4uJC7d+8S\nQgjp1asXycvLI/7+/mT37t2EkMorZxcXF1JYWEiKKzxnQ4cOJW/fvhXpTWD06NHk/fv3hBBC5syZ\nQ54+fUr8/f3JrFmzCCGErFy5kixdupQQQsjixYtJYGAgCQ4OJn379iWEEBIREUE8PT0JIYT06dOH\ncDgcwuVySZ8+fQiPxyNTpkwhhw59cl8uKneZ3rZtGzlw4EC190MIIaNGjSJxcXHE39+fTJo0iRBC\nSGZmJvnmm28IIYQUFBQQFxeXau8tPDycODk5kbi4OGJmZkY4HA4hhJCePXuSrKwswuFwSLdu3Uhx\ncTHx9vYmV65cIYQQMmXKFBIaGlrp+xN2b8L4fK6sae6sdUn/xx9/YMiQIXj//j169+6NjIwMmk9A\niow+uAguOgvh3Ln6TdhayclhTgT/8Qfg5AQASC0txfCwMLRt3hx3u3aFumLVkBP8Mj7CR4dDSVsJ\nFocswFKs/AbA45Xg3buFyM29DXv7YKir24gvI0UqNG8uPIeEh4cHrl27JrT8xo0bVcpVVEQ7yNe1\nK+Py26ZNG5Fs9u/fv8eyZctQVFSE9+/fIzk5WaRxIiMjMW3aNABAQUEBPDw8AAB2dnYAgNatW0ND\nQ0MgS05ODnR1dQXyWVpaIiUlBRkZGYiOjoa7uzsAIC8vDxkZGQAAp/K/jYKCAsyePRtJSUnIzs4W\nugdS8W2YVHiT+dhHTEwMwsLC4OrqCoCxmHxOVFQUXF1doaSkBD8/PwBAly5dBJYUHo+Hli2ZIIwd\nO3YUfFekmjcnYfeWmZkpcarfWpWAo6Mj7ty5g6ioKBBCYGFhAeUKIQUo4rPmxL/IVAjFP0tOit8J\njweMHQsMHgx89x2ATykgpxkZYXX79lAQYt7hc/kIHxcOKAJWx6ygoFTZMlhcHIewsFFQVTWFo+Nj\nKCmJljSGIlsWLFiAmJiYSiYeMzMzgelF0vqfU91k+Pm1j9f37t2LpUuXon///hg6dKjIXk2WlpbY\nsmULjI2ZMyk8Hg/Hjh2rNufEx35fvnwJgJlwW7dujVatWsHS0hI3btyAsrIyuFyuYNL92NeNGzfQ\noUMHHD9+HFu3bhUkzao4lo6ODhITE2FmZlbJJKNQfprezMwMnTt3RkBAAACAy+VWkdHCwqKSmSgu\nLk7Q/mNfWVlZ0NLSwtu3b9G6desav6Oa7k0Sau2huLgYe/bsQUhICFgsFr766ivMmTNH5JUERTjZ\n+cVY93w+vLv/CW0NCb7LlSsBLhfYvBkAcDY9HXPfvoVfp04YVc0KgfAIIr+LBL+YD9vztlBQrqwA\nsrKuIjJyCoyNV6Bt20U0+UsDYtAgJv3mrl27UFJSAhUVFcyfP19QLml9FotV6//3x+sWFhYYNWoU\nliz5lORoyJAhWLhwISwtLQUHSz/+W1Nfvr6++P7771FSUgJFRUUcOnSo0vXPf/5IixYtMGTIEKSl\npeHQoUNgsVj45Zdf4O7uDgUFBejr6wts5x/b9+zZExs2bMCLFy9gYGCA9u3bV7mfuXPnYvTo0bCx\nsYFhhX20j33o6upi7NixcHZ2hqKiIuzs7LBjxw6h91bdd7thwwYMGjQILBYL8+fPF8ypwu7zY9uK\n96anp4fTp08L/V7rQq3nBEaPHg0tLS1MnDgRhBCcOHECeXl5OHv2rMSD15UvyV/axdsbb/PfIGnr\nOfE7OXmSyTv5+DH4urr4PS4Oh1NTccHWFl3LU0B+DuETRE2PQkliCewu20FR9ZOZiBAe4uLWIiXl\nIKytT0Jb+yvxZaNIjS/puZcmt2/fRkBAADaXL4Aon6jLOYFa3wTCwsIQHh4u+N3NzQ3W1tYSC8nj\n8dCtWze0bdsWly9fRnZ2Nry8vBAfHw8TExOcOXMG2tqipS1sbAS+jMGdkt14MPOF+J28eAEsWADc\nuoVCHR1MDgtDclkZHjk4CFJAfg4hBNFzo1EcU4zOVztXUgBlZZmIiJgIPr8Ejo5P0bx5zcHiKJSG\nAHF0+ZcAACAASURBVH1LlZxaXUQdHBzw4MEDwe8PHz6Eo6OjxAPv2LED1tbWgv9EHx8fuLu7Izo6\nGv3794ePj4/EYzRE+HyCsUfm4xvNH9HDqp14nWRkAMOHA3v2IMHcHH1fvICGoiKC7O1rVADvFr9D\nwcsC2AXYQVH9kwLIz3+CZ8+6QUOjM7p0uUkVAKVR4OzsjE2bNslbjMZPtX5D5VhYWBAWi0WMjY1J\n+/btCYvFIpaWlsTW1lZwgKyuJCYmkv79+5PAwEAyePBgwTipqamEEEJSUlKIhYVFlXYiiNvg+enw\nP6TZYivCLiqtvbIwysoIcXYm5Oefyb3cXGJ07x7ZkpBQ4+EVPp9P3v30jjxxeELKcsoqlScl7SUh\nIXokPf2cePJQZM6X8NxT6pfPn5manqFazUHC3M4kZfHixdi8eTPy8/MFZWlpaTAwMAAAGBgYIC0t\nTerjypv0nEL8EbYIm7/yh4ZqM/E6WbIEUFfHkXnz8GNoKPwtLTFQt+ZUj3Fr4pB9NRv2QfZQ1mY8\nu3i8IkRHz0FBwXN07RoCNTVz8eShUCiNmlqVgImJCXJycpCYmFjJDUrcUNIBAQHQ19dH165dq01S\nU5OHgre3t+BnFxcXuLi4iCWHPBi6dR3a8vtg8XBX8To4dAi8//7D8nPncCEhAcH29rCuIVcwAMRv\njEfG6QzYB9tDWZdRAEVFbxEWNhIaGl3g4PAQioo190GhUBofFefKGqntteKXX34hbdu2Jf369SMu\nLi6Cj7j8/PPPpG3btsTExIQYGhoSNTU1MnHiRGJhYUFSyuPaJCcnf3HmoCuPIghruS558S5ZvA4e\nPCC5xsZk4L17xO3FC5JZVlZrk4StCeRhx4ekJKlEUJaefp6EhOiRDx/2iBT/hCJ/6vO5z8vLI05O\nTkRDQ4OEhoYKyvfv3y/4efLkyZWufY6Pjw+JjY0lcXFx5MaNGxLJk5ubS86cOSP4ffbs2WL1Exsb\nK5i7NDU1iYuLCxkwYIBEstXG5MmTiZOTE+nVqxf5/vvvRW7n6elJ3NzcyJMnT4ifnx8hhBBHR8c6\njf35M1PTM1Tr09WpUydSWiqm/boWgoODBXsCP/74I/Hx8SGEELJx40ayfPnyKvUbqxLg8fhEZ6Eb\nGeazTeQ2Pj4+xLR3b9Le2ZmY9uxJlpmbE6ubN8kPUVGkrJqj4hX58OcH8sDkASmOLy6XgUPevfuJ\n3L9vTPLyHol9L5T65/PnPiDgNhkwYBVxdv6NDBiwigQE3K6xfV3qczgckpGRIQhZ8JGKIRU+v1Yd\nQUFBIgc+qy78QV0C2olKfQWtmzJlCgkLCyOEEPLtt9+S+/fvC65Vd7/Jyclk6NChVcrrKnNdlECt\n5iAbGxvk5OQI7PXS5qPZZ8WKFRgzZgz++usvgYvol8Kig6dRrJCJk4vniVTf19cXPrduIXf9p7wC\nW/bvx7AXL7C7mkTxFUk5lIIEnwTYB9tDxVgFZWVpCA8fCxZLGY6Oz9CsWSux74UiX65cuYOFC68j\nJubTsxETw4QfHzSon8T1lZSU0KpV5efj/PnzguBqM2fOBADs3r0bMTExUFdXx/nz5yvVnzp1KpYt\nW4a9e/fi/v37ePbsGc6dO4eLFy/i0KFD4PF4WLduHVxdXeHi4oIePXrgxYsXOHbsGMaOHQsulwsD\nAwOcPn0afn5+uH37Ntzc3PDnn39i0qRJePr0KT58+IApU6aAw+Ggc+fO2LVrF/z9/XH58mVwOByk\npqbi0qVLlQ56fc7Tp0/x008/gcvlYujQoVi6dCm8vb0RExODrKwsNGvWDIMHD8bx48dhYGCAU6dO\nwd/fHxcuXACHwwGbzcapU6dqPekLAPb29khMTMTPP/8suN9z585hwoQJyM/Ph5GREf73v/9h4cKF\nuH//PkaOHIkFCxZUOQeRmZmJmTNnVmpT8RSyWNSmUR4/fkyMjIyIu7s7GTx4MBk8eDAZMmRInbSS\ntBBB3AZHYnoeUfixNfG7EiJyG9PevQmCgqp8OvTuXWvb1GOp5F7re6Qwigl+lZsbQu7da0Pev/+V\n8Plcse+DIj8qPvcDBqwiAKny8fD4RWjbutb/SG1vAkePHiWEEOLl5UVev34ttG3FwGfVBVxzcXEh\ngYGBhBAmTD2XyzyjCxcuJP/99x+Ji4ur9CbwUY4ffviBXL9+nRBCyPTp08mdO3eIv78/mT59OiGE\nED8/P7Jz506h9/axj/79+/+/vbuPq/n+/zj+ONUpF2GxzVxtJiaki1Eu1yVKDcUmMhQybGKbDbPf\nl9lXrjZGsw3fucyY60wkusCIEjIyF5G5jJBcVOqcz++P1lnHOdU5dN37frud2/I57885r3c7fd7n\n8/m8P8+PlJ6eLkmSJPXp00dKTU2VZsyYIQUFBUmSJEm+vr5ScHCwJEmS5O3tLV26dElatWqVNGTI\nEEmSJCk8PFwKDAws9neYm5srOTo6SomJiWr9nT9/vrR06VJJkiTpm2++kdasWaPW34J7Uvk1f/bZ\nZ6r1586dK23evFnrez+7rSxq21nsnsCwYcOYMmUKlpaWqhFHXKChu34LZ9BC6sUYj27FN/6HspBs\nJkUxmU23N90meVIy1vusqdmqJlevfs/ff8/GwmIlDRp46FW3UDFlZ2v/k92zxxDtf5ba22dlaQYK\nPquov/P84LZmzZpx//79Yl+rqMC1/FC2tLQ0xo4dS3p6Ojdu3KBDhw60atWq0NfLX8/Ozo4LFy5g\naGiIjY2Nqq6EhIQiazp16hReXl4ApKenc/XqVQCsrKyAvNC6/AC7/NA6+HdSTMeOHTWiIp7l7+9P\nrVq18PT0VL1uwRC60aNHq5YdOnQIBwfNvbOCkpKSiIuLY+bMmWRlZTF06NAi2+ui2EHA1NSUwMDA\nF36j6mjLH39yQhHC6Y9P67WeQU6O1uWGhSwHSNuRxoWPL2AdYY1JayVJSYPIzLzI228foWZN7XcJ\nEyofExPNoDIANzcF2mZzu7nloiVElBo1FMW+l/RM7EBBRQXL5ZPL5SgUee/TokWLQgPX8r9crl+/\nnj59+jBy5EgCAwNRKpVqr1FQy5YtOXr0KO7u7sTHx+Pn50dycrKqLinvfGeR/bOxsWHz5s3UrVsX\npVKJgYGBqr6ifh8nTuRd6X/s2LFCB6l8q1at0khYyO9vfh9sbW2Ji4vjrbeKn6bdpk0bvL296d69\nO6A9uE5fxR5Meuedd5g6dSqxsbEcP35c9RCKplRKjNg8Dp+GX9P2Df2iXgc6OSFbulRt2UuzZjG6\nr/abztwNv8u5Uedov7M9spZ/c/y4PUZG9bC1PSQGgComMLAX5ubqtyA1N/+S8eN7lkh7AA8PDyIi\nIggICGDNmjUAODs74+XlRWhoqEb7wgLP2rdvT0JCAj4+PsjlclXgmouLC5MmTdJYx9XVlUWLFuHl\n5cWdO3eQyWQ0atSIzMxMBg4cyMWLF1XvNXnyZObPn4+DgwMmJiaqjWL+80VNMy+YUtC/f39cXFzw\n9PRU3R6zuNC6p0+f0rt3b2bNmsUXX3wBwJgxY7S+V1EDUUBAAGFhYTg5OXHmzBkGDRqkFranrQ/T\npk1j4cKFuLq64urqSmJiIqmpqbpPB9Wi2AA5Jycnrb+Iou6kU1oqU5BWwJLV/HrxB+7PO4KxvPhd\n73xPHj6ke2gojY4c4a8TJ1DI5Rjm5DC6b18mT56s0f5+1H2SfJKwDLUky3w3Fy+Op0WLeTRq5F+S\n3RHK0bOf+7CwAwQH7yUry5AaNRSMH99T60ne520vFG716tU8evSIjz76qLxLKZI+AXLFDgIVSWUZ\nBC7fvE/LhW1Z0WsHw3vY6byepFTywYoVyIC1I0YgK+asf/of6ZzxPkObTa2422QWd+/upF27zdSp\nY/uCPRAqksryua8OVq9ezePHjxk3blx5l1KkEh0Ebt26xbRp07h+/Trh4eEkJSURGxvLyJEjS7Zq\nHVSWP4b2kz9CiYIzc3/Wa71v165lPfBH//7ULOZK4IyjGfzZ509arqvH9QYfIpc3wMJiNXK52QtU\nLlREleVzL1Qc+gwCxZ4T8PPzo1evXqpbn7Vq1YqFCxeWUKlVT0hkAklsYceEIL3W2xMRwXempmzr\n1q3YAeDh8Yf82fdPmqy+TXLtnjRo4Iml5XYxAAiCoLdCB4H8s85paWn4+Phg+M89auVyeYnc0qwq\nylUoGbNzHMObBmHeuL7O61386y+GPXnCb/Xr83qLou81/OjPRyR6nsRsZTg36o3DwmItb7zxJTLZ\nC14wIghCtVTolsPe3h7ImyJacE7vkSNHqFevXulXVgn5Bf8PAwxZNs5P53Uepqfjdfw40zMzcXB0\nLLLt478ek+h9iBorZ5H12j7efjue+vV7vGDVgiBUZ4UOAvnHj7777jv69evHpUuX6Nq1K0OHDmXx\n4sVlVmBlce5qGr/e/IrlXj9iZKjbt3KlQsHwzZvp8uQJY318imz75OITTozYBD+NoZ75W9jY7KdG\njaYlUbogqMTFxdG1a1ccHR3x9fVVHRFYvny5qo2fn5/azdefNXfuXFJSUrhy5Qp79+59oXqevZVt\nYVMxi5OSkoKzszPOzs7UrVsXZ2dn3NzcXqi24vj5+WFvb0/Xrl0ZO3aszuv169cPV1dXjh07xs8/\n551X7NixY2mVWfjFYnfu3GHBggVIkoS3tzceHh5IkoSJiQmRkZFYW1uXWlGVUd/FU7A2GoyPo43O\n68xau5ZbcjnrBw7UmAn0/dwgdu34GblcwdNsQzqbtqTXzERatf+Bhg0Hl3T5QiUStjeMxb8uJlvK\nxkRmQqBvIJ49td84Xt/2r7/+OtHR0ZiYmPDll18SGhrKgAEDWLZsmSo3qLjEgPypzDExMURERNCz\nZ+HXJOTLv1jrWffv32fjxo28//77AKqNor6aN2+umtZuZ2dXJlPcZTKZ6mIxDw8PYmNj6dKlC1B4\nf2/evIlMJiMyMhL4d+NfmikNhQ4CCoWChw8faix/8uRJqRVTWS3bHctF2S4uf3JW53V27NrFsjp1\niLO3x6RmTbXnvp8bRHTkHL6c9e/vf9nP10g4Pp53eogBoDoL2xvGhCUTSLZNVi1LXpL3s7YNu77t\nCwauGRsbY2hoyPbt20WAXHUMkLOxsSk0cKi8FFFuucnMzpFqTrSRxv0UovM6SadOSa9s3y4dKRAt\nW1DPrs2k6Gg0Hr26vl5SZQuVSMHPfS+/XhIz0Hi4+btpXVff9vlSUlKkLl26qALdRIBcNQ6QE4r2\nwaKfMOElgkf76tQ+PS2NfklJzDUwoNM/u4bPksu157oYyV88J0So3LKlbK3L91zag+xrLYcMLgPN\nNRdnKbMKfY+MjAyGDRvG6tWrVbMCnyUC5KpBgNy+ffte+MWrulOXbrH17ky2++zHwKD4Y3aK3Fx8\nQ0NxlyT8R40qtF1urvbXys0RY3Z1ZyIz0brcrYUb4dM1E+TcUtyIQDNBroZBDa2vk5uby6BBg5g+\nfbraBlgEyFXDALkGxdy8XACvJZ9jZ+RP385ti28MfLVmDVkGBnxXxOidde8uPRye8uMi9djoBbPq\n0Lvvhy9Ur1D5BfoGYn7CXG2Z+XFzxg8eXyLt169fT1xcHN988w3Ozs6qmTkiQO5f1S5AriKpSJfP\nLwrdz2d/fMC1qWd5rb5pse03hobyRU4O8d268UqjRlrbZD9IJ267EyY5lhxKsyD89+UYyXPJzTGi\nd98PmTj5y5LuhlAJaATI7Q0jeH0wWcosahjUYPzg8cXODtKnvVA4ESBXzirKIPAkK4f6X9ryseUM\nvh3xXrHtExMS6HH9OnsbN8amkPm+Tx8+JG6zC/Lc5tiN2IBBIcdiheqnonzuhWoaIFeRVJQ/hndn\nf8uR23u5/V14secC0m7dwu7gQebI5fj8cxLqWTlPHnN0Q0+MFK9g778FAxHLIRRQUT73QuWhzyAg\ntjZ6ij93jV0P5rDng9hiB4DcnBwG7t6NjyThM2KE9jZZWcSt98BQqoud3yYxAAiCUKZE6pie+i/9\nlG4mY+nZoehZAQCT1qzBRJKYNWyY1ucVOU+JC+kDGGI3NBRDuXEJVysIglA08bVTD7M3RnDLIJ6T\nn60qtu3qzZvZZWrKURcXDLV8u1fm5hK32htJlkUn3wiMTLRP/RMEQShNYk9ARxmPs5l+9GOm2iym\nQd1aRbaNi41lkrEx29u0weyVVzSeVyoUxK8aiMIgDbtBuzF6JjZCEMpLamoq3bp1UwWs3b17FxAB\ncs+jsgTIVbwchiKUZ7k9Zv5XajixT7Htbl69KjXdvFnavnOn1ucVCoV0dLmPdGClrZT94EFJlylU\nQc9+7vfv3ClN69VLmu7oKE3r1UvaX8hn7XnaKxQK1c+rVq2SZs+eLUmSZmzE6dOni627YOxBcQq+\nb0GXL19Wi40oCQX7Upr8/PykM2fOSJIkSb1795YOF4iJKay/N27ckPr166exXN+an/3MFLXtFIeD\ndPDH6RQiHy9g/4hjRbbLzsxkQGQkoySJfgMGaDyvVCpJWDmCLHkS9n33Y1y3bmmVLFRRB8LC2DNh\nArOS/w2Em/bPzw6emnP/9W1fMIwsIyMDMzMzESBXxQPkxOEgHbz/ywRcan/CO+3fLLJd4Lp1vJqT\nw/9puSJYqVRyYtVYMo2PYucZSQ0zcStIQX8RixerbdABZiUnszc4uETaAyQmJtKpUyd++OEHfH19\n8fLyonXr1kRFRTF4cF6Kbbdu3YiIiMDExIQ///xT6+uMHTsWHx8foqKiUCqV/Pbbbxw4cICIiAhm\nzpwJ5E1ddHd3JyIiAjMzM/bu3cuBAwdo0qQJUVFRjBs3DkdHR6KiomjTpo3a1b5ffPEF+/fvJzMz\nk4MHDyKTyTAzM2PHjh2MGDFC7TCSNlOmTGHbtm0cOHCA/fv3c/v2bWQyGW3btmXXrl3Url2brKws\noqOjefr0KZcvX0Ymk2FqakpYWBjTpk1j7ty5Rb6HJEkoFAoOHz6MhYWFWn+XLl3Ku+++S0xMDO3a\ntWPDhg3Mnz8fR0dHtmzZonVK55w5cwgMDCQyMhIrKyuNAfh5iEGgGP8J2cldg7Ns/fTzItv9vGED\nf9SuzZr33tN6oVfimk94ZBJFx17R1HxZ8zyBIOjCKFt7gJzhnj0gk2k8jCI0c4MADLMKD5Cztrbm\n6NGj/Pe//1VtrJ/1IgFy7777bqEBcgMGDMDJyYldu3Zx8+bNIl/v2QA5QC1Arri68gPknJ2duXr1\n6nMFyOW/b2H8/f1xdXUtNEBOWx+KkpSUxPTp03F2dmbbtm2kpqYWu05xxOGgItzLyGT2yUBmdv6Z\nurULn71z8MABpteowSELC+q89JLG84mrvyDDZAcdHA5Sq2Hhu6eCUJzcQmaRKdzcIFwzQC7XzQ20\nDASKGtoD5HJycpDL83Kr6tatS/Y/g44IkKuGAXICeH03m9eUHZj6fq9C21y9fBmfu3dZU6sWLS0s\nNJ7/M2Q66TXW83a3KEybiNtBCi+mV2Ag08zVA+G+NDen53jtgXD6tj958qQq5G3BggWqgDQRIPcv\nESBXjsry8vm9CRdw29SFo/4nsWutfeOd+fgx72zdykBJ4gstF4SdWR9EmuESbDrGUK9F8ReXCYI2\nz37uD4SFsTc4GMOsLBQ1atBz/HitJ3mft71QOBEgV87KahBQKiVe/aw3nV9xZeeX2s8FSEolw1as\nQAGsGzFC4x7Bf21awC2DeVi3j8bsrTalXrNQdYnsoIpDBMiVgKtXrzJs2DDVmfjRo0cTGBjIvXv3\n8PHx4cqVKzRv3pyNGzfy0jPH18vqj+HzFVsIPv0f7gWdpFYNudY2C0NCWAMc6tePWnXqqD13fuuP\n3GA67S320aCtdanXK1RtYhAQ9KXPIFDm5wTkcjkLFy7kzJkzHDlyhCVLlnD27FnmzJlDz549OX/+\nPK6ursyZM6esSwPg1r1HLDz7CXMclhQ6AOyLjGRe7dps79xZYwC4GPo/bsj+g6X5bjEACIJQ4ZX5\nIPDaa6+ppnGZmprSpk0brl+/zo4dOxg+fDgAw4cPZ/v27WVdGgD9FnxDM8mBiV5OWp+/dP48Hzx8\nyHozM95o2VL9uV0hXJMm0/b133nZuhQv8xYEQSgh5TpFNCUlhRMnTtCpUydSU1Np2LAhAA0bNiyR\n+a/62nEkifjcFZwcp/3il0cPHuAVH89XMhlOz9wbICViI3/njKf1a9t4tYP2G8gLgiBUNOU2RfTR\no0cMGDCARYsWUeeZQypFTe8qLUqlxPANH9G/wf9h1UJzLr+kVOK/aRMdMzP5aNAgtef+jgolJfND\n3mqwkUadncqoYkEQhBdXLoNATk4OAwYMYOjQoXj98426YcOG3Lp1C4CbN2/y6quval13xowZqkdM\nTEyJ1TR+2XqyZemETNB+1n/22rVcNTbmpyFD1GYCXTu4m0sP/WhZL4TG3XuWWD2CUJiwqCjcAgNx\nmjABt8BAwqKiSrQ95F24VfBvUKSI6q+8U0QLbiuLpFc0XQlQKpXS0KFDpYkTJ6ot//zzz6U5c+ZI\nkiRJs2fPliZPnqyxbmmVeyU1XTL4vLG0dNdhrc/v3L1barJli3T9yhW15TcOR0rR21+SUvZuKZW6\nBEGS1D/3OyMjJfNRoySio1UP81GjpJ2RkVrX1be9JElSbm6u5O3tLXXo0EG1TKSI6q+ypIiW+Z7A\noUOHCAkJITo6GltbW2xtbQkPD2fKlCns3buXt956i6ioKKZMmVJmNfVbOJ2WUm9G99Y8lv/X6dP4\nZ2ezqWFDGr/+ump5avxBzqW+xxvGS3ijR/8yq1Wo3hZv307ykCFqy5KHDCFYy5W8z9Me8vYCBg4c\nqDoku23bNlWK6Pr164G8FNFevXrh7e2tsb6/vz9nzpzh559/5rfffsPFxYX79++zatUqHBwc6Nat\nG9HR0QA4OTkxefJk3N3duX37Ni4uLjg4OPD++++jVCrVUkTPnj2r+kZ87do1evTogaOjI+P/ufp5\n1apVDBgwgL59+2Jvb686slCYY8eOqd7vu+++A/K+PQ8dOhQPDw+8vLz43//+h7OzM4P+OQS8atUq\nvLy88PT0xMHBgRs3bhT5HvnyU0QL9vfhw4f07dsXJycnBg8eTE5OjlqK6P79+/n8c/XrlNLS0vD2\n9sbV1ZUPPvgApVKp0/sXpcwHge7du6NUKjl58iQnTpzgxIkTuLu7U79+ffbt28f58+eJiIjQuEag\ntGw8kEiicj07AjWnpD64dw+v06eZnZ1Nl27dVMtvnzjK2eteNDNcwJu9fcukTkEAyC7kXNmeBw+Q\nxcRoPCIyMrS2Lyw+TqFQsGnTJnx8fFTLvL29RYpoFU4RrdYBcrkKJaO2jsO3+Te0bvay2nNKhYIP\ntm2jhyQxctQo1fK008dJSvGkiSwI8z5+ZVyxUN2ZFHLBj1u9eoQ7OWku37oVbTmi2uPjICQkRG0v\noDAvkiIKFJoiOnbsWNLT07lx4wYdOnQoNKBNWwKnoaGhWopoQkJCkTXlp4gCpKenP1eK6KJFi4p8\nD39/f2rVqlVoiujo0aNVyw4dOoSDg0ORr5eUlERcXBwzZ84kKyuLoVpi6/VVrQPkRv+4GqUsl1Xj\nR2k89581a8gwNGRhgV/yvb/+5PS53jRS/IdWXh+WZamCAECglxfm69apLTMPCWF8v34l0v7s2bOs\nWbOG3r17c+HCBSZOnAiUXIpodHQ00dHRqiRO0EwRjYmJwd3dXacUUYD4+HhVAqe+KaKhoaFER0eT\nkJBAhw4dimyf/3r6pojGxMSoHdZ5NkUU0CtFNCgoiOjoaGJjY1WDyIuotnsCyTfusfraVFa/G4aR\nofpYuHnHDtbWqUN8167I/4nufXDxHKdO9+JVxWe09gksj5IFAU8XFwCCt20ji7xv9ON9fVXLX7R9\nwSv17e3t+f7774F/U0T9/f011ikqRXTq1Kn4+PiwbNkyVYqooaEhVlZWqtfO5+rqytChQ/n999+p\nWbOmRopoUFCQWoro8OHDCQoKon379nTv3l0tSlqfFFGlUomJiYnq0IquKaKPHz9WnSMZM2aMaiZP\nQUUNRAEBAQwZMoQNGzbw2muvMXXqVK5du1ZsimhAQADTp08HYN68eTRt2pSffvrpuZNEq22AXLvJ\nYzHAgD/nLlFb/ueJE7hcvcqeRo14+5/dtgcpFzkZ50SDnA+xHPJ/JfL+gqArkR1UcVTFFNFquSew\nem88f0nbufhJktryu6mpeF24wCK5XDUAPLx2hZNHXDHLGY7lUDEACEJ1V9YXspa2arcn8DRHgdkX\nnfFt+THLPxquWp6bk0PvtWuxkSTmjxwJwOOb1zkW8w71sr2x8fvuhd5XEJ6X2BMQ9FWhU0TLm1/w\ncoykGiwdq34TmMlr1mAAzPknxO7J7VQSIl2ok9kb6+HflkOlgiAIpa9aHQ46+/cdNqT+h03vRWJg\n8O8u3dotWwitU4c4JycMjYzIuneXY+Eu1Mp5Bxv/4Cq3+ycIgpCvWg0C/YInYyv/gAHd26uWHTt6\nlE/lcqLNzan/6qtkP0gn/ndXauTY8vaIZarpXIIgCFVRtdnC/RR2iGQiCP1khmpZ6vXrDLh6laUy\nGZY2Njx9+JD4rT0xftqKjv6rxQAgVEhRYVEEugUywWkCgW6BRIUVHQinT/uUlBReeeUVVdja3bt3\nAREg9zzKO0BOZ3qlEpWz5y03MztHqjHRShq/dL1qWXZmptR95Urp/1askCRJkp4+fiQd/KWLFLus\nr6TIySmRegWhJBT83EfujJRGmY+SoolWPUaZj5Iid2oPhNO3fWGBbSJATn8iQK4C8f1+CTWll/l+\n1L95KBNDQqivUDBj2DBys7KIW++BobIudn6bMDCqVkfJhEpk++LtDElWD4QbkjyE0GDtgXD6tgdU\n8QXTpk0DRICcCJCr5E4m32T7vf8S4rtEdTJ4+W+/EV27Nmv790dSKogL6QMYYjc0FEO5cfkWjvLr\nHgAAELNJREFULAhFkGVrn6TwYM8DYmQxGo+MCO0BcoUlyDVu3Jjk5GQOHDjA7du32bp1qwiQEwFy\nlZvXj5PoVGsUHvYWABw6eJBpNWrwR6tWmNapw9FV/ZBkWXTyjcDon4gIQaioJBPtc73rudXDKdxJ\nY/lWt63okyBnbPzvl6D+/ftz5MgR+vfXjEoXAXJVJ0CuSg8CC7ZFc83gD+I+zbsy+PqVKwy8c4dV\ntWrRsnVr4le+j8IgDXufSIxq1iznagWheF6BXqxLXqd2iCfEPATf8dojzfVt/+jRI0xNTQE4cOAA\n7dq1A0ouQG7nzp0A5Obmqto9GyA3cuRIAgMDdQqQc3d3Jz4+Hj8/P7XsIEnHALnNmzdTt25dlEol\nBgYGqvq0kZ4zQK5t27Zqy54NkLO1tdUrQM7b25vu3bsD6r/H51VlDwc9ynzK1IMf8Vm773nVrDZZ\nT57gvX8/4x89wr1XL46tHMJToxTs39uLcW3T8i5XEHTi4unC4EWD2ea2jW2O29jmtg3fRb64eGoP\nhNO3/R9//EHHjh1xcHDg5s2b+PrmDRb5AXKhWm5GU1SAXEJCAj4+PsjlclWAnIuLC5MmTdJYx9XV\nlUWLFuHl5cWdO3c0AuQuXryoFiA3f/58HBwcMDExUW0UnydAzsXFBU9PT7KysjT6U1SA3KxZs/ji\niy+AwmctFTUQBQQEEBYWhpOTE2fOnGHQoEFIklRsgNzChQtxdXXF1dWVxMREUlNTnzs8DqpwbITH\nrHkcS4vh1ndhyJDwX7GCTOBXPz+Orx5FptFx7Pvup4aZWekWLQgvSMRGVBwiQK6SOHr2KuEP57Fv\n+FEMDGQsXvcrJ2vW5KCnJyfXfESm8VHseh8QA4AgCHqragkCVXJPoOmn79GyriUxM2YQFRWFb0YG\nR9q14/6hH8iQ78Kux0FqNXytDCoWhBcn9gQEfVXrPYFZv+0h1eAEpz5dy+Xz5/HNyODXunV5cHg5\nGSY76OAgBgBBEIR8VWoQSH+UxddxH/NVh2BMyME7Pp6pwCuPTnCvxnre7nIA0yZNy7tMQRCECqNK\nDQIDFsznZaUl/xnkzuAVK7ABetRKJU3+P2w6xlDn9TfLu0RBEIQKpcpMET1w6jLRTxaxadT3zA0J\n4ZKxMZNq3eeOSTBWNvuo16Lo+byCUFlERYURGOjGhAlOBAa6ERUVVqLtY2Ji6NGjBy4uLqopocuW\nLVM9LwLkdFNZAuSqzJ7A+ysD6dngMzKu/UWwqSm/PzxPWo3vaG+xD7O32pR3eYJQIqKiwli/fgJD\nhiSrlq1bl/ezi4vnC7fPzMxkwYIF7N69G7lcrlq+fPly1dWtxc2OmTx5MpA3mERERNCzZ89i+5V/\nsdaz7t+/z8aNG3n//fcBtN7MXRfNmzdX5RXZ2dmpfi5NMplMdbGYh4cHsbGxdOnSBSi8vzdv3kQm\nkxEZGQn8u/EvzRlJVWJPYNraHaQbXGCupwfDs7JYf+tPMup+i6X5bhq0tS7v8gShxGzfvlhtgw4w\nZEgyoaHBJdI+NjaWmjVr0qdPH/r3709qaqoIkBMBchVb2oMnzEucwEzbefj+lcRP54+ibLyYtq//\nzsvWpZjBLQjlQCbL1rr8wYM9xMTINB4ZGdqCg6CwBLnU1FQuXrzIzp07CQgIYMaMGSJATgTIVWxe\n3wXRSGHP4ew7jEk9T4N2y2jdcBuvduhS3qUJQomTJO0hh/XqueHkFK6xfOtWN/RJkDMzM6Nbt24Y\nGRnh4uLC7NmztbYTAXJVJ0CuUu8J7Dl2nsNPf+a9Vs5YpF3Gqt0y3mqwkUadncq7NEEoFV5egaxb\nZ662LCTEnH79xpdIezs7O86ePQvAyZMnMTfPW7ekAuSio6OJjo5WhbCBZoBcTEwM7u7uOgXIAcTH\nx6vC1/QNkAsNDSU6OpqEhAQ6dOhQZPvnDZCLiYlRO6zzbIAcoFeAXFBQENHR0cTGxqoGkRdRafcE\nlEoJ35CPGWw6jvu59xlusYSW9UJo3L34k1CCUFnln8zdti2YvEM6NfD1Ha/1JO/ztG/QoAHe3t44\nOjpiYGDAihUrgH8D5Pz9/TXWKSpAburUqfj4+LBs2TJVgJyhoSFWVlZ8//33auu4uroydOhQfv/9\nd2rWrKkRIBcUFKQWIDd8+HCCgoJo37493bt3V0sR1SdATqlUYmJiojq0omuA3OPHj1XnSMaMGaP1\npHVxAXJDhgxhw4YNvPbaa0ydOpVr164VGyAXEBDA9OnTAZg3bx5Nmzblp59+eu4QuUobG/HpL5vY\nnfgD7S36Ma7JN7xZ+xfe6KGZey4IlZ2Ijag4qmKAXKU8HHTj7kNWn56GTct3Gdv4G94wXiIGAEEQ\nyoQIkCtF4eHhTJw4EYVCwahRo1TzjfPlj2advpxEu9q1Gdo2mNeNFmDex698ChaEMiD2BAR9Vco9\nAYVCwccff0x4eDhJSUmsX79edYKqoNDDZ2gvZfBBmx9orJwlBgBBEIQXUGEGgbi4OFq2bEnz5s1V\ndyHSdhejeR93waLWOho8/pzWA3S/FFsQBEHQVGEGgevXr9OsWTPVv5s2bcr169c12s1a8JDDR3MZ\n8W1IWZZXbmJiYsq7hDIn+qzOzMxMNVNEPMRDl4eZHjfMqjCDgEym+8mWwElPkeX+XYrVVBxig1g9\nFNXne/fuqea9V6XH9OnTy72Gqtrne/fu6fzZqzDXCTRp0kR1xR7A1atXadpUM/t/1aq8/96+l01M\nTAxOTk5lU6AgCEIlERMTo/OXqQozCHTs2JELFy6QkpJC48aN+e2331QXYhTk55f339PxJmIAEARB\n0MLJyUlt+/j1118X3liqQHbt2iW99dZbkrm5uRQUFKTxvLk5EoiHeIiHeIiHPg9HR8dCt7sV6joB\nQRAEoWxVmBPDgiAIQtkTg4AgCEI1ViEHgfDwcCwsLGjVqlWhN20IDAykVatWWFtbq8XSVlbF9Xnd\nunVYW1tjZWVFt27dOHXqVDlUWbJ0+f8MeVHBRkZGbN26tQyrKx269DkmJgZbW1ssLS2rxOSH4vqc\nlpaGu7s7NjY2WFpasip/CmAlNWLECBo2bKi6F4E2FWr7VWpneZ9Tbm6uZG5uLl2+fFl6+vSpZG1t\nLSUlJam1CQsLk3r37i1JkiQdOXJE6tSpU3mUWmJ06fPhw4el9PR0SZIkaffu3dWiz/ntnJ2dJU9P\nT2nz5s3lUGnJ0aXP9+/fl9q2bStdvXpVkiRJunPnTnmUWmJ06fP06dOlKVOmSJKU19/69etLOTk5\n5VFuiThw4IB0/PhxydLSUuvzFW37VeH2BHSJj9ixYwfDhw8HoFOnTqSnp5Oamloe5ZYIXfrcpUsX\n6tWrB+T1+dq1a+VRaonRNSYkODiY9957j1deeaUcqixZuvT5119/ZcCAAaprZF5++eXyKLXE6NLn\nRo0akZGRAUBGRgYNGjTAyKjCzF7X2zvvvFPkFbsVbftV4QYBXeIjtLWpzBtFXSMz8v3yyy94eHiU\nRWmlRtf/z6GhoYwdm5cRpc9V5RWRLn2+cOEC9+7dw9nZmY4dO7J27dqyLrNE6dLngIAAzpw5Q+PG\njbG2ti72lo2VXUXbflW44VbXP3TpmZmtlXkDoU/t0dHRrFixgkOHDpViRaVPlz5PnDiROXPmIJPJ\nVJfDV2a69DknJ4fjx48TGRnJkydP6NKlC507dy72NoYVlS59DgoKwsbGhpiYGJKTk+nZsyeJiYnU\nqVOnDCosHxVp+1XhBgFd4iOebXPt2jWaNGlSZjWWNF0jM06dOkVAQADh4eF6BURVRLr0OSEhgUGD\nBgF5Jw93796NXC6nb9++ZVprSdGlz82aNePll1+mZs2a1KxZEwcHBxITEyvtIKBLnw8fPsy0adMA\nMDc358033+TcuXN07NixTGstKxVu+1WuZyS0yMnJkVq0aCFdvnxZys7OLvbEcGxsbLmfWHlRuvT5\nypUrkrm5uRQbG1tOVZYsXfpckJ+fn7Rly5YyrLDk6dLns2fPSq6urlJubq70+PFjydLSUjpz5kw5\nVfzidOnzJ598Is2YMUOSJEm6deuW1KRJE+nu3bvlUW6JuXz5sk4nhivC9qvC7QkYGRnxww8/4Obm\nhkKhYOTIkbRp04alS5cC8OGHH+Lh4cGuXbto2bIltWvXZuXKleVc9YvRpc8zZ87k/v37quPjcrmc\nuLi48iz7hejS56pGlz5bWFjg7u6OlZUVBgYGBAQE0LZt23Ku/Pnp0ucvv/wSf39/rK2tUSqVzJs3\nj/r165dz5c9v8ODB7N+/n7S0NJo1a8bXX39NTk4OUDG3XyI2QhAEoRqrcLODBEEQhLIjBgFBEIRq\nTAwCgiAI1ZgYBARBEKoxMQgIgiBUY2IQEARBqMbEICBUCQYGBkyaNEn172+//bbo+6pqYWpqWtJl\nPRc/Pz+2bNlS3mUI1YQYBIQqwdjYmG3btnH37l3g+bJYKkr+1IvUkZubW4KVCNWBGASEKkEulzN6\n9GgWLlyo8VxKSgouLi5YW1vTo0cPVW7L5cuX6dKlC1ZWVnz11Vdq68yfPx97e3usra2ZMWOG1vc0\nNTXlq6++wsbGhi5dunD79m1A85t8/h5GTEwMjo6OeHl5YW5uzpQpU1i7di329vZYWVlx6dIl1Tr7\n9u3Dzs6O1q1bExYWBoBCoeDzzz9X1bVs2TLV677zzjv069ePdu3aPedvUKiuxCAgVBnjxo1j3bp1\nqmz6fOPHj8ff35/ExESGDBlCYGAgABMmTOCjjz7i1KlTNG7cWNU+IiKCixcvEhcXx4kTJ0hISODg\nwYMa75ef8nny5EkcHBxYvnw5oPlNvuC/T506xdKlSzl79ixr164lOTmZuLg4Ro0aRXBwMJCXMHnl\nyhXi4+MJCwtjzJgxZGdn88svv/DSSy8RFxdHXFwcy5cvJyUlBYATJ06wePFizp079+K/SKFaEYOA\nUGXUqVOHYcOGsXjxYrXlR44cwdfXF4APPviAP/74A8hLrxw8eLBqeb6IiAgiIiKwtbWlQ4cOnDt3\njosXL2q8n7GxMZ6engB06NBBtUEuip2dHQ0bNsTY2JiWLVvi5uYGgKWlpWp9mUzGwIEDAWjZsiUt\nWrTgr7/+IiIigjVr1mBra0vnzp25d++eqi57e3veeOMNXX9VgqBS4QLkBOFFTJw4kbfffht/f3+1\n5fpGZE2dOpXRo0cX2UYul6t+NjAwUB2PNzIyQqlUAqBUKnn69KmqnYmJido6+f8uuL42+XsTP/zw\nAz179lR7LiYmhtq1a+vSLUHQIPYEhCrFzMyMgQMH8ssvv6g2nF27dmXDhg0ArFu3DgcHBwC6deum\ntjyfm5sbK1as4PHjx0DenaDu3Lmjcw3NmzcnISEByLuVYH6CpK4kSWLTpk1IkkRycjKXLl3CwsIC\nNzc3fvzxR9Vgcf78eZ48eaLXawvCs8QgIFQJBY+7f/bZZ6Slpan+HRwczMqVK7G2tmbdunWq2xcu\nWrSIJUuWYGVlxY0bN1Sv0bNnT3x9fVUnjQcOHMijR4+KfE+ZTKb6d0BAAPv378fGxoYjR46oTT0t\nbOZPwfVlMhmvv/469vb2eHh4sHTpUoyNjRk1ahRt27bl7bffpn379owdO5bc3Fy1dQVBXyJKWhAE\noRoTewKCIAjVmBgEBEEQqjExCAiCIFRjYhAQBEGoxsQgIAiCUI2JQUAQBKEaE4OAIAhCNSYGAUEQ\nhGrs/wHG815QFkaRdwAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x8959210>"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.4-2, Page number 356"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Unsteady-State Conduction Using the Digital Computer \n",
+ "\n",
+ "import copy \n",
+ "\n",
+ "#Variable declaration\n",
+ "thk = 1. #Thickness of slab, m\n",
+ "Ti = 100. #Initial uniform temperature of slab, \u00b0C\n",
+ "Ta = 0. #Constant Temperature of environment, \u00b0C\n",
+ "alpha = 2.0e-5 #Thermal diffusivity of slab, m2/s\n",
+ "ns = 20 #Number of slices\n",
+ "M = 2.0 #M for Schmidt numerical method\n",
+ "tmax = 6000 #Time at which temperature of the slab at various location to be calculated, s\n",
+ "\n",
+ "#Calculation and Result\n",
+ "dx = thk/ns\n",
+ "x = range(21)\n",
+ "dt = dx**2/(alpha*M)\n",
+ "m = tmax/dt\n",
+ "\n",
+ "t=0\n",
+ "T = [Ti,Ti,Ti,Ti,Ti,Ti,Ti,Ti,Ti,Ti,Ti,Ti,Ti,Ti,Ti,Ti,Ti,Ti,Ti,Ti,Ti]\n",
+ "T[0] = Ta\n",
+ "Tcal = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]\n",
+ "\n",
+ "for i in range(1,96,1):\n",
+ " t = int(dt*i)\n",
+ " for j in range(len(T)):\n",
+ " if j==0:\n",
+ " Tcal[j]= Ta\n",
+ " #print Tcal[j]\n",
+ " elif j>=1 and j<(len(T)-1):\n",
+ " Tcal[j]=(T[j-1]+T[j+1])/2.\n",
+ " #print T[j-1], T[j+1],Tcal[j]\n",
+ " else:\n",
+ " Tcal[j]=((M-2)*T[j]+2*T[j-1])/M\n",
+ " #print Tcal[j]\n",
+ " T = copy.copy(Tcal)\n",
+ " #plt.plot(x,T, 'o-',label=str(i)+'th iteration Temp. Profile.')\n",
+ "print \"At 6000s\"\n",
+ "\n",
+ "for i in range(1,22,4):\n",
+ " print \"Temperature of the node\",i,\"is\", round(T[i-1],2),\"\u00b0C\"\n",
+ "\n",
+ "print 'The difference in the answers is due to rounding error'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "At 6000s\n",
+ "Temperature of the node 1 is 0.0 \u00b0C\n",
+ "Temperature of the node 5 is 31.81 \u00b0C\n",
+ "Temperature of the node 9 is 58.72 \u00b0C\n",
+ "Temperature of the node 13 is 77.81 \u00b0C\n",
+ "Temperature of the node 17 is 88.64 \u00b0C\n",
+ "Temperature of the node 21 is 92.08 \u00b0C\n",
+ "The difference in the answers is due to rounding error\n"
+ ]
+ }
+ ],
+ "prompt_number": 25
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.4-3, Page number 357"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Unsteady-State conduction with Convective Boundary Conditions\n",
+ "\n",
+ "import copy \n",
+ "\n",
+ "#Variable declaration\n",
+ "thk = 1.0 #Thickness of slab, m\n",
+ "Ti = 100. #Initial uniform temperature of slab, \u00b0C\n",
+ "Ta = 0. #Constant Temperature of environment, \u00b0C\n",
+ "alpha = 2.0e-5 #Thermal diffusivity of slab, m2/s\n",
+ "ns = 5 #Number slices\n",
+ "h = 25.0 #Covective coefficient, W/m2K\n",
+ "k = 10.0 #Thermal conductivity of slab, W/mK\n",
+ "M = 2.0 #M for Schmidt numerical method\n",
+ "tmax = 6000 #Time at which temperature of the slab at various location to be calculated, s\n",
+ "\n",
+ "#Calculation and Result\n",
+ "\n",
+ "dx = thk/ns\n",
+ "N = h*dx/k\n",
+ "M = 2*N+2\n",
+ "M =round(M+1)\n",
+ "dt = dx**2/(alpha*M)\n",
+ "m = tmax/dt\n",
+ "T = [Ti,Ti,Ti,Ti,Ti,Ti]\n",
+ "Tcal = [0,0,0,0,0,0]\n",
+ "x = range(6)\n",
+ "\n",
+ "for i in range(1,13,1):\n",
+ " for j in range(len(T)):\n",
+ " if j==0:\n",
+ " Tcal[j]= (1/M)*(2*N*Ta+(M-(2*N+2))*T[j]+2*T[j+1])\n",
+ " elif j>=1 and j<(len(T)-1):\n",
+ " Tcal[j]=(1/M)*(T[j+1]+(M-2)*T[j]+T[j-1])\n",
+ " else:\n",
+ " Tcal[j]=(1/M)*((M-2)*T[j]+2*T[j-1])\n",
+ " T = copy.copy(Tcal)\n",
+ " print 'i:%3d and time %5d s'%(i,i*dt)\n",
+ " for i in range(len(T)):\n",
+ " print \"Temperature of the node\",i+1,\"is\", round(T[i],2),\"\u00b0C\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "i: 1 and time 500 s\n",
+ "Temperature of the node 1 is 75.0 \u00b0C\n",
+ "Temperature of the node 2 is 100.0 \u00b0C\n",
+ "Temperature of the node 3 is 100.0 \u00b0C\n",
+ "Temperature of the node 4 is 100.0 \u00b0C\n",
+ "Temperature of the node 5 is 100.0 \u00b0C\n",
+ "Temperature of the node 6 is 100.0 \u00b0C\n",
+ "i: 2 and time 1000 s\n",
+ "Temperature of the node 1 is 68.75 \u00b0C\n",
+ "Temperature of the node 2 is 93.75 \u00b0C\n",
+ "Temperature of the node 3 is 100.0 \u00b0C\n",
+ "Temperature of the node 4 is 100.0 \u00b0C\n",
+ "Temperature of the node 5 is 100.0 \u00b0C\n",
+ "Temperature of the node 6 is 100.0 \u00b0C\n",
+ "i: 3 and time 1500 s\n",
+ "Temperature of the node 1 is 64.06 \u00b0C\n",
+ "Temperature of the node 2 is 89.06 \u00b0C\n",
+ "Temperature of the node 3 is 98.44 \u00b0C\n",
+ "Temperature of the node 4 is 100.0 \u00b0C\n",
+ "Temperature of the node 5 is 100.0 \u00b0C\n",
+ "Temperature of the node 6 is 100.0 \u00b0C\n",
+ "i: 4 and time 2000 s\n",
+ "Temperature of the node 1 is 60.55 \u00b0C\n",
+ "Temperature of the node 2 is 85.16 \u00b0C\n",
+ "Temperature of the node 3 is 96.48 \u00b0C\n",
+ "Temperature of the node 4 is 99.61 \u00b0C\n",
+ "Temperature of the node 5 is 100.0 \u00b0C\n",
+ "Temperature of the node 6 is 100.0 \u00b0C\n",
+ "i: 5 and time 2500 s\n",
+ "Temperature of the node 1 is 57.71 \u00b0C\n",
+ "Temperature of the node 2 is 81.84 \u00b0C\n",
+ "Temperature of the node 3 is 94.43 \u00b0C\n",
+ "Temperature of the node 4 is 98.93 \u00b0C\n",
+ "Temperature of the node 5 is 99.9 \u00b0C\n",
+ "Temperature of the node 6 is 100.0 \u00b0C\n",
+ "i: 6 and time 3000 s\n",
+ "Temperature of the node 1 is 55.35 \u00b0C\n",
+ "Temperature of the node 2 is 78.96 \u00b0C\n",
+ "Temperature of the node 3 is 92.41 \u00b0C\n",
+ "Temperature of the node 4 is 98.05 \u00b0C\n",
+ "Temperature of the node 5 is 99.68 \u00b0C\n",
+ "Temperature of the node 6 is 99.95 \u00b0C\n",
+ "i: 7 and time 3500 s\n",
+ "Temperature of the node 1 is 53.31 \u00b0C\n",
+ "Temperature of the node 2 is 76.42 \u00b0C\n",
+ "Temperature of the node 3 is 90.45 \u00b0C\n",
+ "Temperature of the node 4 is 97.05 \u00b0C\n",
+ "Temperature of the node 5 is 99.34 \u00b0C\n",
+ "Temperature of the node 6 is 99.82 \u00b0C\n",
+ "i: 8 and time 4000 s\n",
+ "Temperature of the node 1 is 51.54 \u00b0C\n",
+ "Temperature of the node 2 is 74.15 \u00b0C\n",
+ "Temperature of the node 3 is 88.59 \u00b0C\n",
+ "Temperature of the node 4 is 95.97 \u00b0C\n",
+ "Temperature of the node 5 is 98.89 \u00b0C\n",
+ "Temperature of the node 6 is 99.58 \u00b0C\n",
+ "i: 9 and time 4500 s\n",
+ "Temperature of the node 1 is 49.96 \u00b0C\n",
+ "Temperature of the node 2 is 72.11 \u00b0C\n",
+ "Temperature of the node 3 is 86.83 \u00b0C\n",
+ "Temperature of the node 4 is 94.86 \u00b0C\n",
+ "Temperature of the node 5 is 98.33 \u00b0C\n",
+ "Temperature of the node 6 is 99.23 \u00b0C\n",
+ "i: 10 and time 5000 s\n",
+ "Temperature of the node 1 is 48.54 \u00b0C\n",
+ "Temperature of the node 2 is 70.25 \u00b0C\n",
+ "Temperature of the node 3 is 85.15 \u00b0C\n",
+ "Temperature of the node 4 is 93.72 \u00b0C\n",
+ "Temperature of the node 5 is 97.69 \u00b0C\n",
+ "Temperature of the node 6 is 98.78 \u00b0C\n",
+ "i: 11 and time 5500 s\n",
+ "Temperature of the node 1 is 47.26 \u00b0C\n",
+ "Temperature of the node 2 is 68.55 \u00b0C\n",
+ "Temperature of the node 3 is 83.57 \u00b0C\n",
+ "Temperature of the node 4 is 92.57 \u00b0C\n",
+ "Temperature of the node 5 is 96.97 \u00b0C\n",
+ "Temperature of the node 6 is 98.23 \u00b0C\n",
+ "i: 12 and time 6000 s\n",
+ "Temperature of the node 1 is 46.09 \u00b0C\n",
+ "Temperature of the node 2 is 66.98 \u00b0C\n",
+ "Temperature of the node 3 is 82.06 \u00b0C\n",
+ "Temperature of the node 4 is 91.42 \u00b0C\n",
+ "Temperature of the node 5 is 96.19 \u00b0C\n",
+ "Temperature of the node 6 is 97.6 \u00b0C\n"
+ ]
+ }
+ ],
+ "prompt_number": 29
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.5-1, Page number 361"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Chilling Dressed Beef\n",
+ "\n",
+ "#Variable Declaration\n",
+ "\n",
+ "rho = 1073. #Density of a beef, kg/m3\n",
+ "cp = 3480. #Specific heat of Beef, J/(kg.K)\n",
+ "k = 0.498 #Thermal conductivity of beef, W/(m.K)\n",
+ "thk = 0.203 #Thickness of beef slab, m\n",
+ "Ti = 37.8 #Initial beef temperature, deg C\n",
+ "Tf = 1.7 #Uniform fluid temeperature, deg C\n",
+ "T = 10. #Temperature of the centre, deg C\n",
+ "h = 39.7 #Convective heat Transfer coefficient, W/(m2.K)\n",
+ "x = 0\n",
+ "#Calculation\n",
+ "\n",
+ "alpha = k/(rho*cp) #Thermal diffusivity of beef slab, m2/s\n",
+ "x1 = thk/2 #Centre of slab, m\n",
+ "n = x/x1\n",
+ "m = k/(h*x1)\n",
+ "Y = (Tf-T)/(Tf-Ti)\n",
+ "X = 0.90 \n",
+ "t = X*x1**2/alpha\n",
+ "#Result\n",
+ "print \"The parameter to be used in association with Fig. 5.3-6\"\n",
+ "print \"n: \", n\n",
+ "print \"m: \", round(m,4)\n",
+ "print \"Y: \", round(Y,4)\n",
+ "print \"Time required to attend 10\u00b0C: \", round(t,1),\"s OR\", round(t/3600,1), \"hr\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The parameter to be used in association with Fig. 5.3-6\n",
+ "n: 0.0\n",
+ "m: 0.1236\n",
+ "Y: 0.2299\n",
+ "Time required to attend 10\u00b0C: 69522.3 s OR 19.3 hr\n"
+ ]
+ }
+ ],
+ "prompt_number": 19
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.5-2, Page number 364"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Freezing of Meat \n",
+ "\n",
+ "#Variable Declaration\n",
+ "\n",
+ "rho = 1057. #Density of a meat, kg/m3\n",
+ "cp = 3480. #Specific heat of Beef, J/(kg.K)\n",
+ "k = 1.038 #Thermal conductivity of meat, W/(m.K)\n",
+ "a = 0.0635 #Thickness of beef slab, m\n",
+ "Tf = 270.4 #Initial meat temperature, deg C\n",
+ "T1 = 244.3 #Uniform air blast temeperature, K\n",
+ "h = 17.0 #Convective heat Transfer coefficient, W/(m2.K)\n",
+ "Lambdafw = 335000 #Latent heat of fusion of for Water, J/kg\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "Lambdameat = 0.75*Lambdafw\n",
+ "t = Lambdameat*rho/(Tf-T1)*(a/(2*h)+a**2/(8*k))\n",
+ "\n",
+ "#Results\n",
+ "print \"Latent heat of freezing of meat:\", round(Lambdameat/1000,1), \"kJ/kg\"\n",
+ "print 'Time required for freezing:%4.3e s OR %3.2f'%(t,t/3600)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Latent heat of freezing of meat: 251.3 kJ/kg\n",
+ "Time required for freezing:2.394e+04 s OR 6.65\n"
+ ]
+ }
+ ],
+ "prompt_number": 33
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file |