summaryrefslogtreecommitdiff
path: root/Strength_Of_Materials_by_S_S_Bhavikatti/chapter_9.ipynb
diff options
context:
space:
mode:
authorTrupti Kini2016-11-14 23:30:28 +0600
committerTrupti Kini2016-11-14 23:30:28 +0600
commita752afee497bb5a66577ba24d6d2a138a31cfdc9 (patch)
tree2d087b6428d3e212f9b12d8929ab4efda652765d /Strength_Of_Materials_by_S_S_Bhavikatti/chapter_9.ipynb
parent01b313afadc09f56176ecb22db02289591e05af5 (diff)
downloadPython-Textbook-Companions-a752afee497bb5a66577ba24d6d2a138a31cfdc9.tar.gz
Python-Textbook-Companions-a752afee497bb5a66577ba24d6d2a138a31cfdc9.tar.bz2
Python-Textbook-Companions-a752afee497bb5a66577ba24d6d2a138a31cfdc9.zip
Added(A)/Deleted(D) following books
A Strength_Of_Materials_by_S_S_Bhavikatti/chapter_10_Sgd9FNt.ipynb A Strength_Of_Materials_by_S_S_Bhavikatti/chapter_2.ipynb A Strength_Of_Materials_by_S_S_Bhavikatti/chapter_3.ipynb A Strength_Of_Materials_by_S_S_Bhavikatti/chapter_4.ipynb A Strength_Of_Materials_by_S_S_Bhavikatti/chapter_5.ipynb A Strength_Of_Materials_by_S_S_Bhavikatti/chapter_6.ipynb A Strength_Of_Materials_by_S_S_Bhavikatti/chapter_7.ipynb A Strength_Of_Materials_by_S_S_Bhavikatti/chapter_8.ipynb A Strength_Of_Materials_by_S_S_Bhavikatti/chapter_9.ipynb A Strength_Of_Materials_by_S_S_Bhavikatti/screenshots/BMD_IXQhYHC.JPG A Strength_Of_Materials_by_S_S_Bhavikatti/screenshots/S_F_D_1_0Q7t8pV.JPG A Strength_Of_Materials_by_S_S_Bhavikatti/screenshots/s.JPG
Diffstat (limited to 'Strength_Of_Materials_by_S_S_Bhavikatti/chapter_9.ipynb')
-rw-r--r--Strength_Of_Materials_by_S_S_Bhavikatti/chapter_9.ipynb779
1 files changed, 779 insertions, 0 deletions
diff --git a/Strength_Of_Materials_by_S_S_Bhavikatti/chapter_9.ipynb b/Strength_Of_Materials_by_S_S_Bhavikatti/chapter_9.ipynb
new file mode 100644
index 00000000..cd67d50b
--- /dev/null
+++ b/Strength_Of_Materials_by_S_S_Bhavikatti/chapter_9.ipynb
@@ -0,0 +1,779 @@
+{
+ "metadata": {
+ "name": "chapter 9.ipynb"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 9:Columns And Struts"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.9.1,Page No.377"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "import numpy as np\n",
+ "\n",
+ "#Initilization of Variables\n",
+ "L=5000 #mm #Length of strut\n",
+ "dell=10 #mm #Deflection\n",
+ "W=10 #N #Load\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "#Central Deflection of a simply supported beam with central concentrated load is\n",
+ "#dell=W*L**3*(48*E*I)**-1 \n",
+ "\n",
+ "#Let E*I=X\n",
+ "X=W*L**3*(48*dell)**-1 #mm\n",
+ "\n",
+ "#Euler's Load\n",
+ "#Let Euler's Load be P\n",
+ "P=pi**2*X*(L**2)**-1\n",
+ "\n",
+ "#Result\n",
+ "print\"Critical Load of Bar is\",round(P,2),\"N\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Critical Load of Bar is 1028.08 N\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.9.2,Page No.377"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "import numpy as np\n",
+ "\n",
+ "#Initilization of Variables\n",
+ "\n",
+ "L=2000 #mm #Length of square column\n",
+ "E=12*10**3 #N/mm**2 #Modulus of Elasticity\n",
+ "sigma=12 #N/mm*2 #stress\n",
+ "W1=95*10**3 #N #Load1\n",
+ "W2=200*10**3 #N #Load2\n",
+ "FOS=3\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "#From Euler's Formula\n",
+ "#P=pi**2*E*I*(L**2)**-1 .........(1)\n",
+ "\n",
+ "#Working Load\n",
+ "#W=P*(FOS)**-1\n",
+ "\n",
+ "#Part-1\n",
+ "\n",
+ "#At W1=95*10**3 #N\n",
+ "#W1=P*(3*L**2)**-1\n",
+ "\n",
+ "#Let 'a' be the side of the square\n",
+ "#I=1*12**-1*a**4\n",
+ "\n",
+ "#sub value of I in Equation 1 and further rearranging we get\n",
+ "a=(W1*3*12*L**2*(pi**2*E)**-1)**0.25 #mm\n",
+ "\n",
+ "#From Consideration of direct crushing\n",
+ "#sigma*a**2=W1\n",
+ "#After Reaaranging the above equation we get\n",
+ "a2=(W1*(sigma)**-1)**0.5 #mm\n",
+ "\n",
+ "#required size is 103.67*103.67 i.e a*a\n",
+ "\n",
+ "#Part-2\n",
+ "\n",
+ "#At W2=200*10**3 #N\n",
+ "#W2=P*(3*L**2)**-1\n",
+ "#After substituting values and further Rearranging the above equation we get\n",
+ "a3=(W2*3*12*L**2*(pi**2*E)**-1)**0.25 #mm\n",
+ "\n",
+ "#From consideration of direct compression,size required is\n",
+ "a4=(W2*sigma**-1)**0.5\n",
+ "\n",
+ "#required size is 129.10*129.10 i.e a4*a4\n",
+ "\n",
+ "#Result\n",
+ "print\"For W1 Load Required size is\",round(a*a,2),\"mm**2\"\n",
+ "print\"For W2 Load Required size is\",round(a4*a4,2),\"mm**2\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "For W1 Load Required size is 10747.38 mm**2\n",
+ "For W2 Load Required size is 16666.67 mm**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.9.3,Page No.378"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "import numpy as np\n",
+ "\n",
+ "#Initilization of Variables\n",
+ "\n",
+ "#Flange \n",
+ "b=100 #mm #Width\n",
+ "\n",
+ "D=80 #mm #Overall Depth\n",
+ "t=10 #mm #Thickness of web and flanges\n",
+ "L=3000 #mm #Length of strut\n",
+ "E=200*10**3 #N/mm**2 #Modulus of Elasticity\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "#Let centroid be at depth y_bar from top fibre\n",
+ "y_bar=(b*t*t*2**-1+(D-t)*t*((D-t)*2**-1+t))*(b*t+(D-t)*t)**-1 #mm \n",
+ "\n",
+ "#M.I at x-x axis\n",
+ "I_x=1*12**-1*b*t**3+b*t*(y_bar-t*2**-1)**2+1*12**-1*t*((D-t))**3+t*((D-t))*((((D-t)*2**-1)+t)-y_bar)**2\n",
+ "\n",
+ "#M.I at y-y axis\n",
+ "I_y=1*12**-1*t*b**3+1*12**-1*(D-t)*t**3 #mm**3\n",
+ "\n",
+ "#Least M.I\n",
+ "I=I_y\n",
+ "\n",
+ "#Since both ends are hinged\n",
+ "#Feective Length=Actual Length\n",
+ "L=l=3000 #mm\n",
+ "\n",
+ "#Buckling Load \n",
+ "P=pi**2*E*I*(l**2)**-1*10**-3 #KN\n",
+ "\n",
+ "#Result\n",
+ "print\"The Buckling Load for strut of tee section\",round(P,2),\"KN\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The Buckling Load for strut of tee section 184.05 KN\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.9.4,Page No.379"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "import numpy as np\n",
+ "\n",
+ "#Initilization of Variables\n",
+ "\n",
+ "D=400 #mm #Overall Depth\n",
+ "\n",
+ "#Flanges\n",
+ "b=300 #mm #Width\n",
+ "t=50 #mm #Thickness\n",
+ "\n",
+ "t2=30 #mm #Web Thickness\n",
+ "\n",
+ "dell=10 #mm #Deflection\n",
+ "w=40 #N/mm #Load\n",
+ "FOS=1.75 #Factor of safety\n",
+ "E=2*10**5 #N/mm**2\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "#M.I at x-x axis\n",
+ "I_x=1*12**-1*(b*D**3-(b-t2)*b**3) #mm**4\n",
+ "\n",
+ "#Central Deflection\n",
+ "#dell=5*w*L**4*(384*E*I)**-1\n",
+ "#After sub values in above equation and further simplifying we get\n",
+ "L=(dell*384*E*I_x*(5*w)**-1)**0.25\n",
+ "\n",
+ "#M.I aty-y axis\n",
+ "I=I_y=1*12**-1*t*b**3+1*12**-1*b*t2**3+1*12**-1*t*b**3 #mm**4\n",
+ "\n",
+ "#Both the Ends of column are hinged\n",
+ "\n",
+ "#Crippling Load\n",
+ "P=pi**2*E*I*(L**2)**-1 #N\n",
+ "\n",
+ "#Safe Load\n",
+ "S=P*(FOS)**-1*10**-3 #N\n",
+ "\n",
+ "#Result\n",
+ "print\"Safe Load if I-section is used as column with both Ends hhinged\",round(S,2),\"KN\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Safe Load if I-section is used as column with both Ends hhinged 4123.29 KN\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.9.5,Page No.381"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "import numpy as np\n",
+ "\n",
+ "#Initilization of Variables\n",
+ "\n",
+ "D=200 #mm #External Diameter\n",
+ "t=20 #mm #hickness\n",
+ "d=200-2*t #mm #Internal Diameter\n",
+ "E=1*10**5 #N/mm**2\n",
+ "a=1*(1600)**-1 #Rankine's Constant\n",
+ "L=4.5 #m #Length\n",
+ "sigma=550 #N/mm**2 #Stress\n",
+ "FOS=2.5\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "#Moment of Inertia\n",
+ "I=pi*D**4*64**-1-pi*d**4*64**-1\n",
+ "\n",
+ "#Both Ends are fixed\n",
+ "\n",
+ "#Effective Length\n",
+ "l=1*2**-1*L*10**3 #mm\n",
+ "\n",
+ "#Euler's Critical Load\n",
+ "P_E=pi**2*E*I*(l**2)**-1\n",
+ "\n",
+ "A=pi*4**-1*(D**2-d**2) #mm*2\n",
+ "\n",
+ "k=(I*A**-1)**0.5\n",
+ "\n",
+ "#Rankine's Critical Load\n",
+ "P_R=sigma*A*(1+a*(l*k**-1)**2)**-1\n",
+ "\n",
+ "X=P_E*P_R**-1 \n",
+ "\n",
+ "#Safe Load using Rankine's Formula\n",
+ "S=P_R*(FOS)**-1*10**-3 #KN\n",
+ "\n",
+ "#Result\n",
+ "print\"Safe Load by Rankine's Formula is\",round(S,2),\"KN\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Safe Load by Rankine's Formula is 1404.36 KN\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.9.6,Page No.382"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "import numpy as np\n",
+ "\n",
+ "#Initilization of Variables\n",
+ "\n",
+ "L=3000 #mm #Length of column\n",
+ "W=800*10**3 #N #Load\n",
+ "a=1*1600**-1 #Rankine's constant\n",
+ "FOS=4 #Factor of safety\n",
+ "sigma=550 #N/mm**2 #stress\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "#Effective Length\n",
+ "l=L*2**-1 #mm \n",
+ "\n",
+ "#Let d1=outer diameter & d2=inner diameter\n",
+ "#d1=5*8**-1*d2\n",
+ "\n",
+ "#M.I\n",
+ "#I=pi*64**-1*(d1**4-d2**4) #mm**4\n",
+ "\n",
+ "#Area of section\n",
+ "#A=pi4**-1*(d1**2-d2**2) #mm**2\n",
+ "\n",
+ "#k=(I*A**-1) \n",
+ "#substituting values in above equation \n",
+ "#k=1*16**-1*(d1**2-d2**2)\n",
+ "#after simplifying further we get\n",
+ "#k=0.2948119.d1\n",
+ "\n",
+ "#X=l*k**-1\n",
+ "#substituting values in above equation and after simplifying further we get\n",
+ "#X=5087.9898*d1**-1\n",
+ "\n",
+ "#Crtitcal Load\n",
+ "P=W*FOS #N\n",
+ "\n",
+ "#From Rankine's Load\n",
+ "#P2=sigma*A*(1+a*(X)**2)**-1\n",
+ "#substituting values in above equation and after simplifying further we get\n",
+ "#d1**4-12156618*d1**4-1.96691*10**8=0\n",
+ "#Solving Quadratic Equation we get\n",
+ "#d1**2-12156618*d1-196691000=0\n",
+ "a=1\n",
+ "b=-12156.618\n",
+ "c=-196691000\n",
+ "\n",
+ "Y=b**2-4*a*c\n",
+ "\n",
+ "d1_1=((-b+Y**0.5)*(2*a)**-1)**0.5 #mm\n",
+ "d1_2=((-b-Y**0.5)*(2*a)**-1) #mm\n",
+ "\n",
+ "d2=5*8**-1*d1_1\n",
+ "\n",
+ "#Result\n",
+ "print\"Section of cast iron hollow cylindrical column is:d1_1\",round(d1_1,2),\"mm\"\n",
+ "print\" :d2 \",round(d2,2),\"mm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Section of cast iron hollow cylindrical column is:d1_1 146.16 mm\n",
+ " :d2 91.35 mm\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.9.7,Page No.383"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "import numpy as np\n",
+ "\n",
+ "#Initilization of Variables\n",
+ "\n",
+ "#Let X=(P*A**-1) #Average Stress at Failure \n",
+ "Lamda_1=70 #Slenderness Ratio\n",
+ "Lamda_2=170 #Slenderness Ratio\n",
+ "X1=200 #N/mm**2 \n",
+ "X2=69 #N/mm**2 \n",
+ "\n",
+ "#Rectangular section\n",
+ "b=60 #mm #width\n",
+ "t=20 #mm #Thickness\n",
+ "\n",
+ "L=1250 #mm #Length of strut\n",
+ "FOS=4 #Factor of safety\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "#Slenderness ratio\n",
+ "#Lamda=L*k**-1\n",
+ "\n",
+ "#The Rankine's Formula for strut\n",
+ "#P=sigma*A*(1+a*(L*k**-1)**-1\n",
+ "\n",
+ "#From test result 1,\n",
+ "#After sub values in above equation we get and further simplifying we get\n",
+ "#sigma_1=200+980000*a ...................(1)\n",
+ "\n",
+ "#From test result 2,\n",
+ "#After sub values in above equation we get and further simplifying we get\n",
+ "#sigma_2=69+1994100*a ...................(2)\n",
+ "\n",
+ "#Substituting it in equation (1) we get\n",
+ "a=131*1014100**-1 \n",
+ "\n",
+ "#Substituting a in equation 1\n",
+ "sigma_1=200+980000*a #N/mm**2\n",
+ "\n",
+ "#Effective Length \n",
+ "l=1*2**-1*L #mm\n",
+ "\n",
+ "#Least of M.I\n",
+ "I=1*12**-1*b*t**3 #mm**4\n",
+ "\n",
+ "#Area \n",
+ "A=b*t #mm**2 \n",
+ "\n",
+ "k=(I*A**-1)**0.5\n",
+ "\n",
+ "#Slenderness ratio\n",
+ "Lamda=l*k**-1\n",
+ "\n",
+ "#From Rankine's Ratio\n",
+ "P=sigma_1*A*(1+a*(Lamda)**2)**-1\n",
+ "\n",
+ "#Safe Load\n",
+ "S=P*(FOS)**-1*10**-3 #N\n",
+ "\n",
+ "#Result\n",
+ "print\"Constant in the Formula is:a \",round(a,6)\n",
+ "print\" :sigma_1\",round(sigma_1,2)\n",
+ "print\"Safe Load is\",round(S,2),\"KN\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Constant in the Formula is:a 0.000129\n",
+ " :sigma_1 326.6\n",
+ "Safe Load is 38.98 KN\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.9.8,Page No.385"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "import numpy as np\n",
+ "\n",
+ "#Initilization of Variables\n",
+ "\n",
+ "D=200 #mm #Depth\n",
+ "b=140 #mm #width\n",
+ "\n",
+ "#Plate\n",
+ "b2=160 #mm #Width\n",
+ "t2=10 #mm #Thickness\n",
+ "\n",
+ "L=l=4000 #mm #Length\n",
+ "FOS=4 #Factor of safety\n",
+ "sigma=315 #N/mm**2 #stress\n",
+ "a2=1*7500**-1 \n",
+ "I_xx=26.245*10**6 #mm**4 #M.I at x-x\n",
+ "I_yy=3.288*10**6 #mm**4 #M.I at y-y\n",
+ "a=3671 #mm**2 #Area\n",
+ "k_x=84.6#mm\n",
+ "k_y=29.9 #mm\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "#Total Area\n",
+ "A=a+2*t2*b2 #mm**2\n",
+ "\n",
+ "#M.I\n",
+ "I=I_yy+2*12**-1*t2*b2**3 #mm**4\n",
+ "\n",
+ "k=(I*A**-1)**0.5 #mm\n",
+ "\n",
+ "#Let X=L*k**-1\n",
+ "X=L*k**-1\n",
+ "\n",
+ "#Appliying Rankine's Formula\n",
+ "P=sigma*A*(1+a2*(X)**2)**-1 #N\n",
+ "\n",
+ "#Safe Load\n",
+ "S=P*(FOS)**-1*10**-3 #KN\n",
+ "\n",
+ "#Result\n",
+ "print\"Safe axial Load is\",round(S,2),\"KN\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Safe axial Load is 220.93 KN\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.9.9,Page No.389"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "import numpy as np\n",
+ "\n",
+ "#Initilization of Variables\n",
+ "\n",
+ "E=200*10**3 #N/mm**2 #Modulus of elasticity\n",
+ "sigma=330 #N/mm**2 #Stress\n",
+ "a=1*7500**-1 #Rankine's constant\n",
+ "A=5205 #mm**2 #area of column\n",
+ "I_xx=59.431*10**6 #mm**4 #M.I at x-x axis\n",
+ "I_yy=8.575*10**6 #mm**24#M.I at y-y axis\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "#Total M.I\n",
+ "I=I_xx+I_yy #mm**4\n",
+ "\n",
+ "#Area of compound Section \n",
+ "A2=2*A #mm**2\n",
+ "\n",
+ "k=(I*A2**-1)**0.5 #mm\n",
+ "\n",
+ "#Equating Euler's Load to Rankine's Load we get\n",
+ "#pi**2*E*I*(L**2)**-1=sigma*A*(1+a*(L*k)**2)**-1\n",
+ "#After Substitt=uting values and further simplifying we get\n",
+ "L=(39076198*(1-0.7975432)**-1)**0.5*10**-3 #m\n",
+ "\n",
+ "#Result\n",
+ "print\"Length of column for which Rankine's formula and Euler's Formula give the same result is\",round(L,2),\"m\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Length of column for which Rankine's formula and Euler's Formula give the same result is 13.89 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.9.10,Page No.387"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "import numpy as np\n",
+ "\n",
+ "#Initilization of Variables\n",
+ "\n",
+ "sigma=326 #N/mm**2 #stress\n",
+ "E=2*10**5 #N/mm**2 #Modulus of Elasticity\n",
+ "FOS=2 #Factor of safety\n",
+ "a=1*7500**-1 #Rankine's constant\n",
+ "D=350 #mm #Overall Depth \n",
+ "\n",
+ "#Cover plates\n",
+ "b1=500 #mm #width\n",
+ "t1=10 #mm #Thickness\n",
+ "\n",
+ "d=220 #mm #Distance between two channels\n",
+ "\n",
+ "L=6000 #mm #Length of column\n",
+ "\n",
+ "A=5366 #mm**2 #Area of Column section \n",
+ "I_xx=100.08*10**6 #mm**4 #M.I of x-x axis\n",
+ "I_yy=4.306*10**6 #mm**4 #M.I of y-y axis\n",
+ "C_yy=23.6 #mm #Centroid at y-y axis\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "#Symmetric axes are the centroidal axes is\n",
+ "\n",
+ "#M.I of Channel at x-x axis\n",
+ "I_xx_1=2*I_xx+2*(1*12**-1*b1*t1**3+b1*t1*(D*2**-1+t1*2**-1)**2)\n",
+ "\n",
+ "#M.I of Channel at y-y axis\n",
+ "I_yy_1=2*(I_yy+A*(d*2**-1+C_yy)**2)+2*12**-1*t1*b1**3\n",
+ "\n",
+ "#As I_yy<I_xx\n",
+ "#So\n",
+ "I=I_yy_1 #mm**4 \n",
+ "\n",
+ "A2=2*A+2*t1*b1 #Area of channel\n",
+ "\n",
+ "k=(I*A2**-1)**0.5 #mm\n",
+ "\n",
+ "#Critical Load\n",
+ "P=sigma*A2*(1+a*(L*k**-1)**2)**-1 \n",
+ "\n",
+ "#Safe Load\n",
+ "S=P*2**-1*10**-3 #KN\n",
+ "\n",
+ "#Result\n",
+ "print\"Safe Load carrying Capacity is\",round(S,2),\"KN\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Safe Load carrying Capacity is 2717.35 KN\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.9.11,Page No.390"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "import numpy as np\n",
+ "\n",
+ "#Initilization of Variables\n",
+ "\n",
+ "I=4.085*10**8 #mm**4 #M.I\n",
+ "A=20732.0 #mm**2 #area of column\n",
+ "f_y=250 #N/mm**2 \n",
+ "L=6000 #mm #Length of column\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "k=(I*A**-1)**0.5 #mm\n",
+ "lamda=L*k**-1 #Slenderness ratro\n",
+ "\n",
+ "#From Indian standard table\n",
+ "lamda_1=40 \n",
+ "sigma_a_c_1=139 #N/mm**2\n",
+ "lamda_2=50 \n",
+ "sigma_a_c_2=132 #N/mm**2 \n",
+ "\n",
+ "#Linearly interpolating between these values for lambda=42.744\n",
+ "\n",
+ "sigma_a_c_3=sigma_a_c_1-2.744*10**-1*(sigma_a_c_1-sigma_a_c_2)\n",
+ "\n",
+ "#Safe Load carrying capacity of column\n",
+ "P=sigma_a_c_3*A*10**-3\n",
+ "\n",
+ "#Result\n",
+ "print\"Safe Load carrying capacity is\",round(P,2),\"KN\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Safe Load carrying capacity is 2841.93 KN\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file