diff options
author | Trupti Kini | 2016-11-14 23:30:28 +0600 |
---|---|---|
committer | Trupti Kini | 2016-11-14 23:30:28 +0600 |
commit | a752afee497bb5a66577ba24d6d2a138a31cfdc9 (patch) | |
tree | 2d087b6428d3e212f9b12d8929ab4efda652765d /Strength_Of_Materials_by_S_S_Bhavikatti/chapter_2.ipynb | |
parent | 01b313afadc09f56176ecb22db02289591e05af5 (diff) | |
download | Python-Textbook-Companions-a752afee497bb5a66577ba24d6d2a138a31cfdc9.tar.gz Python-Textbook-Companions-a752afee497bb5a66577ba24d6d2a138a31cfdc9.tar.bz2 Python-Textbook-Companions-a752afee497bb5a66577ba24d6d2a138a31cfdc9.zip |
Added(A)/Deleted(D) following books
A Strength_Of_Materials_by_S_S_Bhavikatti/chapter_10_Sgd9FNt.ipynb
A Strength_Of_Materials_by_S_S_Bhavikatti/chapter_2.ipynb
A Strength_Of_Materials_by_S_S_Bhavikatti/chapter_3.ipynb
A Strength_Of_Materials_by_S_S_Bhavikatti/chapter_4.ipynb
A Strength_Of_Materials_by_S_S_Bhavikatti/chapter_5.ipynb
A Strength_Of_Materials_by_S_S_Bhavikatti/chapter_6.ipynb
A Strength_Of_Materials_by_S_S_Bhavikatti/chapter_7.ipynb
A Strength_Of_Materials_by_S_S_Bhavikatti/chapter_8.ipynb
A Strength_Of_Materials_by_S_S_Bhavikatti/chapter_9.ipynb
A Strength_Of_Materials_by_S_S_Bhavikatti/screenshots/BMD_IXQhYHC.JPG
A Strength_Of_Materials_by_S_S_Bhavikatti/screenshots/S_F_D_1_0Q7t8pV.JPG
A Strength_Of_Materials_by_S_S_Bhavikatti/screenshots/s.JPG
Diffstat (limited to 'Strength_Of_Materials_by_S_S_Bhavikatti/chapter_2.ipynb')
-rw-r--r-- | Strength_Of_Materials_by_S_S_Bhavikatti/chapter_2.ipynb | 2793 |
1 files changed, 2793 insertions, 0 deletions
diff --git a/Strength_Of_Materials_by_S_S_Bhavikatti/chapter_2.ipynb b/Strength_Of_Materials_by_S_S_Bhavikatti/chapter_2.ipynb new file mode 100644 index 00000000..1e3b556e --- /dev/null +++ b/Strength_Of_Materials_by_S_S_Bhavikatti/chapter_2.ipynb @@ -0,0 +1,2793 @@ +{
+ "metadata": {
+ "name": "chapter 2.ipynb"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 2:Simple Stresses And Strains"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.2.1,Page No.14"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "import numpy as np\n",
+ "\n",
+ "#Initilization of Variables\n",
+ "P=45*10**3 #N #Load\n",
+ "E=200*10**3 #N/mm**2 #Modulus of elasticity of rod\n",
+ "L=500 #mm #Length of rod\n",
+ "d=20 #mm #Diameter of rod\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "A=pi*d**2*4**-1 #mm**2 #Area of circular rod\n",
+ "p=P*A**-1 #N/mm**2 #stress\n",
+ "e=p*E**-1 #strain \n",
+ "dell_l=(P*L)*(A*E)**-1\n",
+ "\n",
+ "#Result\n",
+ "print\"The stress in bar due to Load is\",round(p,5),\"N/mm\"\n",
+ "print\"The strain in bar due to Load is\",round(e,5),\"N/mm\"\n",
+ "print\"The Elongation in bar due to Load is\",round(dell_l,2),\"mm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The stress in bar due to Load is 143.23945 N/mm\n",
+ "The strain in bar due to Load is 0.00072 N/mm\n",
+ "The Elongation in bar due to Load is 0.36 mm\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.2.2,Page No.15"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "import numpy as np\n",
+ "\n",
+ "\n",
+ "#Initilization of Variables\n",
+ " \n",
+ "A=15*0.75 #mm**2 #area of steel tape\n",
+ "P=100 #N #Force apllied\n",
+ "L=30*10**3 #mm #Length of tape\n",
+ "E=200*10**3 #N/m**2 #Modulus of Elasticity of steel tape\n",
+ "AB=150 #m #Measurement of Line AB \n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "dell_l=P*L*(A*E)**-1 #mm #Elongation\n",
+ "l=L+dell_l*10**-3 #mm #Actual Length \n",
+ "AB1=AB*l*L**-1 #m Actual Length of AB\n",
+ "\n",
+ "#Result\n",
+ "print\"The Actual Length of Line AB is\",round(AB1,2),\"m\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The Actual Length of Line AB is 150.0 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.2.3,Page No.15"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "import numpy as np\n",
+ "\n",
+ "#Initilization of Variables\n",
+ "\n",
+ "#Let y be the yield stress\n",
+ "\n",
+ "y=250 #N/mm**2 #yield stress\n",
+ "FOS=1.75 #Factor of safety\n",
+ "P=140*10**3 #N #compressive Load\n",
+ "D=101.6 #mm #External diameter\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "p=y*(FOS)**-1 #N/mm**2 #Permissible stress\n",
+ "A=P*p**-1 #mm**2 #Area of hollow tube\n",
+ "\n",
+ "#Let d be the internal diameter of tube\n",
+ "d=-((A*4*(pi)**-1)-D**2)\n",
+ "X=d**0.5\n",
+ "t=(D-X)*2**-1 #mm #Thickness of steel tube\n",
+ "\n",
+ "#result\n",
+ "print\"The thickness of steel tube is\",round(t,2),\"mm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The thickness of steel tube is 3.17 mm\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.2.4,Page No.16"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "import numpy as np\n",
+ "\n",
+ "#Initilization of Variables\n",
+ "\n",
+ "d=25 #mm #diameter of steel\n",
+ "d2=18 #mm #Diameter at neck\n",
+ "L=200 #mm #length of stee\n",
+ "P=80*10**3 #KN #Load \n",
+ "P1=160*10**3 #N #Load at Elastic Limit\n",
+ "P2=180*10**3 #N #Max Load\n",
+ "L1=56 #mm #Total Extension\n",
+ "dell_l=0.16 #mm #Extension\n",
+ "\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "A=pi*d**2*4**-1 #Area of steel #mm**2\n",
+ "\n",
+ "p=P1*A**-1 #Stress at Elastic Limit #N/mm**2\n",
+ "Y=P*L*(A*dell_l)**-1 #Modulus of elasticity\n",
+ "\n",
+ "#Let % elongation be x\n",
+ "x=L1*L**-1*100 \n",
+ "\n",
+ "#Percentage reduction in area\n",
+ "#Let % A be a\n",
+ "a=((pi*4**-1*d**2)-(pi*4**-1*d2**2))*(pi*4**-1*d**2)**-1*100\n",
+ "\n",
+ "#Ultimate tensile stress\n",
+ "sigma=P2*A**-1 #N/mm**2\n",
+ "\n",
+ "#result\n",
+ "print\"Stress at Elastic limit is\",round(p,2),\"N/mm**2\"\n",
+ "print\"Young's Modulus is\",round(Y,2),\"N/mm**2\"\n",
+ "print\"Percentage Elongation is\",round(a,2)\n",
+ "print\"Percentage reduction in area is\",round(P2,2)\n",
+ "print\"Ultimate tensile stress\",round(sigma,2),\"N/mm**2\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Stress at Elastic limit is 325.95 N/mm**2\n",
+ "Young's Modulus is 203718.33 N/mm**2\n",
+ "Percentage Elongation is 48.16\n",
+ "Percentage reduction in area is 180000.0\n",
+ "Ultimate tensile stress 366.69 N/mm**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.2.5,Page No.16"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "import numpy as np\n",
+ "%matplotlib inline\n",
+ "\n",
+ "#Initilization of Variables\n",
+ "\n",
+ "d=20 #mm #Diameter of bar\n",
+ "d2=14.7 #mm #Diameter at neck \n",
+ "L=200 #mm #guage Length \n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "print \"The Shear Force and Bending Moment Diagrams are the results\"\n",
+ "\n",
+ "#Plotting the Shear Force Diagram\n",
+ "\n",
+ "X1=[0,10,20,30,40,50,60]\n",
+ "Y1=[0,32,64,95,127,160,190]\n",
+ "Z1=[0,0,0,0,0,0,0]\n",
+ "plt.plot(X1,Y1,X1,Z1)\n",
+ "plt.xlabel(\"Extension in divisions\")\n",
+ "plt.ylabel(\"Load in kN\")\n",
+ "plt.show()\n",
+ "\n",
+ "A=pi*4**-1*d**2 #mm**2 #Area of Bar\n",
+ "A2=pi*4**-1*d2**2\n",
+ "\n",
+ "P=45 #KN #Load obtained from graph\n",
+ "dell=0.143 #mm #Divisions\n",
+ "\n",
+ "#Modulus of Elasticity\n",
+ "E=P*L*(dell*A)**-1 \n",
+ "\n",
+ "BL=93*10**3 #N #Breaking Load\n",
+ "\n",
+ "#Nominal stress at Breaking point\n",
+ "sigma=BL*A**-1 #KN/mm**2 \n",
+ "\n",
+ "#True stress at breaking Point\n",
+ "sigma1=BL*A2**-1\n",
+ "\n",
+ "#Percentage Elongation \n",
+ "dell_l=(A-A2)*A**-1*100\n",
+ "\n",
+ "#Result\n",
+ "print\"The Value of ELongation is\",round(E,2),\"N/mm**2\"\n",
+ "print\"The Nominal stress at the Breaking Point\",round(sigma,2),\"KN/mm**2\"\n",
+ "print\"The True stress at the Breaking Point\",round(sigma1,2),\"KN/mm**2\"\n",
+ "print\"The Percentage Reduction in Area is\",round(dell_l,2)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The Shear Force and Bending Moment Diagrams are the results\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEPCAYAAACp/QjLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt0lOW1x/HvAEFbQtEqBEg4JxzuIVdBEBEbhEAVE1EQ\nDXIpIFosFhDlgAu5KEJol/UAgraCbSoUSvEUsC0UFIIQLJdwC4YW1ERCEqIYwyWIhOQ5f7xlDiET\nQkJm3rn8PmtlrTAzmexn6Zqdvd/3ebbDGGMQERG5Qj27AxAREe+j5CAiIpUoOYiISCVKDiIiUomS\ng4iIVKLkICIilbgtOeTm5tK7d286d+5MZGQkCxcuBKCoqIiEhATat29Pv379KC4udv7MvHnzaNeu\nHR07dmTTpk3uCk1ERKrhcNc+h5MnT3Ly5EliY2M5d+4cXbp0Ye3atfz2t7/l9ttvZ8qUKcyfP59v\nvvmGlJQUsrKyGDp0KHv27CEvL4++ffty9OhR6tVTcSMi4mlu++Rt3rw5sbGxAAQHB9OpUyfy8vJY\nv349I0eOBGDkyJGsXbsWgHXr1pGcnExQUBDh4eG0bduW3bt3uys8ERG5Bo/8WZ6Tk8P+/fvp3r07\nhYWFhISEABASEkJhYSEA+fn5hIWFOX8mLCyMvLw8T4QnIiJXcXtyOHfuHIMGDWLBggU0bty4wnMO\nhwOHw1Hlz17rORERcZ8G7nzz0tJSBg0axPDhwxk4cCBgVQsnT56kefPmFBQU0KxZMwBCQ0PJzc11\n/uyJEycIDQ2t9J5t27bls88+c2fYIiJ+p02bNnz66afX/Xq3VQ7GGMaMGUNERAQTJ050Pp6UlERq\naioAqampzqSRlJTEqlWruHjxItnZ2Rw7doxu3bpVet/PPvsMY4zffs2cOdP2GLQ2rU/r87+vmv5R\n7bbKIT09neXLlxMdHU1cXBxg3ao6depUhgwZwrJlywgPD2f16tUAREREMGTIECIiImjQoAFLlixR\nW0lExCZuSw733HMP5eXlLp/74IMPXD7+4osv8uKLL7orJBERuU7aROBl4uPj7Q7Bbfx5baD1+Tp/\nX19NuW0TnLs4HA58LGQREdvV9LNTlYOIiFSi5CAiIpUoOYiISCVKDiIiUomSg4iIHzt8GB58sOY/\np+QgIuKHzpyByZPhvvvg/vtr/vNKDiIifsQY+MMfoFMnKC62Koef/azm7+PWg/dERMRzDh+G8ePh\n9GlYswZ69Kj9e6lyEBHxcVe2kIYMgb17bywxgJKDiIjPctVCeuYZqF//xt9bbSURER9Uly0kV1Q5\niIj4EHe0kFxRchAR8QHubCG5oraSiIiXc3cLyRVVDiIiXspTLSRXlBxERLyMp1tIrqitJCLiRexo\nIbmiykFExAvY2UJyRclBRMRG3tBCckVtJRERm3hLC8kVVQ4iIh7mbS0kV5QcREQ8xFtbSK6orSQi\n4gHe3EJyRZWDiIgb+UILyRUlBxERN/ClFpIraiuJiNQxX2shuaLKQUSkjvhqC8kVJQcRkRvk6y0k\nV9RWEhG5Af7QQnJFlYOISC34UwvJFSUHEZEa8McWkitqK4mIXCd/bSG5ospBRKQa/t5CckXJQUSk\nCoHSQnJFbSURERcCqYXkiioHEZErBGILyRUlBxERAruF5IraSiIS8D75BH72s8BtIbmiykFEAlZp\nKbz8MsTHw6OPBm4LyRVVDiISkA4cgJ/8BFq2hH37oFUruyPyLqocRCSgXLwIM2ZAv34waRL89a9K\nDK6ochCRgLF3L4waBf/1X1bl0LKl3RF5L1UOIuL3LlyAqVNhwACYNg3WrlViqI4qBxHxax9/DKNH\nQ+fOcOgQhITYHZFvUHIQEb90/jy89JK1d2HhQutuJLl+bm0rjR49mpCQEKKiopyPzZo1i7CwMOLi\n4oiLi2PDhg3O5+bNm0e7du3o2LEjmzZtcmdoIuLHtm+H2FjIz7eqBSWGmnMYY4y73nz79u0EBwcz\nYsQIMjMzAZg9ezaNGzfmueeeq/DarKwshg4dyp49e8jLy6Nv374cPXqUevUq5i+Hw4EbQxYRH1ZS\nYl1TeO89WLwYBg60OyLvUdPPTrdWDr169eLWW2+t9LirANetW0dycjJBQUGEh4fTtm1bdu/e7c7w\nRMSPbN0KUVHW0ReZmUoMN8qWu5UWLVpETEwMY8aMobi4GID8/HzCwsKcrwkLCyMvL8+O8ETEh5w9\nC+PGwYgRsGgR/P738MMf2h2V7/P4Belx48YxY8YMAF566SUmT57MsmXLXL7W4XC4fHzWrFnO7+Pj\n44mPj6/rMEXEB2zaBE89BX36WNXCLbfYHZH3SEtLIy0trdY/7/Hk0KxZM+f3Tz75JImJiQCEhoaS\nm5vrfO7EiROEhoa6fI8rk4OIBJ7Tp61jtTdvht/8Bvr3tzsi73P1H86zZ8+u0c97vK1UUFDg/P7P\nf/6z806mpKQkVq1axcWLF8nOzubYsWN069bN0+GJiJf7298gMhIaNLCqBSUG93Br5ZCcnMy2bds4\ndeoUrVq1Yvbs2aSlpXHgwAEcDgetW7fm17/+NQAREREMGTKEiIgIGjRowJIlS6psK4lI4Ckqss5C\n2r4dUlOtYTziPm69ldUddCurSOBZt84avDNoEMydC8HBdkfke2r62akd0iLitU6dgp//HPbsgVWr\noFcvuyMKHDp4T0S80po11r6FFi3g4EElBk9T5SAiXuXLL62RnZmZ8L//q8lsdlHlICJewRhYuRKi\no615C/v3KzHYSZWDiNiuoMDa5fzpp/D++3DnnXZHJKocRMQ2xli3pcbEWNcXMjKUGLyFKgcRscWJ\nE/D005CXB3//O8TF2R2RXEmVg4h4lDGwdKmVDLp3h927lRi8kSoHEfGYL76AsWOt3c5btlitJPFO\nqhxExO3Ky+HNN6FrV+jdG/7xDyUGb6fKQUTc6vPP4cknrZnO27ZBRITdEcn1UOUgIm5RXg4LF0K3\nbvDAA5CersTgS1Q5iEidO3YMRo+2Lj7v3Ant29sdkdSUKgcRqTNlZfDaa9bO5sGDrTaSEoNvUuUg\nInXiyBGrWrjpJti1C9q0sTsiuRGqHETkhly6BCkp1qmpw4dbt6gqMfg+VQ4iUmuHD8OoUXDLLbB3\nL4SH2x2R1BVVDiJSY6Wl8Mor1p6Fp5+GTZuUGPyNKgcRqZEDB6xqoUUL2LcPWrWyOyJxB1UOInJd\nLl6EGTOgXz+YMAH++lclBn+mykFEqrVnj3UnUuvWVuXQsqXdEYm7qXIQkSqVlMDkyZCYCNOmwbp1\nSgyBQslBRFz6+98hMtKa6ZyZCUOHgsNhd1TiKWoriUgFp07Bc8/B9u3w1lvQv7/dEYkdVDmICGCd\ng/SHP1jVwu23W9WCEkPgUuUgInzxBYwbZ43uXL/eOklVApsqB5EAVlYGCxZAly5wzz2QkaHEIJYq\nK4dRo0a5fNzx7ytS77zzjnsiEhGPyMy0hvDcfLM1a6FDB7sjEm9SZXIYMGAADocDY4wzIeTm5vKr\nX/2KsrIyjwUoInXrwgV49VXrYvPcuTBmDNRTD0Gu4jDGmOpe9NlnnzFv3jw++ugjJk2axJgxY2jY\nsKEn4qvkcsISkZrbvh3GjoXOnWHRIu1ZCCQ1/ey8ZnI4cuQIr776Kvv27eOFF15g+PDhNGhg7zVs\nJQeRmjt9Gv77v+H9962k8MgjdkcknlbTz84qi8nBgwczYMAAevToQVpaGklJSZw5c4aioiKKiorq\nJFgRcb8//9mqFIyBTz5RYpDrU2XlEP7v83cdVWyJzM7OdltQ16LKQeT65OfDs89aMxfefhvuvdfu\niMROddpWqsqVF6k9TclB5NrKy2HZMnjxRWvWwvTp1h1JEtjqrK102YwZMyr8u6ysjGHDhtU8MhFx\nu6NH4b77rErhww9hzhwlBqmdapPD8ePHmTdvHgDfffcdjzzyCO3atXN7YCJy/UpLrdtS774bBg6E\njz+G6Gi7oxJfVm1bqby8nCeeeILo6Gi2bNnCAw88wKRJkzwVXyVqK4lUtGePtZmtRQtr74LGdYor\ndXbNISMjw3ldobS0lKeffpq7776bJ598EoA77rijDsKtOSUHEUtJCbz0knVY3muv6UhtubY6Sw7x\n8fEVLjpffRF669atNxBm7Sk5iFizFn76U+s8pF/9Cpo2tTsi8XYeuVvJTkoOEsg0a0Fqq87vVhIR\n+xkDK1Zo1oJ4juY5iHi5L76wWkh5eZq1IJ6jykHES105a6FXL81aEM+6rsohPT2dnJwcLl26BFi9\nqxEjRrg1MJFAplkLYrdqk8OwYcP4/PPPiY2NpX79+s7HlRxE6t6FC9au5l//WrMWxF7VJoeMjAyy\nsrJsO0tJJFB89JE1ayEyEg4e1KwFsVe1f5NERkZSUFDgiVhEAtLp09YF5+RkmDcP3ntPiUHsV21y\n+Oqrr4iIiKBfv34kJiaSmJhIUlLSdb356NGjCQkJISoqyvlYUVERCQkJtG/fnn79+lFcXOx8bt68\nebRr146OHTuyadOmWixHxLdo1oJ4q2o3waWlpbl8PD4+vto33759O8HBwYwYMYLMzEwApkyZwu23\n386UKVOYP38+33zzDSkpKWRlZTF06FD27NlDXl4effv25ejRo9S7quGqTXDiDzRrQTytpp+d1V5z\nuJ4kUJVevXqRk5NT4bH169ezbds2AEaOHEl8fDwpKSmsW7eO5ORkgoKCCA8Pp23btuzevZu77rqr\n1r9fxNtcPWthxQodqS3eqcrk0LNnT9LT0wkODq50MdrhcHDmzJla/cLCwkJCQkIACAkJobCwEID8\n/PwKiSAsLIy8vLxa/Q4Rb3T0KDz1FJw/b81a0JHa4s2qTA7p6ekAnDt3zm2/3OFwXPMuqKqemzVr\nlvP7+Pj4G6puRNyttBR++UvrgLzp06120hV3hYu4RVpaWpWXBa6Hx4/PCAkJ4eTJkzRv3pyCggKa\nNWsGQGhoKLm5uc7XnThxgtDQUJfvcWVyEPFmV85a2LtXsxbEc67+w3n27Nk1+nmPb69JSkoiNTUV\ngNTUVAYOHOh8fNWqVVy8eJHs7GyOHTtGN50VID6qpMQ6PTUxEaZMgQ0blBjEt7i1ckhOTmbbtm2c\nOnWKVq1a8fLLLzN16lSGDBnCsmXLCA8PZ/Xq1QBEREQwZMgQIiIiaNCgAUuWLNHGO/FJV85ayMzU\nrAXxTZrnIFJHNGtBvFmd3crq6i6lK39Jbe9WEvE3xsDy5fDCC9aozsxMCA62OyqRG1Nlcrh8l9L0\n6dNp2bIlw4YNA2DFihXk5+d7JjoRL/evf8G4cVBcDO+/D3feaXdEInWj2rZSdHQ0hw4dqvYxT1Fb\nSbzBhQvWOUiLF1u3p44fDw00Oku8WJ2PCW3UqBHLly+nrKyMsrIyVqxYQbBqZglgH3wAUVHW0RcH\nDsDEiUoM4n+qrRyys7OZMGECO3fuBKyd0wsWLCDcpvvyVDmIXQoLrQvO6enwxhvw4IN2RyRy/Wr6\n2am7lUSqUV4Ov/kNvPQSjB4NM2ZAo0Z2RyVSM3V+8N63337LsmXLyMrK4sKFC87H33nnndpFKOJD\nDh609iw4HLBli9VOEgkE1V5zGD58OIWFhWzcuJEf/ehH5Obm6pqD+L1z5+D55yEhwaoWduxQYpDA\nUm1bKTY2lgMHDjjvUCotLeWee+5h165dnoqxArWVxN3Wr7cOx7v3XnjtNfj38V8iPq3O20oNGzYE\noEmTJmRmZtK8eXO++uqr2kco4qVyc+HnP7cmsr3zDvTpY3dEIvaptq00duxYioqKmDNnDklJSURE\nRDBlyhRPxCbiEZcuWcdpx8VBbCwcOqTEIKK7lSSg7d5tTWT74Q/hzTehfXu7IxJxjzrfBFdcXMyk\nSZPo0qULXbp0YfLkyZw+ffqGghSxW3ExPPMMPPQQTJ5sbWxTYhD5f9Umh9GjR/ODH/yAP/3pT6xe\nvZrGjRszatQoT8QmUueMgVWrICICysogKwuGDbNuVRWR/1dtWykmJoaDBw9W+5inqK0ktfXpp/Cz\nn0FBgXWk9t132x2RiOfUeVvpe9/7Htu3b3f+e8eOHXz/+9+vXXQiNvjuO5gzB+66C/r2hYwMJQaR\n6lR7K+tbb73FiBEjnNcZbr31VueYTxFvt22btcO5bVsrKfznf9odkYhvuO67lS4nhyZNmvA///M/\nTJw40a2BVUVtJbkep05ZO5w//BAWLoSBA3VdQQJbnbeVLmvSpAlNmjQB4LXXXqt5ZCIeUF5ubWDr\n3Nm6PTUrCx5+WIlBpKZ0Cr34jU8+saayXbgAGzdam9pEpHauu3IQ8Vbnz8OLL0J8PDz2GHz8sRKD\nyI2qsnIIDg7GUUUtfv78ebcFJFITGzZYt6d262Ydr92ypd0RifgHHZ8hPik/3xrPmZFhzXH+8Y/t\njkjEu7ntgrSINygrs0Z0Rkdbx10cPqzEIOIOuiAtPmPfPuuQvO9/Hz76yDoCQ0TcQ5WDeL2zZ60W\n0v33W4flpaUpMYi4m5KDeC1j4L33rERw5ox1q+qoUdqzIOIJaiuJV8rJgfHj4fPPYcUKa2SniHiO\nKgfxKqWlMH8+dO1qHY534IASg4gdVDmI10hPtw7JCw2FXbugTRu7IxIJXEoOYruiIpg6Ff76V2uW\n85Ahuq4gYje1lcQ2xsC771qH5DVsaB2S99hjSgwi3kCVg9jiX/+ybkstKoJ166zjL0TEe6hyEI+6\ncAFmzoSePSExEfbsUWIQ8UaqHMRjPvzQOlI7Ksq6CykszO6IRKQqSg7idl9/Dc89Z43sfOMNePBB\nuyMSkeqorSRuYwysXAmRkXDrrdYheUoMIr5BlYO4xfHjVgvp+HFYuxa6d7c7IhGpCVUOUqfKymDR\nIrjjDmuHc0aGEoOIL1LlIHXm8GF48klrz8KOHdCxo90RiUhtqXKQG/bddzBjBvTubZ2ampamxCDi\n61Q5yA3ZsQPGjrWSwYED1rlIIuL7lBykVk6fhmnTrN3NixbBI4/YHZGI1CW1laTG1q2zbk+9dMka\nwKPEIOJ/VDnIdTt5Ep59Fg4etA7Mi4+3OyIRcRdVDlItY2DZMoiOhvbtreSgxCDi31Q5yDUdOwZP\nPw3nzsEHH1gJQkT8n22VQ3h4ONHR0cTFxdHt38dyFhUVkZCQQPv27enXrx/FxcV2hRfwSkshJQV6\n9ICkJPj4YyUGkUBiW3JwOBykpaWxf/9+du/eDUBKSgoJCQkcPXqUPn36kJKSYld4AW3vXrjzTmu/\nwt69MHEi1K9vd1Qi4km2XnMwxlT49/r16xk5ciQAI0eOZO3atXaEFbBKSuD5563D8Z5/HjZsgPBw\nu6MSETvYWjn07duXrl278vbbbwNQWFhISEgIACEhIRQWFtoVXsDZvNmas1BYCJmZMGyYxnWKBDLb\nLkinp6fTokULvvrqKxISEuh41XkLDocDRxWfTrNmzXJ+Hx8fT7xunam1K2ctvPUW/PjHdkckInUh\nLS2NtLS0Wv+8w1zd27HB7NmzCQ4O5u233yYtLY3mzZtTUFBA7969+ec//1nhtQ6Ho1I7SmrOGFi1\nykoMjz8Or7wCwcF2RyUi7lLTz05b2krnz5/n7NmzAJSUlLBp0yaioqJISkoiNTUVgNTUVAYOHGhH\neH7v+HHrusK8edashddfV2IQkYpsqRyys7N5+OGHAbh06RJPPPEE06ZNo6ioiCFDhnD8+HHCw8NZ\nvXo1t9xyS8WAVTnUWlkZLFkCL78MkybBCy9AUJDdUYmIJ9T0s9Mr2ko1oeRQO5dnLdx0E/zmN9Ch\ng90RiYgn+URbSTznylkLo0fD1q1KDCJSPR2f4ccuz1ro1Mk6D6llS7sjEhFfoeTghzRrQURulNpK\nfubyrIWyMs1aEJHaU+XgJ66ctbB8OfzoR3ZHJCK+TJWDj7t61sKhQ0oMInLjVDn4MM1aEBF3UeXg\ngzRrQUTcTZWDj9m719rM1ry59b2O1BYRd1Dl4CM0a0FEPEnJwQdo1oKIeJraSl5MsxZExC6qHLyQ\nMbBypbWZ7Yc/tA7NU2IQEU9S5eBljh+HceMgN9eatdC9u90RiUggUuXgJcrKrHOQunSBnj0hI0OJ\nQUTso8rBC1yetdCwoXWSqo7UFhG7qXKw0dWzFtLSlBhExDuocrCJZi2IiDdTcvAwzVoQEV+gtpIH\nadaCiPgKVQ4eoFkLIuJrVDm4kWYtiIivUuXgJpq1ICK+TJVDHdOsBRHxB6oc6pBmLYiIv1DlUAdK\nSmDyZBgwQLMWRMQ/KDncoE2brFkLX35pHYOhWQsi4g/UVqolzVoQEX+myqGGjIE//AE6d9asBRHx\nX6ocauCLL6xZCydOWLuddaS2iPgrVQ7XoawMFi60Zi3cc49mLYiI/1PlUI3LsxZuugnS03WktogE\nBlUOVbhwoeKsha1blRhEJHCocnBh+3Zr1kJEhGYtiEhgUnK4wunTMHUqrF+vWQsiEtjUVvq3deus\n21PLyzVrQUQk4CuHggL4+c+t9tGKFTpSW0QEArhyMAaWLoWYGM1aEBG5WkBWDseOwVNPWQfmadaC\niEhlAVU5XDlr4aGHNGtBRKQqAVM5aNaCiMj18/vKQbMWRERqzq+Tg2YtiIjUjl+2lTRrQUTkxvhV\n5aBZCyIidcNvKgfNWhARqTteVzls3LiRjh070q5dO+bPn1/t6zVrQUSk7nlVcigrK2P8+PFs3LiR\nrKwsVq5cyZEjR6p8/eHD0LMnvPeeNWvhxRchKMiDAbtBWlqa3SG4jT+vDbQ+X+fv66spr0oOu3fv\npm3btoSHhxMUFMTjjz/OunXrKr3On2ct+PP/oP68NtD6fJ2/r6+mvOqaQ15eHq1atXL+OywsjF27\ndlV6XWysZi2IiLiTVyUHx3VuQpg7V0dqi4i4lfEiH3/8senfv7/z33PnzjUpKSkVXtOmTRsD6Etf\n+tKXvmrw1aZNmxp9HjuMMQYvcenSJTp06MCHH35Iy5Yt6datGytXrqRTp052hyYiElC8qq3UoEED\n3njjDfr3709ZWRljxoxRYhARsYFXVQ4iIuIdvOpW1mup6eY4bzd69GhCQkKIiopyPlZUVERCQgLt\n27enX79+FBcX2xjhjcnNzaV379507tyZyMhIFi5cCPjPGi9cuED37t2JjY0lIiKCadOmAf6zPrD2\nHcXFxZGYmAj419rCw8OJjo4mLi6Obt26Af61vuLiYgYPHkynTp2IiIhg165dNV6fTySHmm6O8wWj\nRo1i48aNFR5LSUkhISGBo0eP0qdPH1JSUmyK7sYFBQXx+uuv88knn/CPf/yDxYsXc+TIEb9Z4803\n38zWrVs5cOAAhw4dYuvWrezYscNv1gewYMECIiIinHcR+tPaHA4HaWlp7N+/n927dwP+tb4JEybw\nwAMPcOTIEQ4dOkTHjh1rvr4bvsXIA3bu3FnhLqZ58+aZefPm2RhR3cjOzjaRkZHOf3fo0MGcPHnS\nGGNMQUGB6dChg12h1bmHHnrIbN682S/XWFJSYrp27WoOHz7sN+vLzc01ffr0MVu2bDEPPvigMca/\n/v8MDw83p06dqvCYv6yvuLjYtG7dutLjNV2fT1QOrjbH5eXl2RiRexQWFhISEgJASEgIhYWFNkdU\nN3Jycti/fz/du3f3qzWWl5cTGxtLSEiIs4XmL+ubNGkSv/zlL6lX7/8/IvxlbWBVDn379qVr1668\n/fbbgP+sLzs7m6ZNmzJq1CjuuOMOxo4dS0lJSY3X5xPJ4Xo3x/kTh8PhF+s+d+4cgwYNYsGCBTRu\n3LjCc76+xnr16nHgwAFOnDjBRx99xNatWys876vr+8tf/kKzZs2Ii4vDVHG/iq+u7bL09HT279/P\nhg0bWLx4Mdu3b6/wvC+v79KlS+zbt49nnnmGffv20ahRo0otpOtZn08kh9DQUHJzc53/zs3NJSws\nzMaI3CMkJISTJ08CUFBQQLNmzWyO6MaUlpYyaNAghg8fzsCBAwH/WyNAkyZNGDBgABkZGX6xvp07\nd7J+/Xpat25NcnIyW7ZsYfjw4X6xtstatGgBQNOmTXn44YfZvXu336wvLCyMsLAw7rzzTgAGDx7M\nvn37aN68eY3W5xPJoWvXrhw7doycnBwuXrzIH//4R5KSkuwOq84lJSWRmpoKQGpqqvMD1RcZYxgz\nZgwRERFMnDjR+bi/rPHUqVPOuz2+/fZbNm/eTFxcnF+sb+7cueTm5pKdnc2qVau47777ePfdd/1i\nbQDnz5/n7NmzAJSUlLBp0yaioqL8Zn3NmzenVatWHD16FIAPPviAzp07k5iYWLP1ueF6iFv87W9/\nM+3btzdt2rQxc+fOtTucG/b444+bFi1amKCgIBMWFmbeeecd8/XXX5s+ffqYdu3amYSEBPPNN9/Y\nHWatbd++3TgcDhMTE2NiY2NNbGys2bBhg9+s8dChQyYuLs7ExMSYqKgo84tf/MIYY/xmfZelpaWZ\nxMREY4z/rO3zzz83MTExJiYmxnTu3Nn5eeIv6zPGmAMHDpiuXbua6Oho8/DDD5vi4uIar0+b4ERE\npBKfaCuJiIhnKTmIiEglSg4iIlKJkoOIiFSi5CAiIpUoOYiISCVKDmKL+vXrExcX5/z6xS9+cc3X\nz507t85jyMjIYMKECXXyXgMGDODMmTO1/vng4GAA8vPzefTRR6/52vfff/+ax9bX5bokcGmfg9ii\ncePGzl2q7ni9r/H39YnvUeUgXuP06dN07NjRue0/OTmZpUuXMm3aNL799lvi4uIYPnw4AMuXL6d7\n9+7ExcXx05/+lPLycsD6C3z69OnExsbSo0cPvvzySwD+9Kc/ERUVRWxsLPHx8QCkpaVVGGQzcOBA\nYmJi6NGjB5mZmQDMmjWL0aNH07t3b9q0acOiRYtcxh4eHk5RURE5OTl06tSJp556isjISPr378+F\nCxcqvT47O5sePXoQHR3N9OnTnY/n5OQ4B0DdddddZGVlOZ+Lj48nIyOD3/3udzz77LNuWVdJSQkD\nBgwgNjaWqKgoVq9efd3//cTPeGAnt0gl9evXdx6rERsba1avXm2MMWbz5s2mR48eZuXKleb+++93\nvj44ONgVmkKpAAADpklEQVT5fVZWlklMTDSXLl0yxhgzbtw48/vf/94YY4zD4TB/+ctfjDHGTJky\nxcyZM8cYY0xUVJTJz883xhhz+vRpY4wxW7dudc4qGD9+vHn55ZeNMcZs2bLFxMbGGmOMmTlzpunZ\ns6e5ePGiOXXqlLntttucv/dK4eHh5uuvvzbZ2dmmQYMG5uDBg8YYY4YMGWKWL19e6fWJiYnm3Xff\nNcYYs3jxYuf6rpzx8frrr5uZM2caY4zJz893nr//29/+1jz77LN1vq7S0lKzZs0aM3bsWGecl99T\nAo8qB7HF9773Pfbv3+/8utxn79u3L5GRkYwfP56lS5e6/NkPP/yQjIwMunbtSlxcHFu2bCE7OxuA\nhg0bMmDAAAC6dOlCTk4OAD179mTkyJEsXbqUS5cuVXrP9PR0Z1XSu3dvvv76a86ePYvD4WDAgAEE\nBQVx22230axZs2rPwW/dujXR0dGVYrjSzp07SU5OBmDYsGEu3+fRRx9lzZo1AKxevbrCtQjz725w\nXa7ryy+/JDo6ms2bNzN16lR27NjBD37wg2uuVfyXkoN4lfLyco4cOUKjRo0oKiqq8nUjR450JpZ/\n/vOfzJgxA7DGk15Wr1495wfmm2++yZw5c8jNzaVLly4u39tUcfmtYcOGzu/r16/v8kP4SjfddFON\nXl+V0NBQbrvtNjIzM1m9ejWPPfYYUHG+SV2vq127duzfv5+oqCimT5/OK6+8UqvYxfcpOYhXef31\n1+ncuTMrVqxg1KhRzg/WoKAg5/d9+vRhzZo1fPXVV4DVVz9+/Pg13/ezzz6jW7duzJ49m6ZNm3Li\nxIkKz/fq1YsVK1YAVs++adOmNG7cuMoP1hvVs2dPVq1aBeD8va489thjzJ8/nzNnzhAZGQlU/LCv\n63UVFBRw880388QTT/D888+zb9++G1qn+K4GdgcggenyBebL7r//fn7yk5+wbNky9uzZQ6NGjbj3\n3nt59dVXmTlzJk899RTR0dF06dKFd999lzlz5tCvXz/Ky8sJCgpiyZIl/Md//EeFv6qvnHY1ZcoU\njh07hjGGvn37Eh0dzbZt25zPX75AGxMTQ6NGjZzn3l/vRLCrf29Vz122YMEChg4dyvz583nooYeq\n/PnBgwczYcIEZ2Xk7nVlZmbywgsvUK9ePRo2bMibb75Z7drFP+lWVhERqURtJRERqUTJQUREKlFy\nEBGRSpQcRESkEiUHERGpRMlBREQqUXIQEZFKlBxERKSS/wPlCfw1/C4iHwAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x4f0f390>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The Value of ELongation is 200.33 N/mm**2\n",
+ "The Nominal stress at the Breaking Point 296.03 KN/mm**2\n",
+ "The True stress at the Breaking Point 547.97 KN/mm**2\n",
+ "The Percentage Reduction in Area is 45.98\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.2.6,Page No.19"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "import numpy as np\n",
+ "\n",
+ "#Initilization of Variables\n",
+ "\n",
+ "P=40*10**3 #N #Load \n",
+ "L1=160 #mm #Length of Bar1\n",
+ "L2=240 #mm #Length of bar2\n",
+ "L3=160 #mm #Length of bar3\n",
+ "d1=25 #mm #Diameter of Bar1\n",
+ "d2=20 #mm #diameter of bar2\n",
+ "d3=25 #mm #diameter of bar3\n",
+ "dell_l=0.285 #mm #Total Extension of bar\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "E=P*4*(dell_l*pi)**-1*(L1*(d1**2)**-1+L2*(d2**2)**-1+L3*(d3**2)**-1)\n",
+ "\n",
+ "#Result\n",
+ "print\"The Young's Modulus of the material\",round(E,2),\"N/mm**2\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The Young's Modulus of the material 198714.72 N/mm**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.2.7,Page No.19"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "import numpy as np\n",
+ "\n",
+ "#Initilization of Variables\n",
+ "\n",
+ "E1=2*10**5 #N/mm**2 #modulus of Elasticity of material1\n",
+ "E2=1*10**5 #N/mm**2 #modulus of Elasticity of material2\n",
+ "P=25*10**3 #N #Load \n",
+ "t=20 #mm #thickness of material\n",
+ "b1=40 #mm #width of material1\n",
+ "b2=30 #mm #width of material2\n",
+ "L1=500 #mm #Length of material1\n",
+ "L2=750 #mm #Length of material2\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "A1=b1*t #mm**2 #Area of materila1\n",
+ "A2=b2*t #mm**2 #Area of material2\n",
+ "\n",
+ "dell_l1=P*L1*(A1*E1)**-1 #Extension of Portion1\n",
+ "dell_l2=P*L2*(A2*E2)**-1 #Extension of portion2\n",
+ "\n",
+ "#Total Extension of Bar is\n",
+ "dell_l=dell_l1+dell_l2\n",
+ "\n",
+ "#Result\n",
+ "print\"The Total Extension of the Bar is\",round(dell_l,2),\"mm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The Total Extension of the Bar is 0.39 mm\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.2.8,Page No.20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "import numpy as np\n",
+ "\n",
+ "#Initilization of Variables\n",
+ "\n",
+ "L=1000 #mm #Length of Bar\n",
+ "l=400 #mm #Length upto which bire is drilled \n",
+ "D=30 #mm #diameter of bar\n",
+ "d1=10 #mm #diameter of bore\n",
+ "P=25*10**3 #N #Load\n",
+ "dell_l=0.185 #mm #Extension of bar\n",
+ "\n",
+ "#Calculations \n",
+ "\n",
+ "L1=L-l #Length of bar above the bore\n",
+ "L2=400 #mm #Length of bore\n",
+ "\n",
+ "A1=pi*4**-1*D**2 #Area of bar\n",
+ "A2=pi*4**-1*(D**2-d1**2) #Area of bore\n",
+ "\n",
+ "E=P*dell_l**-1*(L1*A1**-1+L2*A2**-1)\n",
+ "\n",
+ "#Result\n",
+ "print\"The Modulus of ELasticity is\",round(E,2),\"N/mm**2\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The Modulus of ELasticity is 200735.96 N/mm**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.2.11,Page No.23"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "import numpy as np\n",
+ "\n",
+ "#Initilization of Variables\n",
+ "\n",
+ "t=10 #mm #Thickness of steel\n",
+ "b1=60 #mm #width of plate1\n",
+ "b2=40 #mm #width of plate2\n",
+ "P=60*10**3 #Load\n",
+ "L=600 #mm #Length of plate\n",
+ "E=2*10**5 #N/mm**2\n",
+ " \n",
+ "#Calculations\n",
+ "\n",
+ "#Extension of taperong bar of rectangular section\n",
+ "dell_l=P*L*(t*E*(b1-b2))**-1*log(b1*b2**-1)\n",
+ "\n",
+ "A_av=(b1*t+b2*t)*2**-1 #Average Area #mm**2\n",
+ "dell_l2=P*L*(A_av*E)**-1 \n",
+ "\n",
+ "#PErcentage Error\n",
+ "e=(dell_l-dell_l2)*(dell_l)**-1*100\n",
+ "\n",
+ "#Result\n",
+ "print\"The Percentage Error is\",round(e,2)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The Percentage Error is 1.35\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.2.12,Page No.23"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "import numpy as np\n",
+ "\n",
+ "#Initilization of Variables\n",
+ "\n",
+ "L=1.5 #m #Length of steel bar\n",
+ "L1=1000 #m0 #Length of steel bar 1\n",
+ "L2=500 #m #Length of steel bar 2 \n",
+ "d1=40 #Diameter of steel bar 1\n",
+ "d2=20 #diameter of steel bar 2\n",
+ "E=2*10**5 #N/mm**2 #Modulus of Elasticity\n",
+ "P=160*10**3 #N #Load\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "A1=pi*4**-1*d1**2 #Area of Portion 1\n",
+ "\n",
+ "#Extension of uniform Portion 1\n",
+ "dell_l1=P*L1*(A1*E)**-1 #mm\n",
+ "\n",
+ "#Extension of uniform Portion 2\n",
+ "dell_l2=4*P*L2*(pi*d1*d2*E)**-1 #mm\n",
+ "\n",
+ "#Total Extension of Bar\n",
+ "dell_l=dell_l1+dell_l2\n",
+ "\n",
+ "#Result\n",
+ "print\"The Elongation of the Bar is\",round(dell_l,2),\"mm\" "
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The Elongation of the Bar is 1.27 mm\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.2.14,Page No.25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "import numpy as np\n",
+ "\n",
+ "#Initilization of Variables\n",
+ "\n",
+ "#Portion AB\n",
+ "L_AB=600 #mm #Length of AB\n",
+ "A_AB=40*40 #mm**2 #Cross-section Area of AB\n",
+ "\n",
+ "#Portion BC\n",
+ "L_BC=800 #mm #Length of BC\n",
+ "A_BC=30*30 #mm #Length of BC\n",
+ "\n",
+ "#Portion CD\n",
+ "L_CD=1000 #mm #Length of CD\n",
+ "A_CD=20*20 #mm #Area of CD\n",
+ "\n",
+ "P1=80*10**3 #N #Load1\n",
+ "P2=60*10**3 #N #Load2\n",
+ "P3=40*10**3 #N #Load3\n",
+ "\n",
+ "E=2*10**5 #Modulus of Elasticity\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "P4=P1-P2+P3 #Load4\n",
+ "\n",
+ "#Now Force in AB\n",
+ "F_AB=P1\n",
+ "\n",
+ "#Force in BC\n",
+ "F_BC=P1-P2\n",
+ "\n",
+ "#Force in CD\n",
+ "F_CD=P4\n",
+ "\n",
+ "#Extension of AB\n",
+ "dell_l_AB=F_AB*L_AB*(A_AB*E)**-1\n",
+ "\n",
+ "#Extension of BC\n",
+ "dell_l_BC=F_BC*L_BC*(A_BC*E)**-1\n",
+ "\n",
+ "#Extension of CD\n",
+ "dell_l_CD=F_CD*L_CD*(A_CD*E)**-1\n",
+ "\n",
+ "#Total Extension\n",
+ "dell_l=dell_l_AB+dell_l_BC+dell_l_CD\n",
+ "\n",
+ "#Result\n",
+ "print\"The Total Extension in Bar is\",round(dell_l,2),\"mm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The Total Extension in Bar is 0.99 mm\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.2.15,Page No.26"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "import numpy as np\n",
+ "\n",
+ "#Initilization of Variables\n",
+ "\n",
+ "L=800 #mm #Length of bar\n",
+ "F1=30*10**3 #N #Force acting on the bar\n",
+ "F2=60*10**3 #N #force acting on the bar\n",
+ "L=800 #mm #Length of bar\n",
+ "d=25 #mm #diameter of bar \n",
+ "L_AC=275 #mm #Length of AC\n",
+ "L_CD=150 #mm #Length of CD\n",
+ "L_DB=375 #mm #Length of DB\n",
+ "E=2*10**5 #Pa #Modulus of elasticity\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "#Let P be the Reaction on tne Bar from support at A\n",
+ "\n",
+ "#Shortening of Portion AC\n",
+ "#dell_l_AC1=P*L_AC*(A*E)**-1\n",
+ "\n",
+ "#Shortening of Portion CD\n",
+ "#dell_l_CD1=(30+P)*L_CD*(A*E)**-1\n",
+ "\n",
+ "#Extension of Portion DB\n",
+ "#dell_l_DB1=(30-P)*L_DB*(A*E)**-1\n",
+ "\n",
+ "#Total Extensions=1*(A*E)**-1*(P*L_AC-(30+P)*L_CD+(30-P)*L_DB)\n",
+ "#As Supports are unyielding,Total Extensions=0\n",
+ "\n",
+ "#After substituting values in above equation and Further simplifying we get\n",
+ "P=(30*375-150*30)*800**-1\n",
+ "\n",
+ "#Reaction of support A\n",
+ "R_A=P\n",
+ "\n",
+ "#Reaction of support B\n",
+ "R_B=30-P\n",
+ "\n",
+ "#Cross-sectional Area\n",
+ "A=pi*4**-1*d**2\n",
+ "\n",
+ "#Stress in Portion AC\n",
+ "sigma1=P*10**3*A**-1 #N/mm**2\n",
+ "\n",
+ "#Stress in Portion CD\n",
+ "sigma2=(30+P)*10**3*A**-1 #N/mm**2\n",
+ "\n",
+ "#Stress in Portion DB\n",
+ "sigma3=(30-P)*10**3*A**-1 #N/mm**2\n",
+ "\n",
+ "#Shortening of Portion AC\n",
+ "dell_l_AC2=P*10**3*L_AC*(A*E)**-1 #mm \n",
+ "\n",
+ "#Shortening of Portion CD\n",
+ "dell_l_CD2=(30+P)*10**3*L_CD*(A*E)**-1 #mm \n",
+ "\n",
+ "#Extension of Portion DB\n",
+ "dell_l_DB2=(30-P)*10**3*L_DB*(A*E)**-1 #mm \n",
+ "\n",
+ "#result\n",
+ "print\"The Reactios at two Ends are:R_A\",round(R_A,2),\"KN\"\n",
+ "print\" :R_B\",round(R_B,2),\"KN\"\n",
+ "print\"Stress in Portion AC\",round(sigma1,2),\"N/mm**2\"\n",
+ "print\"Stress in Portion CD\",round(sigma2,2),\"N/mm**2\"\n",
+ "print\"Stress in Portion DB\",round(sigma3,2),\"N/mm**2\"\n",
+ "print\"Shortening of Portion AC\",round(dell_l_AC2,3),\"mm\"\n",
+ "print\"Shortening of Portion CD\",round(dell_l_CD2,3),\"mm\"\n",
+ "print\"Shortening of Portion DB\",round(dell_l_DB2,3),\"mm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The Reactios at two Ends are:R_A 8.44 KN\n",
+ " :R_B 21.56 KN\n",
+ "Stress in Portion AC 17.19 N/mm**2\n",
+ "Stress in Portion CD 78.3 N/mm**2\n",
+ "Stress in Portion DB 43.93 N/mm**2\n",
+ "Shortening of Portion AC 0.024 mm\n",
+ "Shortening of Portion CD 0.059 mm\n",
+ "Shortening of Portion DB 0.082 mm\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.2.19,Page No.29"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "import numpy as np\n",
+ "\n",
+ "#Initilization of Variables\n",
+ " \n",
+ "h=4 #m #height of Pillars\n",
+ "P=20 #KN #Load at M\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "#Let P_A,P_B,P_C,P_D be the forces introduced in the Pillars\n",
+ "#Sun of All Vertical Forces\n",
+ "#P_A+P_B+P_C+P_D=20 ....................(1)\n",
+ "\n",
+ "#Sum of moment about AB, we get\n",
+ "#P_D+P_C=12 ....................(2)\n",
+ "\n",
+ "#Sum of Moment about AD\n",
+ "#P_C+P_B=8 ....................(3)\n",
+ "\n",
+ "#Let dell_l_A,dell_l_B,dell_l-C,dell_l_D be the deformations of Pillars A,B,C,D respectively\n",
+ "#Diagonals AC and BD will remain straight Lines even after the Load is applied.\n",
+ "#Deflection of central Point is given by (dell_l_A+dell_l_C)*2**-1 & (dell_l_B+dell_l_D)*2**-1\n",
+ "\n",
+ "#dell_l_A+dell_l_C=dell_l_B+ell_l_D\n",
+ "#P_A*L*(A*E)**-1+P_C*L*(A*E)**-1=P_B*L*(A*E)**-1+P_D*L*(A*E)**-1\n",
+ "\n",
+ "#Since Pillars are identical in Length,cross-sectional area,material Property\n",
+ "#P_A+P_C=P_B+P_D ..............(4)\n",
+ "\n",
+ "#From Equations 1 and 4 we get\n",
+ "#P_B+P_D=10 ....................(5)\n",
+ " \n",
+ "#Substracting Equation 3 from Equation 2 we get\n",
+ "#P_D-P_B=4 ....................(6)\n",
+ "\n",
+ "#Adding Equation 5 and 6 we get\n",
+ "\n",
+ "P_D=14*2**-1\n",
+ "P_C=12-P_D\n",
+ "P_B=8-P_C\n",
+ "\n",
+ "#Now substituting values of P_B,P_C,P_D in equation1 we get\n",
+ "P_A=20-(P_B+P_C+P_D)\n",
+ "\n",
+ "#Result\n",
+ "print\"The Forces Developed in the Pillars are:P_A\",round(P_A,2),\"KN\"\n",
+ "print\" :P_B\",round(P_B,2),\"KN\"\n",
+ "print\" :P_C\",round(P_C,2),\"KN\"\n",
+ "print\" :P_D\",round(P_D,2),\"KN\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The Forces Developed in the Pillars are:P_A 5.0 KN\n",
+ " :P_B 3.0 KN\n",
+ " :P_C 5.0 KN\n",
+ " :P_D 7.0 KN\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.2.20,Page No.31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "import numpy as np\n",
+ "\n",
+ "#Initilization of Variables\n",
+ "\n",
+ "sigma=150 #N/mm**2 #Stress\n",
+ "P=40*10**3 #N #Load\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "#LEt P_A.P_B,P_C,P_D be the forces developed in wires A,B,C,D respectively\n",
+ "\n",
+ "#Let sum of all Vertical Forces=0\n",
+ "#P_A+P_B+P_C+P_D=40 ..........................(1)\n",
+ "\n",
+ "#Let x be the distance between each wires\n",
+ "#sum of all moments=0\n",
+ "#P_B*x+P_C*2*x+P_D*3*x=40*2*x\n",
+ "\n",
+ "#After further simplifying we get\n",
+ "#P_B+2*P_C+3*P_D=80 ..........................(2)\n",
+ "\n",
+ "#As the equations of statics ae not enough to find unknowns,Consider compatibilit Equations\n",
+ "\n",
+ "#Let dell_l be the increse in elongation of wire\n",
+ "\n",
+ "#dell_l_B=dell_l_A+dell_l\n",
+ "#dell_l_C=dell_l_A+2*dell_l\n",
+ "#dell_l_D=dell_l_A+3*dell_l\n",
+ "\n",
+ "#Let P1 be the force required for the Elongation of wires,then\n",
+ "#P_B=P_A+P1 ]\n",
+ "#P_C=P_A+2*P1 ]\n",
+ "#P_D=P_A+3*P1 ] ................................(3) \n",
+ "\n",
+ "#from Equation (3) and (1) we get\n",
+ "#2*P_A+3*P1=20 ................................(4)\n",
+ "\n",
+ "#from Equation (3) and (2) we get\n",
+ "#6*P_A+14*P1=80 \n",
+ "\n",
+ "#subtracting 3 times equation (4) from (3) we get\n",
+ "P1=20*5**-1\n",
+ "\n",
+ "#from Equation 4 we get\n",
+ "P_A=(80-14*P1)*6**-1\n",
+ "P_B=P_A+P1\n",
+ "P_C=P_A+2*P1 \n",
+ "P_D=P_A+3*P1\n",
+ "\n",
+ "#Let d be the diameter required,then\n",
+ "d=(P_D*10**3*4*(pi*150)**-1)**0.5\n",
+ "\n",
+ "#result\n",
+ "print\"The Required Diameter is\",round(d,2),\"mm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The Required Diameter is 11.65 mm\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.2.21,Page No.32"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "import numpy as np\n",
+ "\n",
+ "#Initilization of Variables\n",
+ "\n",
+ "P=20*10**3 #N #Load\n",
+ "d=6 #mm #diameter of wire\n",
+ "E=2*10**5 #N/mm**2 \n",
+ "L_BO=4000 #mm #Length of BO\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "#Let theta be the angle between OA and OB and also between OC and OB\n",
+ "theta=30\n",
+ "\n",
+ "#Let P_OA,P_OB,P_OC be the Forces introduced in wires OA,OB,OC respectively\n",
+ "#Due to symmetry P_OA=P_OC (same angles)\n",
+ "\n",
+ "#Sum of all Vertical Forces=0\n",
+ "#P_OA*cos(theta)+P_OB+P_OC*cos(theta)=P\n",
+ "\n",
+ "#After further simplifyinf we get\n",
+ "#2*P_OA*cos(theta)+P_OB=20 ...............(1)\n",
+ "\n",
+ "#Let oo1 be the extension of BO\n",
+ "#oo1=L_A1o1*(cos(theta))**-1\n",
+ "\n",
+ "#From relation we get\n",
+ "#P_OB*L_BO=P_OA*L_AO*(cos(theta))**-1\n",
+ "\n",
+ "#But L_AO=L_BO*(cos(theta))**-1\n",
+ "\n",
+ "#After substituting value of L_AO in above equation we get\n",
+ "#P_OB=0.75*P_OA .......................(2)\n",
+ "\n",
+ "#substituting in Equation 1 we get\n",
+ "#2*P_OA*cos(theta)+0.75*P_OA=20\n",
+ "\n",
+ "P_OA=20*(2*cos(theta*pi*180**-1)+0.75)**-1\n",
+ "\n",
+ "P_OB=0.75*P_OA\n",
+ "\n",
+ "A=pi*4**-1*d**2 \n",
+ "\n",
+ "#Vertical displacement of Load\n",
+ "dell_l_BO=P_OB*10**3*L_BO*(A*E)**-1\n",
+ " \n",
+ "#Result\n",
+ "print\"Forces in each wire is:P_OA\",round(P_OA,2),\"KN\"\n",
+ "print\" :P_OB\",round(P_OB,2),\"KN\"\n",
+ "print\"Vertical displacement of Loadis\",round(dell_l_BO,2),\"mm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Forces in each wire is:P_OA 8.06 KN\n",
+ " :P_OB 6.04 KN\n",
+ "Vertical displacement of Loadis 4.27 mm\n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.2.22,Page No.34"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "import numpy as np\n",
+ "\n",
+ "#Initilization of Variables\n",
+ "\n",
+ "L_s=L_a=L=500 #mm #Length of bar\n",
+ "A_a=50*20 #mm #Area of aluminium strip\n",
+ "A_s=50*15 #mm #Area of steel strip\n",
+ "P=50*10**3 #N #Load\n",
+ "E_a=1*10**5 #N/mm**2 #Modulus of aluminium \n",
+ "E_s=2*10**5 #N/mm**2 #Modulus of steel\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "#Let P_a and P_s br the Load shared by aluminium and steel strip\n",
+ "#P_a+P_s=P ..................(1)\n",
+ "\n",
+ "#For compatibility condition,dell_l_a=dell_l_s\n",
+ "#P_a*L_a*(A_a*E_a)**-1=P_s*L_s*(A_s*E_s)**-1 .....(2)\n",
+ "\n",
+ "#As L_a=L_s we get\n",
+ "#P_s=1.5*P_a .................(3)\n",
+ " \n",
+ "#From Equation 1 and 2 we get\n",
+ "P_a=P*2.5**-1\n",
+ "\n",
+ "#Substituting in equation 1 we get\n",
+ "P_s=P-P_a\n",
+ "\n",
+ "#stress in aluminium strip \n",
+ "sigma_a=P_a*A_a**-1\n",
+ "\n",
+ "#stress in steel strip\n",
+ "sigma_s=P_s*A_s**-1\n",
+ "\n",
+ "#Now from the relation we get\n",
+ "dell_l_a=dell_l_s=P_s*L_s*(A_s*E_s)**-1\n",
+ "\n",
+ "#result\n",
+ "print\"Stress in Aluminium strip is\",round(sigma_a,2),\"N/mm**2\"\n",
+ "print\"Stress in steel strip is\",round(sigma_s,2),\"N/mm**2\"\n",
+ "print\"The Extension of the bar is\",round(dell_l_s,2),\"mm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Stress in Aluminium strip is 20.0 N/mm**2\n",
+ "Stress in steel strip is 40.0 N/mm**2\n",
+ "The Extension of the bar is 0.1 mm\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.2.23,Page No.35"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "import numpy as np\n",
+ "\n",
+ "#Initilization of Variables\n",
+ "\n",
+ "D_s=20 #mm #Diameter of steel\n",
+ "D_Ci=20 #mm #Internal Diameter of Copper\n",
+ "t=5 #mm #THickness of copper bar\n",
+ "P=100*10**3 #N #Load\n",
+ "E_s=2*10**5 #N/mm**2 #modulus of elasticity of steel\n",
+ "E_c=1.2*10**5 #N/mm**2 #Modulus of Elasticity of Copper\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "A_s=pi*4**-1*D_s**2 #mm**2 #Area of steel\n",
+ "D_Ce=D_s+2*t #mm #External Diameterof Copper Tube\n",
+ "\n",
+ "A_c=pi*4**-1*(D_Ce**2-D_Ci**2) #mm**2 #Area of Copper\n",
+ "\n",
+ "#From static Equilibrium condition\n",
+ "#Let P_s and P_c be the Load shared by steel and copper in KN\n",
+ "#P_s+P_c=100 ....................................(1)\n",
+ "\n",
+ "#From compatibility Equation,dell_l_s=dell_l_c\n",
+ "#P_s*L*(A_s*E_s)**-1=P_c*L*(A_c*E_c)**-1\n",
+ "\n",
+ "#Substituting values in above Equation we get\n",
+ "#P_s=1.3333*P_C \n",
+ "\n",
+ "#Now Substituting value of P_s in Equation (1),we get\n",
+ "P_c=100*2.3333**-1 #KN\n",
+ "P_s=100-P_c #KN\n",
+ "\n",
+ "#Stress in steel\n",
+ "sigma_s=P_s*10**3*A_s**-1 #N/mm**2 \n",
+ "\n",
+ "#Stress in copper\n",
+ "sigma_c=P_c*10**3*A_c**-1 #N/mm**2\n",
+ "\n",
+ "#Result\n",
+ "print\"Stresses Developed in Two material are:sigma_s\",round(sigma_s,2),\"N/mm**2\"\n",
+ "print\" :sigma_c\",round(sigma_c,2),\"N/mm**2\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Stresses Developed in Two material are:sigma_s 181.89 N/mm**2\n",
+ " :sigma_c 109.14 N/mm**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.2.24,Page No.36"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "import numpy as np\n",
+ "\n",
+ "#Initilization of Variables\n",
+ "\n",
+ "A_C=230*400 #mm #Area of column\n",
+ "D_s=12 #mm #Diameter of steel Bar\n",
+ "P=600*10**3 #N #Axial compression\n",
+ "#E_s*E_c=18.67\n",
+ "n=8 #number of steel Bars\n",
+ "\n",
+ "#Calculations \n",
+ "\n",
+ "A_s=pi*4**-1*D_s**2*n #Area of steel #mm**2 \n",
+ "A_c=A_C-A_s #mm**2 #Area of concrete\n",
+ "\n",
+ "#From static Equilibrium condition\n",
+ "#P_s+P_c=600 .........(1)\n",
+ "\n",
+ "#Now from compatibility Equation dell_l_s=dell_l_c we get,\n",
+ "#P_s*L*(A_s*E_s)**-1=P_c*L*(A_c*E_c)**-1\n",
+ "\n",
+ "#Substituting values in above Equation we get\n",
+ "#P_s=0.1854*P_c\n",
+ "\n",
+ "#Now Substituting value of P_s in Equation (1),we get\n",
+ "P_c=600*1.1854**-1\n",
+ "P_s=600-P_c\n",
+ "\n",
+ "#Stress in steel\n",
+ "sigma_s=P_s*10**3*A_s**-1 #N/mm**2\n",
+ "\n",
+ "#Stress in copper\n",
+ "sigma_c=P_c*10**3*A_c**-1 #N/mm**2\n",
+ "\n",
+ "#Result\n",
+ "print\"Stresses Developed in Two material are:sigma_s\",round(sigma_s,2),\"N/mm**2\"\n",
+ "print\" :sigma_c\",round(sigma_c,2),\"N/mm**2\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Stresses Developed in Two material are:sigma_s 103.72 N/mm**2\n",
+ " :sigma_c 5.56 N/mm**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.2.25,Page No.36"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "import numpy as np\n",
+ "\n",
+ "#Initilization of Variables\n",
+ "\n",
+ "P=200*10**3 #N #Load\n",
+ "A_a=1000 #mm**2 #Area of Aluminium\n",
+ "A_s=800 #mm**2 #Area of steel\n",
+ "E_a=1*10**5 #N/mm**2 #Modulus of Elasticity of Aluminium\n",
+ "E_s=2*10**5 #N/mm**2 #Modulus of ELasticity of steel\n",
+ "sigma_a1=65 #N/mm**2 #stress in aluminium\n",
+ "sigma_s1=150 #N/mm**2 #Stress in steel\n",
+ "\n",
+ "#Calculations \n",
+ "\n",
+ "#Let P_a and P_s be the force in aluminium and steel pillar respectively\n",
+ "\n",
+ "#Now,sum of forces in Vertical direction we get\n",
+ "#2*P_a+P_s=200 .........................................(1)\n",
+ "\n",
+ "#By compatibility Equation dell_l_s=dell_l_a we get\n",
+ "#P_s=1.28*P_a ..........................................(2)\n",
+ "\n",
+ "#Now substituting value of P_s in Equation 1 we get\n",
+ "P_a=200*3.28**-1 #KN\n",
+ "P_s=200-2*P_a #KN\n",
+ "\n",
+ "#Stress developed in aluminium\n",
+ "sigma_a=P_a*10**3*A_a**-1 #N/mm**2 \n",
+ "\n",
+ "#Stress developed in steel\n",
+ "sigma_s=P_s*10**3*A_s**-1 #N/mm**2 \n",
+ "\n",
+ "#Part-2\n",
+ "\n",
+ "#Let sigma_a1 and sigma_s1 be the stresses in Aluminium and steel due to Additional LOad\n",
+ "\n",
+ "P_a1=sigma_a1*A_a #Load carrying capacity of aluminium\n",
+ "P_s1=1.28*P_a1\n",
+ "\n",
+ "#Total Load carrying capacity \n",
+ "P1=2*P_a1+P_s1 #N \n",
+ "\n",
+ "P_s2=sigma_s1*A_s #Load carrying capacity of steel\n",
+ "P_a2=P_s2*1.28**-1\n",
+ "\n",
+ "#Total Load carrying capacity\n",
+ "P2=2*P_a2+P_s2\n",
+ "\n",
+ "#Additional Load\n",
+ "P3=P1-P\n",
+ "\n",
+ "#Result\n",
+ "print\"Stresses Developed in Each Pillar is:sigma_a\",round(sigma_a,2),\"N/mm**2\"\n",
+ "print\" :sigma_s\",round(sigma_s,2),\"N/mm**2\"\n",
+ "print\"Additional Load taken by pillars is\",round(P3,2),\"N\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Stresses Developed in Each Pillar is:sigma_a 60.98 N/mm**2\n",
+ " :sigma_s 97.56 N/mm**2\n",
+ "Additional Load taken by pillars is 13200.0 N\n"
+ ]
+ }
+ ],
+ "prompt_number": 19
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.2.26,Page No.37"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "import numpy as np\n",
+ "\n",
+ "#Initilization of Variables\n",
+ "\n",
+ "L=500 #mm #Length of assembly\n",
+ "D=16 #mm #Diameter of steel bolt\n",
+ "Di=20 #mm #internal Diameter of copper tube\n",
+ "Do=30 #mm #External Diameter of copper tube\n",
+ "E_s=2*10**5 #N/mm**2 #Modulus of Elasticity of steel\n",
+ "E_c=1.2*10**5 #N/mm**2 #Modulus of Elasticity of copper\n",
+ "p=2 #mm #Pitch of nut\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "#Let P_s be the Force in bolt and P_c be the FOrce in copper tube\n",
+ "#P_s=-P_s\n",
+ "\n",
+ "dell=1*4**-1*2 #Quarter turn of nut total movement\n",
+ "\n",
+ "#dell=dell_s+dell_c\n",
+ " \n",
+ "#Area of steel\n",
+ "A_s=pi*4**-1*D**2\n",
+ "\n",
+ "#Area of copper\n",
+ "A_c=pi*4**-1*(Do**2-Di**2)\n",
+ "\n",
+ "#dell=P*L*(A_s*E_s)**-1+P*L*(A_c*E_c)**-1\n",
+ "P=dell*(1*(A_s*E_s)**-1+1*(A_c*E_c)**-1)**-1*L**-1 #LOad\n",
+ "\n",
+ "P_s=P*A_s**-1\n",
+ "P_c=P*A_c**-1\n",
+ "\n",
+ "#result\n",
+ "print\"stress introduced in bolt is\",round(P_s,2),\"N/mm**2\"\n",
+ "print\"stress introduced in tube is\",round(P_c,2),\"N/mm**2\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "stress introduced in bolt is 107.91 N/mm**2\n",
+ "stress introduced in tube is 55.25 N/mm**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 20
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.2.27,Page No.39"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "import numpy as np\n",
+ "\n",
+ "#Initilization of Variables\n",
+ "\n",
+ "D=20 #mm #Diameter of Bolts\n",
+ "Di=25 #m #internal Diameter\n",
+ "t=10 #mm #Thickness of bolt\n",
+ "E_s=2*10**5 #N/mm**2 #Modulus of Elasticity\n",
+ "E_c=1.2*10**5 #N/mm**2 #Modulus of copper\n",
+ "p=3 #mm #Pitch\n",
+ "theta=30 #degree\n",
+ "L_c=500 #Lengh of copper \n",
+ "L_s=600 #Length of steel\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "#Let P_s be the Force in each bolt and P_c be the FOrce in copper tube\n",
+ "#From Static Equilibrium condition\n",
+ "#P_c=2*P_s\n",
+ "\n",
+ "#As nut moves by 60 degree.If nut moves by 360 degree its Longitudinal movement is by 3 mm\n",
+ "dell=theta*360**-1*p\n",
+ "\n",
+ "#From Compatibility Equaton we get\n",
+ "#dell=dell_c+dell_s\n",
+ "\n",
+ "\n",
+ "A_s=pi*4**-1*Di**2 #mm**2 #Area of steel\n",
+ "A_c=pi*4**-1*(45**2-Di**2) #mm**2 #Area of copper\n",
+ "\n",
+ "#Force introduced in steel\n",
+ "P_s=0.5*(2*L_c*(A_c*E_c)**-1+L_s*(A_s*E_s)**-1)**-1 #N\n",
+ "P_s2=P_s*A_s**-1\n",
+ "\n",
+ "#Force introduced in copper \n",
+ "P_c=2*P_s*A_c**-1 #N\n",
+ "\n",
+ "#Result\n",
+ "print\"Stress introduced in bolt is\",round(P_s2,2),\"N/mm**2\"\n",
+ "print\"stress introduced in tube is\",round(P_c,2),\"N/mm**2\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Stress introduced in bolt is 74.4 N/mm**2\n",
+ "stress introduced in tube is 66.43 N/mm**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 21
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.2.28,Page No.40"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "import numpy as np\n",
+ "\n",
+ "#Initilization of Variables\n",
+ "\n",
+ "L=9 #m #Length of rigid bar\n",
+ "L_b=3000 #Length of bar\n",
+ "A_b=1000 #mm**2 #Area of bar\n",
+ "E_b=1*10**5 #N/mm**2 #Modulus of Elasticity of brasss bar\n",
+ "L_s=5000 #mm #Length of steel bar\n",
+ "A_s=445 #mm**2 #Area of steel bar\n",
+ "E_s=2*10**5 #N/mm**2 #Modulus of elasticity of steel bar\n",
+ "P=3000 #N #Load\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "#From static equilibrium Equation of the rod after appliying Load is\n",
+ "#P_b+P_s=P ......................(1)\n",
+ "\n",
+ "#P_b=1.8727*P_s ..................(2)\n",
+ "\n",
+ "#NOw substituting equation 2 in equation 1 we get\n",
+ "P_s=P*2.8727**-1\n",
+ "P_b=P-P_s\n",
+ "\n",
+ "d=P_s*L*P**-1 \n",
+ "\n",
+ "#Result\n",
+ "print\"Distance at which Load applied even after which bar remains horizontal is\",round(d,2),\"m\" "
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Distance at which Load applied even after which bar remains horizontal is 3.13 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 22
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.2.29,Page No.41"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "import numpy as np\n",
+ "\n",
+ "#Initilization of Variables\n",
+ "\n",
+ "A_b=1000 #MM**2 #Area of brass bar\n",
+ "E_b=1*10**5 #N/mm**2 #Modulus of Elasticity of brass\n",
+ "A_s=600 #N/mm**2 #Area of steel rod\n",
+ "E_s=2*10**5 #N/mm**2 #Modulus of eLasticity of steel bar\n",
+ "P=10*10**2 #N #Load\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "#Let P_b be the tensile force in brass bar and P_s be the compressive force in steel bar\n",
+ "#Now taking moment about A we get static Equilibrium condition as\n",
+ "#P_b+2*P_s=27500 ......................................(1)\n",
+ "\n",
+ "#Now from deformed shape we get\n",
+ "#dell_s=2*dell_b\n",
+ "\n",
+ "#P_s*L_s*(A_s*E_s)**-1=P_b*L_b*(A_b*E_b)**-1\n",
+ "#Further simplifying we get\n",
+ "#P_s=1.2*P_b .........................................(2)\n",
+ "\n",
+ "#Now substituting equation 1 in equation 2 we get\n",
+ "P_b=27500*3.4**-1\n",
+ "P_s=1.2*P_b \n",
+ "\n",
+ "#Tensile stress in brass bar \n",
+ "sigma_b=P_b*A_b**-1\n",
+ "\n",
+ "#compressive stress in steel bar\n",
+ "sigma_s=P_s*A_s**-1\n",
+ "\n",
+ "#Result\n",
+ "print\"Compressive Stress in Bar is\",round(sigma_s,2),\"N/mm**2\"\n",
+ "print\"tensile Stress in Bar is\",round(sigma_b,2),\"N/mm**2\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Compressive Stress in Bar is 16.18 N/mm**2\n",
+ "tensile Stress in Bar is 8.09 N/mm**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 23
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.2.30,Page No.44"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "import numpy as np\n",
+ "\n",
+ "#Initilization of Variables\n",
+ "\n",
+ "L=12.6 #m #Length of rail\n",
+ "t1=24 #Degree celsius\n",
+ "t2=44 #degree celsius\n",
+ "alpha=12*10**-6 #Per degree celsius\n",
+ "E=2*10**5 #N/mm**2 #Modulus of ELasticity\n",
+ "gamma=2 #mm #Gap provided for Expansion\n",
+ "sigma=20 #N/mm**2 #Stress\n",
+ "\n",
+ "#Calculations \n",
+ "\n",
+ "t=t2-t1 #Temperature Difference\n",
+ "\n",
+ "#Free Expansion of the rails\n",
+ "dell=alpha*t*L*1000 #mm \n",
+ "\n",
+ "#When no expansion joint is provided then\n",
+ "p=dell*E*(L*10**3)**-1\n",
+ "\n",
+ "#When a gap of 2 mm is provided,then free expansion prevented is\n",
+ "dell_1=dell-gamma\n",
+ "p2=dell_1*E*(L*10**3)**-1\n",
+ "\n",
+ "#When stress is developed,then gap left is\n",
+ "gamma2=-(sigma*L*10**3*E**-1-dell)\n",
+ "\n",
+ "#Result\n",
+ "print\"The minimum gap between the two rails is\",round(dell,2),\"mm\"\n",
+ "print\"Thermal Developed in the rials if:No expansionn joint is provided:p\",round(p,2),\"N/mm**2\"\n",
+ "print\" :If a gap of is provided then :p2\",round(p2,2),\"N/mm**2\"\n",
+ "print\"When stress is developed gap left between the rails is\",round(gamma2,2),\"mm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The minimum gap between the two rails is 3.02 mm\n",
+ "Thermal Developed in the rials if:No expansionn joint is provided:p 48.0 N/mm**2\n",
+ " :If a gap of is provided then :p2 16.25 N/mm**2\n",
+ "When stress is developed gap left between the rails is 1.76 mm\n"
+ ]
+ }
+ ],
+ "prompt_number": 24
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.2.31,Page No.45"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "import numpy as np\n",
+ "\n",
+ "#Initilization of Variables\n",
+ "\n",
+ "t=20 #degree celsius\n",
+ "E_a=70*10**9 #N/mm**2 #Modulus of Elasticicty of aluminium\n",
+ "alpha_a=11*10**-6 #per degree celsius #Temperature coeff of aluminium\n",
+ "alpha_s=12*10**-6 #Per degree celsius #Temperature coeff of steel\n",
+ "L_a=1000 #mm #Length of aluminium \n",
+ "L_s=3000 #mm #Length of steel\n",
+ "E_a=7*10**4 #N/mm**2 #Modulus of Elasticity of aluminium\n",
+ "E_s=2*10**5 #N/mm*2 #Modulus of Elasticity of steel\n",
+ "A_a=600 #mm**2 #Area of aluminium\n",
+ "A_s=300 #mm**2 #Area of steel\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "#Free Expansion \n",
+ "dell=alpha_a*t*L_a+alpha_s*t*L_s\n",
+ " \n",
+ "#support Reaction\n",
+ "P=dell*(L_a*(A_a*E_a)**-1+L_s*(A_s*E_s)**-1)**-1\n",
+ "\n",
+ "#Result\n",
+ "print\"Reaction at support is\",round(P,2),\"N\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Reaction at support is 12735.48 N\n"
+ ]
+ }
+ ],
+ "prompt_number": 25
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.2.33,Page No.48"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "import numpy as np\n",
+ "\n",
+ "#Initilization of Variables\n",
+ "\n",
+ "D=25 #mm #Diameter of Brass\n",
+ "De=50 #mm #External Diameter of steel tube\n",
+ "Di=25 #mm #Internal Diameter of steel tube\n",
+ "L=1.5 #m #Length of both bars\n",
+ "t1=30 #degree celsius #Initial Temperature\n",
+ "t2=100 #degree celsius #final Temperature\n",
+ "E_s=2*10**5 #N/mm**2 #Modulus of ELasticity of steel bar\n",
+ "E_b=1*10**5 #N/mm**2 #Modulus of Elasticity of brass bar\n",
+ "alpha_s=11.6*10**-6 #Temperature Coeff of steel\n",
+ "alpha_b=18.7*10**-6 #Temperature coeff of brass bar\n",
+ "d=20 #mm #diameter of pins\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "t=t2-t1 #Temperature Difference\n",
+ "A_s=pi*4**-1*(De**2-Di**2) #mm**2 #Area of steel\n",
+ "A_b=pi*4**-1*D**2 #mm**2 #Area of brass\n",
+ "\n",
+ "#Let P_b be the tensile force in brass bar and P_s be the compressive force in steel bar\n",
+ "#But from Equilibrium of Forces \n",
+ "#P_b=P_s=P\n",
+ "\n",
+ "#Let dell=dell_s+dell_b\n",
+ "dell=(alpha_b-alpha_s)*t*L*1000\n",
+ "\n",
+ "P=dell*(1*(A_s*E_s)**-1+1*(A_b*E_b)**-1)**-1*(L*1000)**-1\n",
+ "P_b=P_s=P\n",
+ "\n",
+ "#Stress in steel\n",
+ "sigma_s=P_s*A_s**-1\n",
+ "\n",
+ "#Stress in Brass\n",
+ "sigma_b=P_b*A_b**-1\n",
+ "\n",
+ "#Area of Pins\n",
+ "A_p=pi*4**-1*d**2\n",
+ "\n",
+ "#Since,the force is resisted by two cross section of pins\n",
+ "tou=P*(2*A_p)**-1\n",
+ " \n",
+ "#Result\n",
+ "print\"Stress in steel bar is\",round(sigma_s,2),\"N/mm**2\"\n",
+ "print\"Stress in Brass bar is\",round(sigma_b,2),\"N/mm**2\"\n",
+ "print\"Shear Stresss induced in pins is\",round(tou,2),\"N/mm**2\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Stress in steel bar is 14.2 N/mm**2\n",
+ "Stress in Brass bar is 42.6 N/mm**2\n",
+ "Shear Stresss induced in pins is 33.28 N/mm**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 26
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.2.34,Page No.49"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "import numpy as np\n",
+ "\n",
+ "#Initilization of Variables\n",
+ "\n",
+ "b_s=60 #mm #width of steel Bar\n",
+ "t_s=10 #mm #thickness of steel Bar\n",
+ "b_c=40 #mm #width of copper bar\n",
+ "t_c=5 #mm #thickness of copper bar\n",
+ "E_s=2*10**5 #N/mm**2 #Modulus of Elasticity of steel bar\n",
+ "E_c=1*10**5 #N/mm**2 #Modulus of Elasticity of copper bar\n",
+ "alpha_s=12*10**-6 #Per degree celsius #Temperature coeff of steel bar\n",
+ "alpha_c=17*10**-6 #Per degree celsius #Temperature coeff of copper bar\n",
+ "L_s=L_c=L=1000 #mm #Length of bar\n",
+ "t=80 #degree celsius\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "A_s=b_s*t_s #Area of steel bar\n",
+ "A_c=b_c*t_c #Area of copper bar\n",
+ "\n",
+ "#Let P_s be the tensile force in steel bar and P_c be the compressive force in copper bar\n",
+ "#The equilibrium of forces gives \n",
+ "#P_s=2*P_c\n",
+ "\n",
+ "#Let dell=dell_s+dell_b\n",
+ "dell=(alpha_c-alpha_s)*t\n",
+ "\n",
+ "P_c=dell*(2*(A_s*E_s)**-1+1*(A_c*E_c)**-1)**-1\n",
+ "P_s=2*P_c\n",
+ "\n",
+ "#Stress in copper \n",
+ "sigma_c=P_c*A_c**-1\n",
+ "\n",
+ "#Stress in steel \n",
+ "sigma_s=P_s*A_s**-1\n",
+ "\n",
+ "#Change in Length of bar\n",
+ "dell_2=alpha_s*t*L+P_s*L_s*(A_s*E_s)**-1\n",
+ "\n",
+ "#result\n",
+ "print\"Stress in copper is\",round(sigma_c,2),\"N/mm**2\"\n",
+ "print\"Stress in steel is\",round(sigma_s,2),\"N/mm**2\"\n",
+ "print\"the change in Length is\",round(dell_2,2),\"mm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Stress in copper is 30.0 N/mm**2\n",
+ "Stress in steel is 20.0 N/mm**2\n",
+ "the change in Length is 1.06 mm\n"
+ ]
+ }
+ ],
+ "prompt_number": 27
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.2.35,Page No.50"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "import numpy as np\n",
+ "\n",
+ "#Initilization of Variables\n",
+ "\n",
+ "P=2*10**5 #N #Weight\n",
+ "L=1 #m #Length of each rod\n",
+ "A_c=A_s=A=500 #mm**2 #Area of each rod\n",
+ "t=40 #degree celsius #temperature\n",
+ "E_s=2*10**5 #N/mm**2 #Modulus of Elasticity of steel rod\n",
+ "E_c=1*10**5 #N/mm**2 #modulus of Elastictiy of copper rod\n",
+ "alpha_s=1.2*10**-5 #Per degree Celsius #temp coeff of steel rod\n",
+ "alpha_c=1.8*10**-5 #Per degree Celsius #Temp coeff of copper rod\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "#Let P_s be the force in each one of the copper rods and P_s be the force in steel rod\n",
+ "#2*P_c+P_s=P .....................(1)\n",
+ "\n",
+ "#Extension of copper bar=Extension of steel bar\n",
+ "#P_s*L*(A_s*E_s)**-1=P_c*L*(A_c*E_c)**-1\n",
+ "#after simplifying above equation we get\n",
+ "#P_s=2*P_c ........................(2)\n",
+ "\n",
+ "#Now substituting value of P_s in Equation 1 we get\n",
+ "P_c=P*4**-1\n",
+ "P_s=2*P_c\n",
+ "\n",
+ "#Now EXtension due to copper Load\n",
+ "dell_1=P_c*L*1000*(A_c*E_c)**-1\n",
+ "\n",
+ "#Part-2\n",
+ "\n",
+ "#Due to rise of temperature of40 degree celsius\n",
+ "\n",
+ "#As bars are rigidly joined,let P_c1 be the compressive forccesdeveloped in copper bar and P_s1 be the tensile force in steel causing changes\n",
+ "#P_s1=2*P_c1\n",
+ "\n",
+ "#dell_s+dell_c=(alpha_c-alpha_s)*t*L .......................................(3)\n",
+ "#P_s1*L*(A_s*E_s)**-1+P_c1*L*(A_c*E_c)**-1=(alpha_c-alpha_s)*t*L ................(4)\n",
+ "#After substituting values in above equation and further simplifying we get,\n",
+ "P_c1=(alpha_c-alpha_s)*t*L*(2*(A_s*E_s)**-1+1*(A_c*E_c)**-1)**-1 #.................(5)\n",
+ "P_s1=2*P_c1\n",
+ "\n",
+ "#Extension of bar due to temperature rise\n",
+ "dell_2=alpha_s*t*L+P_s1*L*(A_s*E_s)**-1\n",
+ "\n",
+ "#Amount by which bar will descend\n",
+ "dell_3=dell_1+dell_2\n",
+ "\n",
+ "#Load carried by steel bar\n",
+ "P_S=P_s+P_s1\n",
+ "\n",
+ "#Load carried by copper bar\n",
+ "P_C=P_c-P_c1\n",
+ "\n",
+ "#Part-3\n",
+ "\n",
+ "#Let P_c1_1=P_c #For convenience\n",
+ "#Rise in temperature if Load is to be carried out by steel rod alone\n",
+ "P_c1_1=P_c\n",
+ "\n",
+ "#From equation 5 \n",
+ "t=P_c1_1*(2*(A_s*E_s)**-1+1*(A_c*E_c)**-1)*(alpha_c-alpha_s)**-1\n",
+ "\n",
+ "#result\n",
+ "print\"Extension Due top copper Load\",round(dell_1,2),\"mm\"\n",
+ "print\"Load carried by each rod:P_s\",round(P_s,2),\"N\"\n",
+ "print\" :P_c\",round(P_c,2),\"N\"\n",
+ "print\"Rise in Temperature of steel rod should be\",round(t,2),\"degree Celsius\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Extension Due top copper Load 1.0 mm\n",
+ "Load carried by each rod:P_s 100000.0 N\n",
+ " :P_c 50000.0 N\n",
+ "Rise in Temperature of steel rod should be 333.33 degree Celsius\n"
+ ]
+ }
+ ],
+ "prompt_number": 28
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.2.36,Page No.53"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "import numpy as np\n",
+ "\n",
+ "#Initilization of Variables\n",
+ "\n",
+ "t=40 #degree celsius #temperature\n",
+ "A_s=400 #mm**2 #Area of steel bar\n",
+ "A_c=600 #mm**2 #Area of copper bar\n",
+ "E_s=2*10**5 #N/mm**2 #Modulus of Elasticity of steel bar\n",
+ "E_c=1*10**5 #N/mm**2 #Modulus of Elasticity of copper bar\n",
+ "alpha_s=12*10**-6 #degree celsius #Temperature coeff of steel bar\n",
+ "alpha_c=18*10**-6 #degree celsius #Temperature coeff of copper bar\n",
+ "L_c=800 #mm #Length of copper bar\n",
+ "L_s=600 #mm #Length of steel bar\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "#Let P_s be the tensile force in steel bar and P_c be the compressive force in copper bar\n",
+ "#Static Equilibrium obtained by taking moment about A\n",
+ "#P_c=2*P_s\n",
+ "\n",
+ "#From property of similar triangles we get\n",
+ "#(alpha_c*Lc-dell_c)*1**-1=(alpha_s*L_s-dell_s)*2**-1\n",
+ "#After substituting values in above equations and further simplifying we get\n",
+ "P_s=(2*alpha_c*L_c-alpha_s*L_s)*t*(L_s*(A_s*E_s)**-1+4*L_c*(A_c*E_c)**-1)**-1\n",
+ "P_c=2*P_s\n",
+ "\n",
+ "#Stress in steel rod\n",
+ "sigma_s=P_s*A_s**-1 #N/mm**2 \n",
+ "\n",
+ "#Stress in copper rod\n",
+ "sigma_c=P_c*A_c**-1 #N/mm**2\n",
+ "\n",
+ "#Result\n",
+ "print\"Stress in steel rod is\",round(sigma_s,2),\"N/mm**2\"\n",
+ "print\"STress in copper rod is\",round(sigma_c,2),\"N/mm**2\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Stress in steel rod is 35.51 N/mm**2\n",
+ "STress in copper rod is 47.34 N/mm**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 29
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.2.37,Page No.61"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "import numpy as np\n",
+ "\n",
+ "#Initilization of Variables\n",
+ "\n",
+ "d=20 #mm #Diameter of bar\n",
+ "P=37.7*10**3 #N #Load\n",
+ "L=200 #mm #Guage Length \n",
+ "dell=0.12 #mm #Extension\n",
+ "dell_d=0.0036 #mm #contraction in diameter\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "#Area of bar\n",
+ "A=pi*4**-1*d**2\n",
+ "\n",
+ "#Let s and dell_s be the Linear strain and Lateral strain\n",
+ "s=dell*L**-1\n",
+ "dell_s=dell_d*d**-1\n",
+ "mu=dell_s*s**-1 #Poissoin's ratio \n",
+ "\n",
+ "#dell=P*L*(A*E)**-1\n",
+ "E=P*L*(dell*A)**-1 #N/mm**2 #Modulus of Elasticity of bar\n",
+ "\n",
+ "#Modulus of Rigidity\n",
+ "G=E*(2*(1+mu))**-1 #N/mm**2\n",
+ "\n",
+ "#Bulk Modulus \n",
+ "K=E*(3*(1-2*mu))**-1 #N/mm**2\n",
+ "\n",
+ "#result\n",
+ "print\"Poisson's ratio is\",round(mu,2)\n",
+ "print\"The Elastic constant are:E\",round(E,2)\n",
+ "print\" :G\",round(G,2)\n",
+ "print\" :K\",round(K,2)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Poisson's ratio is 0.3\n",
+ "The Elastic constant are:E 200004.71\n",
+ " :G 76924.89\n",
+ " :K 166670.59\n"
+ ]
+ }
+ ],
+ "prompt_number": 30
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.2.38,Page No.62"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "import numpy as np\n",
+ "\n",
+ "#Initilization of Variables\n",
+ "\n",
+ "d=100 #mm #Diameter of circular rod\n",
+ "P=1*10**6 #N #Tensile Force\n",
+ "mu=0.3 #Poisson's ratio\n",
+ "E=2*10**5 #N/mm**2 #Young's Modulus \n",
+ "L=500 #mm #Length of rod\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "#Modulus of Rigidity\n",
+ "G=E*(2*(1+mu))**-1 #N/mm**2\n",
+ "\n",
+ "#Bulk Modulus \n",
+ "K=E*(3*(1-2*mu))**-1 #N/mm**2\n",
+ "\n",
+ "A=pi*4**-1*d**2 #mm**2 #Area of Circular rod\n",
+ "#Let sigma be the Longitudinal stress\n",
+ "sigma=P*A**-1 #N/mm**2 \n",
+ "\n",
+ "s=sigma*E**-1 #Linear strain\n",
+ "e_x=s\n",
+ "\n",
+ "#Volumetric strain\n",
+ "e_v=e_x*(1-2*mu)\n",
+ "\n",
+ "v=pi*4**-1*d**2*L\n",
+ "#Change in VOlume\n",
+ "dell_v=e_v*v\n",
+ "\n",
+ "#Result\n",
+ "print\"Bulk Modulus is\",round(E,2),\"N/mm**2\"\n",
+ "print\"Modulus of Rigidity is\",round(G,2),\"N/mm**2\"\n",
+ "print\"The change in Volume is\",round(dell_v,2),\"mm**3\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Bulk Modulus is 200000.0 N/mm**2\n",
+ "Modulus of Rigidity is 76923.08 N/mm**2\n",
+ "The change in Volume is 1000.0 mm**3\n"
+ ]
+ }
+ ],
+ "prompt_number": 31
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.2.39,Page No.62"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "import numpy as np\n",
+ "\n",
+ "#Initilization of Variables\n",
+ "\n",
+ "L=500 #mm #Length of rectangular cross section bar\n",
+ "A=20*40 #mm**2 #Area of rectangular cross section bar\n",
+ "P1=4*10**4 #N #Tensile Force on 20mm*40mm Faces\n",
+ "P2=2*10**5 #N #compressive force on 20mm*500mm Faces\n",
+ "P3=3*10**5 #N #Tensile Force on 40mm*500mm Faces\n",
+ "E=2*10**5 #N/mm**2 #young's Modulus \n",
+ "mu=0.3 #Poisson's Ratio\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "#Let P_x,P_y,P_z be the forces n x,y,z directions\n",
+ "\n",
+ "P_x=P1*A**-1\n",
+ "P_y=P2*A**-1\n",
+ "P_z=P3*A**-1\n",
+ "\n",
+ "#Let e_x,e_y,e_z be the strains in x,y,z directions\n",
+ "e_x=1*E**-1*(50+mu*20-15*mu)\n",
+ "e_y=1*E**-1*(-mu*50-20-mu*15)\n",
+ "e_z=1*E**-1*(-mu*50+mu*20+15)\n",
+ "\n",
+ "#Volumetric strain\n",
+ "e_v=e_x+e_y+e_z\n",
+ "\n",
+ "#Volume\n",
+ "V=20*40*500 #mm**3\n",
+ "#Change in Volume \n",
+ "dell_v=e_v*V #mm**3\n",
+ "\n",
+ "#Result\n",
+ "print\"The change in Volume is\",round(dell_v,2),\"mm**3\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The change in Volume is 36.0 mm**3\n"
+ ]
+ }
+ ],
+ "prompt_number": 32
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.2.41,Page No.65"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "import numpy as np\n",
+ "\n",
+ "#Initilization of Variables\n",
+ "\n",
+ "E=2.1*10**5 #N/mm**2 #Young's Modulus \n",
+ "G=0.78*10**5 #N/mm**2 #Modulus of Rigidity\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "#Now using the relation\n",
+ "#E=2*G*(1+mu)\n",
+ "mu=E*(2*G)**-1-1 #Poisson's ratio\n",
+ "\n",
+ "#Bulk Modulus \n",
+ "K=E*(3*(1-2*mu))**-1 #N/mm**2\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print\"The Poisson's Ratio is\",round(mu,2)\n",
+ "print\"The modulus of Rigidity\",round(K,2),\"N/mm**2\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The Poisson's Ratio is 0.35\n",
+ "The modulus of Rigidity 227500.0 N/mm**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 33
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.2.42,Page No.65"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "import numpy as np\n",
+ "\n",
+ "#Initilization of Variables\n",
+ "\n",
+ "G=0.4*10**5 #N/mm**2 #Modulus of rigidity\n",
+ "K=0.75*10**5 #N/mm**2 #Bulk Modulus \n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "#Young's Modulus\n",
+ "E=9*G*K*(3*K+G)**-1\n",
+ "\n",
+ "#Now from the relation\n",
+ "#E=2*G(1+2*mu)\n",
+ "mu=E*(2*G)**-1-1 #POissoin's ratio \n",
+ "\n",
+ "#result\n",
+ "print\"Young's modulus is\",round(E,2),\"N/mm**2\"\n",
+ "print\"Poissoin's ratio is\",round(mu,2)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Young's modulus is 101886.79 N/mm**2\n",
+ "Poissoin's ratio is 0.27\n"
+ ]
+ }
+ ],
+ "prompt_number": 34
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.2.43,Page No.65"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "import numpy as np\n",
+ "\n",
+ "#Initilization of Variables\n",
+ "\n",
+ "b=60 #mm #width of bar\n",
+ "d=30 #mm #depth of bar\n",
+ "L=200 #mm #Length of bar\n",
+ "A=30*60 #mm**2 #Area of bar\n",
+ "A2=30*200 #mm**2 #Area of bar along which expansion is restrained\n",
+ "P=180*10**3 #N #Compressive force\n",
+ "E=2*10**5 #N/mm**2 #Young's Modulus\n",
+ "mu=0.3 #Poissoin's ratio\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "#The bar is restrained from expanding in Y direction\n",
+ "P_z=0\n",
+ "P_x=P*A**-1 #stress developed in x direction\n",
+ "\n",
+ "#Now taking compressive strain as positive\n",
+ "#e_x=P_x*E**-1-mu*P_y*E**-1 .......................(1)\n",
+ "#e_y=-mu*P_x*E**-1+P_y*E**-1 ....................(2)\n",
+ "#e_z=-mu*P_x*E**-1-mu*P_y*E**-1 ......................(3)\n",
+ "\n",
+ "#Part-1\n",
+ "#When it is fully restrained\n",
+ "e_y=0\n",
+ "P_y=30 #N/mm**2 \n",
+ "e_x=P_x*E**-1-mu*P_y*E**-1\n",
+ "e_z=-mu*P_x*E**-1-mu*P_y*E**-1\n",
+ "\n",
+ "#Change in Length \n",
+ "dell_l=e_x*L #mm\n",
+ "\n",
+ "#Change in width\n",
+ "dell_b=b*e_y\n",
+ "\n",
+ "#change in Depth\n",
+ "dell_d=d*e_z\n",
+ "\n",
+ "#Volume of bar\n",
+ "V=b*d*L #mm**3\n",
+ "#Change in Volume\n",
+ "e_v=(e_x+e_y+e_z)*V #mm**3\n",
+ "\n",
+ "#Part-2\n",
+ "#When 50% is restrained\n",
+ "\n",
+ "#Free strain in Y direction\n",
+ "e_y1=mu*P_x*E**-1\n",
+ "\n",
+ "#As 50% is restrained,so\n",
+ "e_y2=-50*100**-1*e_y1\n",
+ "\n",
+ "#But form Equation 2 we have e_y=-mu*P_x*E**-1+P_y*E**-1 \n",
+ "#After substituting values in above equation and furthe simplifying we get\n",
+ "P_y=e_y2*E+d\n",
+ "\n",
+ "e_x2=P_x*E**-1-mu*P_y*E**-1 \n",
+ "e_z2=-mu*P_x*E**-1-mu*P_y*E**-1\n",
+ "\n",
+ "#Change in Length \n",
+ "dell_l2=e_x2*L #mm\n",
+ "\n",
+ "#Change in width\n",
+ "dell_b2=b*e_y2\n",
+ "\n",
+ "#change in Depth\n",
+ "dell_d2=d*e_z2\n",
+ "\n",
+ "#Change in Volume\n",
+ "e_v2=(e_x2+e_y2+e_z2)*V #mm**3\n",
+ "\n",
+ "#REsult\n",
+ "print\"Change in Dimension of bar is:dell_l\",round(dell_l,2),\"mm\"\n",
+ "print\" :dell_b\",round(dell_b,4),\"mm\"\n",
+ "print\" :dell_d\",round(dell_d,2),\"mm\"\n",
+ "print\"Change in Volume is\",round(e_v,2),\"mm**3\"\n",
+ "print\"Changes in material when only 50% of expansion can be reatrained:dell_l2\",round(dell_l2,2),\"mm\"\n",
+ "print\" :dell_b2\",round(dell_b2,4),\"mm\"\n",
+ "print\" :dell_d2\",round(dell_d2,2),\"mm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Change in Dimension of bar is:dell_l 0.09 mm\n",
+ " :dell_b 0.0 mm\n",
+ " :dell_d -0.01 mm\n",
+ "Change in Volume is 93.6 mm**3\n",
+ "Changes in material when only 50% of expansion can be reatrained:dell_l2 0.1 mm\n",
+ " :dell_b2 -0.0045 mm\n",
+ " :dell_d2 -0.01 mm\n"
+ ]
+ }
+ ],
+ "prompt_number": 35
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.2.44,Page No.72"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "import numpy as np\n",
+ "\n",
+ "#Initilization of Variables\n",
+ "\n",
+ "P=10*10**3 #N #Load\n",
+ "E=2*10**5 #N/mm**2 #Young's Modulus\n",
+ "d2=12 #mm #Diameter of bar1\n",
+ "d1=16 #mm #diameter of bar2\n",
+ "L1=200 #mm #Length of bar1\n",
+ "L2=500 #mm #Length of bar2\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "#Let A1 and A2 be the cross Area of Bar1 & bar2 respectively\n",
+ "A1=pi*4**-1*d1**2 #mm**2\n",
+ "A2=pi*4**-1*d2**2 #mm**2\n",
+ "\n",
+ "#Let p1 and p2 be the stress in Bar1 nad bar2 respectively\n",
+ "p1=P*A1**-1 #N/mm**2\n",
+ "p2=P*A2**-1 #N/mm**2\n",
+ "\n",
+ "#Let V1 nad V2 be the Volume of of Bar1 and Bar2\n",
+ "V1=A1*(L1+L1)\n",
+ "V2=A2*L2\n",
+ "\n",
+ "#Let E be the strain Energy stored in the bar\n",
+ "E=p1**2*(2*E)**-1*V1+p2**2*V2*(2*E)**-1\n",
+ "\n",
+ "#result\n",
+ "print\"The Strain Energy stored in Bar is\",round(E,2),\"N-mm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The Strain Energy stored in Bar is 1602.6 N-mm\n"
+ ]
+ }
+ ],
+ "prompt_number": 36
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.2.45,Page No.73"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "import numpy as np\n",
+ "\n",
+ "#Initilization of Variables\n",
+ "\n",
+ "#Bar-A\n",
+ "d1=30 #mm #Diameter of bar1\n",
+ "L=600 #mm #length of bar1\n",
+ "\n",
+ "#Bar-B\n",
+ "d2=30 #mm #Diameter of bar2\n",
+ "d3=20 #mm #Diameter of bar2\n",
+ "L2=600 #mm #length of bar2\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "#Area of bar-A\n",
+ "A1=pi*4**-1*d1**2\n",
+ "\n",
+ "#Area of bar-B\n",
+ "A2=pi*4**-1*d2**2\n",
+ "A3=pi*4**-1*d3**2\n",
+ "\n",
+ "#let SE be the Strain Energy\n",
+ "#Strain Energy stored in Bar-A\n",
+ "#SE=p**2*(2*E)**-1*V\n",
+ "#After substituting values and simolifying further we get\n",
+ "#SE=P**2*E**-1*0.4244\n",
+ "\n",
+ "#Strain Energy stored in Bar-B\n",
+ "#SE2=p1**2*V1*(2*E)**-1+p2**2*V2*(2*E)**-1\n",
+ "#After substituting values and simolifying further we get\n",
+ "#SE2=0.6897*P**2*E**-1\n",
+ "\n",
+ "#Let X be the ratio of SE in Bar-B and SE in Bar-A\n",
+ "X=0.6897*0.4244**-1\n",
+ "\n",
+ "#Part-2\n",
+ "\n",
+ "#When Max stress is produced is same:Let p be the max stress produced\n",
+ "\n",
+ "#Stress in bar A is p throughout \n",
+ "#In bar B:stress in 20mm dia.portion=p2=p\n",
+ "\n",
+ "#Stress in 30 mm dia.portion\n",
+ "#p1=P*A2*A3**-1\n",
+ "#After substituting values and simolifying further we get\n",
+ "#p1=4*9**-1*p\n",
+ "\n",
+ "#Strain Energy in bar A\n",
+ "#SE_1=p**2*(2*E)**-1*A1*L1\n",
+ "#After substituting values and simolifying further we get\n",
+ "#SE_1=67500*p**2*pi*E**-1\n",
+ "\n",
+ "#Strain Energy in bar B\n",
+ "#SE_2=p1**2*V1*(2*E)**-1+p2**2*V2*(2*E)**-1\n",
+ "#After substituting values and simolifying further we get\n",
+ "#SE_2=21666.67*pi*p**2*E**-1\n",
+ "\n",
+ "#Let Y be the Ratio of SE in bar B and SE in bar A\n",
+ "Y=21666.67*67500**-1\n",
+ "\n",
+ "#result\n",
+ "print\"Gradually applied Load is\",round(X,2)\n",
+ "print\"Gradually applied Load is\",round(Y,2)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Gradually applied Load is 1.63\n",
+ "Gradually applied Load is 0.32\n"
+ ]
+ }
+ ],
+ "prompt_number": 37
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.2.46,Page No.74"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "import numpy as np\n",
+ "\n",
+ "#Initilization of Variables \n",
+ "\n",
+ "W=100 #N #Load\n",
+ "E=2*10**5 #N/mm**2 #Young's Modulus \n",
+ "h=60 #mm #Height through Load falls down\n",
+ "L=400 #mm #Length of collar\n",
+ "d=30 #mm #diameter of bar\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "A=pi*4**-1*d**2 #mm**2 #Area of bar\n",
+ "\n",
+ "#Instantaneous stress produced is\n",
+ "p=W*A**-1*(1+(1+(2*A*E*h*(W*L)**-1))**0.5)\n",
+ "\n",
+ "#Now the EXtension of the bar is neglected in calculating work doneby the Load,then\n",
+ "P=(2*E*h*W*(A*L)**-1)**0.5\n",
+ "\n",
+ "#Let percentage error be denoted by E1\n",
+ "#Percentage error in approximating is\n",
+ "E1=(p-P)*p**-1*100\n",
+ "\n",
+ "#Instantaneous Extension produced is\n",
+ "dell_l=round(P,3)*E**-1*L\n",
+ "\n",
+ "#Result\n",
+ "print\"The Instantaneous stress is\",round(p,2),\"N/mm\"\n",
+ "print\"Percentage Error is\",round(E1,2)\n",
+ "print\"The Instantaneous extension is\",round(dell_l,2),\"mm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The Instantaneous stress is 92.27 N/mm\n",
+ "Percentage Error is 0.15\n",
+ "The Instantaneous extension is 0.18 mm\n"
+ ]
+ }
+ ],
+ "prompt_number": 38
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.2.47,Page No.75"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "import numpy as np\n",
+ "\n",
+ "#Initilization of Variables\n",
+ "\n",
+ "d=20 #mm #Diameter of steel bar\n",
+ "L=1000 #mm #Length of bar\n",
+ "E=2*10**5 #N/mm**2 #Young's Modulus \n",
+ "p=300 #N/mm**2 #max Permissible stress\n",
+ "h=50 #mm #Height through which weight will fall\n",
+ "w=600 #N #Load\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "#ARea of steel bar\n",
+ "A=pi*4**-1*d**2\n",
+ "\n",
+ "#Instantaneous extension is\n",
+ "dell_l=p*L*E**-1 #mm \n",
+ "\n",
+ "#Work done by Load \n",
+ "#W=W1*(h+dell_l)\n",
+ "\n",
+ "#Volume of bar\n",
+ "V=round(A,2)*L\n",
+ "#Let E1 be the strain Energy\n",
+ "E1=p**2*(2*E)**-1*V\n",
+ "\n",
+ "#Answer in Book for Strain Energy is Incorrect \n",
+ "\n",
+ "#Now Equating Workdone by Load to strain Energy \n",
+ "W1=E1*51.5**-1\n",
+ "\n",
+ "#Now when w=600 N\n",
+ "#Let W2 be the Work done by the Load\n",
+ "#W2=w(h2*dell_l)\n",
+ "\n",
+ "h=E1*w**-1-dell_l\n",
+ "\n",
+ "#Result\n",
+ "print\"The Max Lodad which can Fall from a height of 50 mm on the collar is\",round(W1,2),\"N\"\n",
+ "print\"the Max Height from which a 600 N Load can fall on the collar is\",round(h,2),\"mm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The Max Lodad which can Fall from a height of 50 mm on the collar is 1372.54 N\n",
+ "the Max Height from which a 600 N Load can fall on the collar is 116.31 mm\n"
+ ]
+ }
+ ],
+ "prompt_number": 39
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.2.48,Page No.76"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "import numpy as np\n",
+ "\n",
+ "#Initilization of Variables\n",
+ "\n",
+ "D_s=30 #mm #Diameter of steel rod\n",
+ "d=30 #mm #Internal Diameter of copper tube\n",
+ "D=40#mm #External Diameter of copper tube\n",
+ "E_s=2*10**5 #N/mm**2 #Young's Modulus of Steel rod\n",
+ "E_c=1*10**5#N/mm**2 #Young's Modulus of copper tube\n",
+ "P=100 #N #Load\n",
+ "h=40 #mm #height from which Load falls\n",
+ "L=800 #mm #Length \n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "#Area of steel rod\n",
+ "A_s=pi*4**-1*D_s**2\n",
+ "\n",
+ "#Area of copper tube\n",
+ "A_c=pi*4**-1*(D**2-d**2)\n",
+ "\n",
+ "#But Dell_s=dell_c=dell\n",
+ "#p_s*E_s**-1*L=p_c*L*E_c\n",
+ "#After simplifying furthe we get\n",
+ "#p_s=2*p_c\n",
+ "\n",
+ "#Now Equating internal Energy to Workdone we get\n",
+ "p_c=(2*P*h*L**-1*(4*A_s*E_s**-1+A_c*E_c**-1))**0.5\n",
+ "p_s=2*p_c\n",
+ "\n",
+ "#Result\n",
+ "print\"STress produced in steel is\",round(p_s,2),\"N/mm**2\"\n",
+ "print\"STress produced in copper is\",round(p_c,2),\"N/mm**2\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "STress produced in steel is 0.89 N/mm**2\n",
+ "STress produced in copper is 0.44 N/mm**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 41
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.2.49,Page No.77"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "import numpy as np\n",
+ "\n",
+ "dell=0.25 #mm #Instantaneous Extension\n",
+ "\n",
+ "#Bar-A\n",
+ "b1=25 #mm #width of bar\n",
+ "D1=500 #mm #Depth of bar\n",
+ "\n",
+ "#Bar-B\n",
+ "b2_1=25 #mm #width of upper bar\n",
+ "b2_2=15 #mm #Width of Lower Bar\n",
+ "L2=200 #mm #Length of upper bar\n",
+ "L1=300 #mm #Length of Lower bar\n",
+ "\n",
+ "E=2*10**5 #N/mm**2 #Young's Modulus of bar\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "#Strain\n",
+ "e=dell*D1**-1 \n",
+ "\n",
+ "#Load\n",
+ "p=e*E\n",
+ "\n",
+ "#Area of bar-A\n",
+ "A=pi*4**-1*25**2\n",
+ "\n",
+ "#Volume of bar-A\n",
+ "V=A*D1\n",
+ "\n",
+ "#Let E1 be the Energy of Blow\n",
+ "#Energy of Blow\n",
+ "E1=p**2*(E)**-1*V\n",
+ "\n",
+ "#Let p2 be the Max stress in bar B When this blow is applied.\n",
+ "#the max stress occurs in the 15mm dia. portion,Hence, the stress in 25 mm dia.portion is\n",
+ "#p2*pi*4**-1*b2_2**2*(pi*4**-1*b2_2**2=0.36*p\n",
+ "\n",
+ "#Strain Energy of bar B\n",
+ "#E2=p**2*(2*E)**-1*v1+1*(2*E)**-1*(0.36*p2)**2*v2\n",
+ "#After substituting values and Further substituting values we get\n",
+ "#E2=0.1643445*p2**2\n",
+ "\n",
+ "#Equating it to Energy of applied blow,we get\n",
+ "p2=(12271.846*0.1643445**-1)**0.5\n",
+ "\n",
+ "#Stress in top portion\n",
+ "sigma=0.36*p2\n",
+ "\n",
+ "#Extension in Bar-1\n",
+ "dell_1=p2*E**-1*L1\n",
+ "\n",
+ "#Extension in Bar-2\n",
+ "dell_2=0.36*p2*E**-1*L2\n",
+ "\n",
+ "#Extension of bar\n",
+ "dell_3=dell_1+dell_2\n",
+ "\n",
+ "#Result\n",
+ "print\"Instantaneous Max stress is\",round(sigma,2),\"N/mm**2\"\n",
+ "print\"extension in Bar is\",round(dell_3,2),\"mm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Instantaneous Max stress is 98.37 N/mm**2\n",
+ "extension in Bar is 0.51 mm\n"
+ ]
+ }
+ ],
+ "prompt_number": 42
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file |