diff options
author | Jovina Dsouza | 2014-07-22 00:00:04 +0530 |
---|---|---|
committer | Jovina Dsouza | 2014-07-22 00:00:04 +0530 |
commit | c8733e4b6b4bffcddf7eb45ff1c72ccc837aa3af (patch) | |
tree | 0f7627eb79ddb66b8fa81efd380036bc75586ba8 /Stoichiometry_And_Process_Calculations/ch7.ipynb | |
parent | e7deb0183418e63da824955296b8bb3598ba359d (diff) | |
download | Python-Textbook-Companions-c8733e4b6b4bffcddf7eb45ff1c72ccc837aa3af.tar.gz Python-Textbook-Companions-c8733e4b6b4bffcddf7eb45ff1c72ccc837aa3af.tar.bz2 Python-Textbook-Companions-c8733e4b6b4bffcddf7eb45ff1c72ccc837aa3af.zip |
adding book
Diffstat (limited to 'Stoichiometry_And_Process_Calculations/ch7.ipynb')
-rwxr-xr-x | Stoichiometry_And_Process_Calculations/ch7.ipynb | 945 |
1 files changed, 945 insertions, 0 deletions
diff --git a/Stoichiometry_And_Process_Calculations/ch7.ipynb b/Stoichiometry_And_Process_Calculations/ch7.ipynb new file mode 100755 index 00000000..e679965d --- /dev/null +++ b/Stoichiometry_And_Process_Calculations/ch7.ipynb @@ -0,0 +1,945 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 7 : Solutions and Phase Behaviour" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 7.1 pageno : 155" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "# variables \n", + "Pas = 71.2 #kPa n-heptane\n", + "Pbs = 48.9 #kPa toluene\n", + "P = 65. #kPa equilibrium\n", + "\n", + "# Calculation \n", + "#P=(Pas-Pbs)*xa+Pbs,xa=mole fraction of n-heptane,liq. condition,therefore\n", + "xa = (P - Pbs)/(Pas - Pbs) \n", + "#ya = Pa / P , Vapour condition\n", + "ya = Pas * xa / P \n", + "P1 = xa * 100 \n", + "P2 = ya * 100 \n", + "\n", + "# Result\n", + "print \"Percentage of hepatne in liquid = %.1f %%\"%P1\n", + "print \"Percentage of hepatne in vapour = %.1f %%\"%P2\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Percentage of hepatne in liquid = 72.2 %\n", + "Percentage of hepatne in vapour = 79.1 %\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 7.2 pageno : 155" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "# variables \n", + "P1 = 100. #kPa ( Vapour pressure of liq A )\n", + "P2 = 60. #kPa ( Vapour pressure of liq B )\n", + "T = 320. #K\n", + "\n", + "# Calculation \n", + "#Pa = xa * P1 = 100 * xa\n", + "#Pa = xb * P2 = 60 * xb\n", + "#P = xa * P1 + ( 1 - xa )* P2\n", + "# = 100xa + ( 1 - xa )* 60\n", + "# = 60 + 40*xa\n", + "#ya = Pa / P\n", + "#0.5 = 100*xa / ( 60 + 40 * xa)\n", + "xa = 60 * 0.5 / (100 - 20) \n", + "Per1 = xa * 100 \n", + "\n", + "# Result\n", + "print \"(a)Percentage of A in liquid = \",Per1,\"%\"\n", + "Ptotal = 60 + 40 * xa \n", + "print \"(b)Total pressure of the vapour = \",Ptotal,\"kPa\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a)Percentage of A in liquid = 37.5 %\n", + "(b)Total pressure of the vapour = 75.0 kPa\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 7.3 pageno : 156" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "# variables \n", + "xa = 0.25 # liquid mixture\n", + "xb = 0.30 \n", + "\n", + "# Calculation \n", + "xc = 1 - xa - xb \n", + "Ptotal = 200. #kPa\n", + "Pcs = 50. #kPa(Vapour pressure of c)\n", + "Pc = xc * Pcs #(partial pressure of c)\n", + "yc = Pc / Ptotal \n", + "yb = 0.5 \n", + "ya = 1 - yb - yc \n", + "per1 = ya * 100 \n", + "\n", + "# Result\n", + "print \"Percentage of A in vapour = \",per1,\"%\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Percentage of A in vapour = 38.75 %\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 7.4 pageno : 156" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "# variables \n", + "P = 101.3 #kPa flash vaporization\n", + "Pbs = 54.21 #kPa pressure\n", + "Pas = 136.09 #kPa temperature\n", + "xf = 0.65 # liquid mixture\n", + "\n", + "# Calculation \n", + "xw = (P - Pbs)/(Pas - Pbs) \n", + "yd = xw * Pas / P \n", + "# f = ( xf - xw ) / ( yd - xw )\n", + "f = ( xf - xw ) / ( yd - xw ) \n", + "per1 = f * 100\n", + "\n", + "# Result \n", + "print \"mole percent of the feed that is vapourised = %.1f %%\"%per1\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "mole percent of the feed that is vapourised = 37.9 %\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 7.5 pageno : 157" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "%pylab inline\n", + "\n", + "from matplotlib.pyplot import *\n", + "from numpy import zeros\n", + "\n", + "# variables \n", + "T = [371.4, 378 ,383 ,388, 393, 398.6]\n", + "Pas = [101.3, 125.3, 140 ,160, 179.9, 205.3]\n", + "Pbs = [44.4, 55.6, 64.5, 74.8, 86.6, 101.3]\n", + "Ptotal = 101.3 #kPa\n", + "\n", + "# Calculation \n", + "x = zeros(6)\n", + "y = zeros(6)\n", + "for i in range(6):\n", + " x[i] = (Ptotal - Pbs[i])/(Pas[i] - Pbs[i]) \n", + " y[i] = x[i] * Pas[i] / Ptotal \n", + "\n", + "# Result\n", + "#subplot(2,1,1)\n", + "plot(x,T,'-o') \n", + "plot(y,T,'-x') \n", + "suptitle(\"Boiling point diagram\")\n", + "xlabel(\"Mole fraction, x or y\")\n", + "ylabel(\"Temperature, K\")\n", + "show()\n", + "\n", + "\n", + "# part 2\n", + "\n", + "# variables \n", + "T = [371.4, 378, 383, 388, 393, 398.6]\n", + "Pas = [101.3, 125.3, 140, 160, 179.9, 205.3]\n", + "Pbs = [44.4, 55.6, 64.5, 74.8, 86.6, 101.3]\n", + "Ptotal = 101.3 #kPa\n", + "x = zeros(6)\n", + "y = zeros(6)\n", + "\n", + "# Calculation \n", + "for i in range(6):\n", + " x[i] = (Ptotal - Pbs[i])/(Pas[i] - Pbs[i]) \n", + " y[i] = x[i] * Pas[i] / Ptotal \n", + "\n", + "w = x \n", + "# Result\n", + "#subplot(2,1,2)\n", + "plot(x,w) \n", + "plot(x,y,'-o')\n", + "suptitle(\"Equilibrium curve\")\n", + "xlabel(\"x, mole fraction in liquid\")\n", + "ylabel(\"y, mole fraction in vapour\")\n", + "show()\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Populating the interactive namespace from numpy and matplotlib\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEhCAYAAACKklw+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl8TPf+x/HXZI+t9liCEKWyyViDILHlEkvVEvWjrVL7\nUrpQtKiteluKoihatMTSRUUtRcQSWwSl9kqJpYgKmkSSme/vj3ObSklFkpmT5fN8PPJoMpk5551z\n3fnMdznfr0EppRBCCCEew0bvAEIIIXIvKRJCCCEyJEVCCCFEhqRICCGEyJAUCSGEEBmSIiGEECJD\nUiSEVdja2mI0GvHx8cHb25uIiIh/ff7Vq1fp1q0bAOHh4XTo0AGAH374gRkzZlg87+Nk5ty//fYb\nq1atytTxXnnlFdavXw/Aa6+9xqlTp7KdUYicZqd3AFEwFCpUiOjoaAC2bt3K2LFj2bNnT4bPr1Ch\nAmvXrn3k8Q4dOqQVDGvLzLkvXrzI119/zYsvvvjE4xkMBgwGAwCLFy/OkYwmkwlbW9scOZYQIC0J\noYP4+HjKli0LgNlsZtiwYXh4eODh4cHy5csBiImJwdvb+5HXfvHFFwwbNgzQPomPGDGCZs2aUbly\nZb7++mtAe6N89dVXqVmzJm3btiU4ODjtE/vDAgICeP3112nQoAHPPfcce/fuBeDWrVsEBQXh7e1N\n3bp1OXLkSKbPPWbMGHbv3o3RaGT27Nnpzmc2m3nttdeoWbMm//nPf7hx40a6LH+dZ+DAgdSvX58a\nNWowZsyYtOd8++23PPvsszRs2JDhw4enFayJEyfSu3dvAgICeOWVV/jtt99o2rQpRqMRLy8vdu3a\nBWgtsubNm9OlSxeqV6/OmDFjWLFiBY0aNaJmzZqcO3cu8/8jigJDWhLCKhITEzEajSQlJXHt2jV2\n7twJwOrVqzl37hy//PILt2/fxtvbm1atWmX6uDdu3CAiIoJTp07Rtm1bevbsyerVq7l58yZnzpzh\n1q1b1KhRg759+z7yWoPBQHJyMgcPHmTfvn306dOHM2fOMHbsWAICAnjnnXeIiIigV69e/PLLL5k6\n94wZM/joo4/44YcfHnl+aGgosbGxnDlzhhs3blCzZs20XH+1KAA+/PBDihUrhslkolWrVkRFRVGr\nVi0GDx7MoUOHcHV1pVevXulec/r0aSIjI7GzsyMpKYkdO3Zgb2/PuXPn6NKlC8ePHwfg+PHjnDt3\njmLFilG1alUGDhxIZGQkc+bMYfbs2Xz66aeZvvaiYJCWhLAKZ2dnoqOjOXXqFJs3b6Z3794A7Nmz\nhx49egBQsmRJWrZsyb59+zJ1TIPBQMeOHQGoVasWt27dAmDv3r107doVgNKlSxMYGJjhMbp37w5A\n48aNSUpK4ubNm+zduzetu6hZs2bcv38/7dhPOve/rXKzZ88eQkJCAChbtiwtWrR47POWLFlC7dq1\nqVu3LidPnuT06dOcOHGCmjVr4urqCkBISEjauf7KYmenfeb7888/6dWrF56ennTv3p2zZ8+mHbt+\n/fqULl0aBwcHqlevnlaQvby8uHz5cobZRcElLQlhdX5+fty6dYsbN25gMBjSvbEqpdJ9Qn4SBweH\ntO//et0/j/k0/jrGP1//uEyPO/eTjv2kXGfOnGHevHkcPXqUIkWK0KdPH1JTUx85/j+PU6hQobTv\nP/74Y9zc3AgNDcVkMuHk5JT2O0dHx7TvbWxs0n62sbHBbDY/8W8QBY+0JITVnT59mpSUFEqUKEHT\npk1Zu3YtSilu377Nzp07adSoUbaO37hxY7799ltAG18IDw/P8Lnr1q0DIDIyEmdnZ0qXLk3Tpk1Z\nvXo1ALt376Zo0aKUKlUqU+d2dnYmISHhsb/z9/dPG4y/efNmWpfbwx48eECRIkUoXLgwt27d4scf\nf8RgMODl5cXp06eJjY1Ny51RQUtKSsLFxQWAr7/+GpPJlKnsQjyOtCSEVfw1JmE2m0lJSeHzzz/H\n3t6ekJAQ9u7di4eHBwaDgenTp1OhQgViYmLSfXp+uJXwuMcf/v7FF1/kp59+ombNmlSrVo06derg\n7Oz82Fz29vY0bNiQ+Ph4li5dCsDUqVPp2bMnq1atwt7enhUrVmT63EajkeTkZLy9venXrx8jRoxI\ne05ISAjbt29Py9W4ceNH8vw1RfjZZ5/F3d0df39/QCs+8+bNIzAwkFKlSmE0Gnnw4MFjcw0aNIiO\nHTvy1Vdf0bp1a4oUKfLYzA/75zGE+ItBlgoX+VFiYiLOzs7ExcVRt25dIiMjKV++fLrnBAYG8vHH\nH1OnTh2dUj6dv/4mpRRDhgzBzc2Nt99+W+9YIp+TloTIl4KCgrh79y73799n7NixjxSIvGjBggWs\nWLGCe/fuYTQa+fjjj/WOJAoAaUkIIYTIkAxcCyGEyJAUCSGEEBmSIiGEECJDUiSEEEJkSIqEEEKI\nDEmREEIIkSEpEkIIITJk8SJhMpkwGo1pa9/fvn2b1q1b4+PjQ1BQEHfu3El77vTp0/Hw8MDb25ut\nW7daOpoQQognsHiRmD17dtq6PAATJkwgODiY48eP07ZtWyZMmABAVFQU33zzDT///DObN29mwIAB\nJCcnWzqeEEKIf2HRIhEbG8umTZvo169f2kqVmzZtSttLoFevXoSFhQEQFhZGjx49sLW1pWLFinh6\nenLw4EFLxhNCCPEEFi0SI0eO5L///S82Nn+f5ubNm2nLLpcuXTptC8crV66kbagC4OrqmrYsshBC\nCH1YrEhs3LiRsmXLYjQas7wBjBBCCH1ZbBXYffv2sWHDBjZt2kRSUhJ3796ld+/elClThlu3blG6\ndGlu3rxJ2bJlAa3l8PD2ibGxsVSqVOmR41avXp0LFy5YKrYQQuRL7u7unD9//ulfqKwgPDxctW/f\nXiml1NChQ9WsWbOUUkrNnDlTDRs2TCml1OHDh1W9evVUSkqKunz5sqpSpYpKTk5+5FhWipwnTJgw\nQe8IuYZci7/JtfibXIu/ZfW902r7Sfw1u2nSpEmEhISwdOlSypUrx5o1awCoW7cunTt3xsfHBxsb\nGxYuXIi9vb214gkhhHgMqxSJ5s2b07x5cwBKlizJtm3bHvu8sWPHMnbsWGtEEkIIkQlyx3UeFhAQ\noHeEXEOuxd/kWvxNrkX25bmd6QwGg8yWEkKIp5TV905pSQghhMhQniwSQUHjCf0+jLCzYXpHEUKI\nfC1PFomtEW/SP/Q97p/SO4kQQuRvebJI0HIMd7/dzrIF+/VOIoQQ+ZrV7pPIUbW+gXuu3DM90DuJ\nEELka3mzJXGxBZQ6zcGGcxm4cSCnb53WO5EQQuRLebNIhH2GA6cosvpzUuNdaLasGe2/bs+Oiztk\neqwQQuSgPHmfRFDQePoM8uP4HVj8VjCTpiViZ1zJrP2zsLe1Z5TfKHp49cDRzlHvuEIIkStk9T6J\nPFkkHo58+jR07gzNmsEns82EX97CrP2zOHHjBEPqD2FgvYGUKlRKx8RCCKG/Ansz3XPPwcGDcOsW\nBDS3wdu5LVt7b2VLry1c+OMC1edWZ9DGQZy5dUbvqEIIkefk+SIBULQorFuntSgaNIBdu8DbxZul\nnZZyasgpyhQuQ9NlTemwqoOMWwghxFPI891N/7R1K7z0EowZAyNGwP9WKCcxJZGVx1cyc/9MHG0d\nGdVIG7dwsHWwUnIhhNBPgR2TeJyYGHjhBahVCxYtgsKF//6dWZnZcn4LM/fP5OSNkwxtMJQBdQfI\nuIUQIl8rsGMSj+PmBnv3gp0dNG4MD+92amOwoe2zbdnWexube23m3O1zVJ9bncFhgzkbd1a3zEII\nkRvlyyIB4OwMX3wBAwZoheLHHx99jo+LD8s6LePUkFOULlQa/6X+dFjVgZ0Xd8q4hRBCkE+7m/5p\n717o3h0GDoRx48Amg9KYkJLAyuPa/RZOdk6M8htFiFeIjFsIIfI8GZN4gmvXoFs3KFkSVqyAZ57J\n+LlmZWbz+c3MjJzJqVunGFp/KAPqDaCkc8lsJBdCCP3ImMQTlC8PO3ZAlSpQvz6cPJnxc20MNrR7\nth0/vfQTm3pu4uzts7jPcZdxCyFEgVNgWhIP+/JLePNNmD9fa11kxrV715h/aD4Loxbi5+rHqEaj\naF6lOYa/5tgKIUQuJt1NT+nIEejSRSsS06ZpM6EyIyElgRXHVjBr/ywK2RdiVKNRdPfsLuMWQohc\nTYpEFsTFwYsvgskEq1dDmTKZf62MWwgh8hIZk8iCUqW0qbENG2rjFIcPZ/61/xy3OBN3Bvc57gwJ\nGyLjFkKIfKNAtyQe9s032hTZGTOgT5+sHePavWvMOzSPRVGLaFSpEaP8RtGsSjMZtxBC6E66m3LA\nqVPaIoGBgTB7NjhkcZjh4XGLwg6FGek3UsYthBC6kiKRQ+7ehZdfhuvXtZVlK1bM+rHMysyP535k\n5v6ZnLl1hqENhtK/bn8ZtxBCWJ2MSeSQYsVg/Xro2FFbdnz37qwfy8ZgQ3CNYLa/tJ2NPTdy6tYp\nqs+pztBNQzkXdy7nQgshhIVYtEgkJSVRv359jEYjNWrUYOTIkQAcPnyYOnXq4OXlRceOHbl37x4A\nMTExODs7YzQaMRqNDB482JLxMmRjA++8A0uXQteuMGcOZLfx4lvOly+f/5KTg09S3Kk4jZc25vnV\nzxPxW4SsEyWEyLUs3t2UmJiIs7Mzqamp+Pv7M336dIYPH878+fNp2rQpy5Yt4+TJk3z00UfExMTQ\noUMHfv7554wDW7i76Z8uXtSWHff01JYdL1QoZ46bkJLA8mPLmbV/FkUcijDKT7vfwt7WPmdOIIQQ\nD8m13U3Ozs4AJCcnYzKZKFu2LBcuXKBp06YAtGrVig0bNlg6RpZVraotEGgwaKvJ/vprzhy3kH0h\nBtYbyKkhp5gUMIkl0UuoOrsqM/bM4I/EP3LmJEIIkU0WLxJmsxlfX19cXFwIDAzE09OTWrVq8f33\n3wOwdu1aLl26lPb8mJgYfH19ady4MTt27LB0vEwpVAiWL4e+faFRI9i8OeeObWOwoX2N9ux4eQcb\ne27kl1u/4D7HnWGbhnH+9vmcO5EQQmSB1WY3xcfHExQUxAcffECZMmUYOnQot27domPHjnz66afE\nx8eTnJxMUlISxYoVIzo6mvbt23Py5EmKFy/+d2Ardzf90549EBICgwdr4xYZLTueHVfvXWXewXks\nOrKIJpWaMKrRKJpWbir3WwghsixPTIGdPHky9vb2jBkzJu2xmJgYOnfuTHR09CPPDwoKYtKkSfj5\n+aU9ZjAYmDBhQtrPAQEBBAQEWDT3P129qq35VKaMtljgvy07nh1/Jv+ZNm5RzLEYoxqNoptHNxm3\nEEI8UXh4OOHh4Wk/T5o0KfcVibi4OBwcHChatCiJiYkEBQUxevRo/Pz8KFWqFEopBgwYQO3atRky\nZAi3b9+mePHi2NjYEBMTQ5MmTTh27BilS5f+O7DOLYm/JCfDyJGwfbt2t7aHh+XOZVZmws6GMWv/\nLM7dPsewBsN4rc5rlHAuYbmTCiHylVw5cH316lWaNWuGr68vRqORVq1aERwczIoVK6hVqxY+Pj6U\nLl2aIUOGALBz5058fHzw8fGhQ4cOzJkzJ12ByE0cHGDePBgzBgICtHsrLMXGYEOHmh3Y8fIONvTY\nwIkbJ2TcQghhFXLHdQ6IitKWHe/RA6ZOBVtby5/zyt0rzDs0j8VHFuNf2Z9RfqPwr+wv4xZCiMfK\nE2MSOSE3FgmAW7e0ImEwwKpVYK0G0MPjFs84PcMov1F09egq4xZCiHSkSOQCqakwfjyEhmrdT3Xq\nWO/cf41bzNw/k/O3z8u4hRAiHSkSuci6dTBoEHz0kbZYoLVFX4tm1v5ZbDy7kV4+vRjRcATuJd2t\nH0QIkWtIkchlfvlFW3a8VSuYNSvry45nx8PjFk0rN2VUo1E0qdRExi2EKICkSORC8fFaS+LGDa11\nUaGCPjn+TP6TL499yaz9syjhVIKRfiNl3EKIAkaKRC5lNsP06TB/vjZW4e+vYxZlZuPZjcyMnMmv\nf/yqjVvUfY3iTsWf/GIhRJ4mRSKX27xZa1W8+y4MGaLNgtLTkWtHmLV/FmFnw+jt05sRfiOoVqKa\nvqGEEBYjRSIP+PVXbdlxHx/47LOcW3Y8O67cvcKnBz9l8ZHFNHdrzki/kTJuIUQ+JEUij0hIgNde\n0wa2hw6NYM2arTx4YIejYyrDh7chOLiZLrnuJ9/ny6Nf8smBTyjhVIJRjUbhbOdMc7fm6bqj7iTd\nYe+lvQTXCNYlpxAia6RI5CFKwcCBEXz++RbM5qlpj7u7j2P27CDdCgWAyWwi7FwYMyO1+y0qP1OZ\nVV1WUaV4Fe4k3WHc9nFMbTlVxjGEyGOkSOQxQUHj2bp1ymMef5fNmyfrkOhRUVejmLF3BhvObKCP\nbx9SzCl81OYjKRBC5EFZfe+0s0AWkQkPHjz+0iclWWHhp0yqW6Eua7qtYd+lfTRZ1oQSTiWoVqIa\nwxsOp4hDEb3jCSGswOI704nHc3RMfezj8fEmKyf5d3eS7vDVz19xccRF2j7blqhrUTw791nmHpjL\ng9QHescTQliYFAmdDB/eBnf3cekeq1hxLNevt6Z/f22AW28Pj0G4FXdjXrt5lCtcjjVd17D5wmZq\nflqTL45+gcmcuwqbECLnyJiEjsLCIpg7dxtJSbY4OZkYNqw1TZs2Y8gQbfnxVaugdm0d850No0nl\nJhnObtpzaQ9jt4/lVsItJgdO5oVaL8jUWSFyKRm4zmdWrIBRo+C992DoUP1vvsuIUootF7YwdvtY\nbAw2TGs5jdbVWkuxECKXkSKRD50/Dz17gosLLF2q7amdW5mVmfW/rOfdne9Svmh5prWYRqNKjfSO\nJYT4n1y5fanInurVYc8e8PQEo1HbTzu3sjHY0M2zGycGn6C3T296rO9Bx1UdOf77cb2jCSGyQVoS\necRPP2lrP/XuDZMng30uX8A1KTWJhYcXMn3PdFpWa8mkgElUL1ld71hCFFjSksjnWrWCo0fhxAlo\n0gQuXNA70b9zsnNihN8Izg07R63StfD73I+BGwdy5e4VvaMJIZ6CFIk8pEwZ+OEH6NUL/Pxg5Uq9\nEz1ZUceijG82njNDz1DMsRg+n/nw1ta3iEuI0zuaECITpLspjzp2DHr0gHr1YN48KFZM70SZc/Xe\nVaZETGHNyTUMbzickX4jKepYVO9YQuR70t1UwNSurd1LUagQ1KkDhw7pnShzKhStwPzg+Rzod4Bz\nt89RfW51ZkXOIik1Se9oQojHkJZEPrBunbaR0ahR8NZbYJOHSv/Pv//Muzvf5ci1I7zX/D1e8X0F\nOxtZUkyInCb3SRRwly5pYxWOjrB8OZQvr3eip7M/dj9jt48l9m4skwMn082zGzaGPFTthMjlpEgI\nUlNh6lRt17vFi6F9e70TPR2lFNsvbmfs9rGkmFOY2mIqbau3lbu3hcgBUiREmj17tFZFx47w4Yfg\n5KR3oqejlOK7098xfud4SjqXZFqLaTSt0lTvWELkaVIkRDp//AH9+8PZs7B6NdSqpXeip2cym/jq\n56+YED6B50o/x7QW0zCWN+odS4g8SWY3iXRKlIA1a2DYMGjWTOt+ymu11dbGlpdqv8SZoWdo/2x7\ngr8Opvva7py5dUbvaEIUGBYrEklJSdSvXx+j0UiNGjUYOXIkAIcPH6ZOnTp4eXnRsWNH7t27l/aa\n6dOn4+Hhgbe3N1u3brVUtALDYIB+/SAiQruXols3rYWR1zjYOjCkwRDODTtHnfJ18F/mT78N/bgU\nf0nvaELkf8qCEhISlFJKpaSkqIYNG6odO3YoLy8vFRERoZRSaunSpeqNN95QSil1+PBhVa9ePZWa\nmqpiY2OVm5ubevDgwSPHtHDkfCsxUakRI5SqXFmp/13+POt2wm019qexquSMkur1H19Xv9//Xe9I\nQuR6WX3vtGh3k7OzMwDJycmYTCbKli3LhQsXaNpUG4Rs1aoVGzZsACAsLIwePXpga2tLxYoV8fT0\n5ODBg5aMV6A4OcEnn8D8+dC9O0ycqM2GyotKOJdgasupnBx8EpMyUWteLd7b+R7xSfF6RxMi37Fo\nkTCbzfj6+uLi4kJgYCCenp7UqlWL77//HoC1a9dy6ZLWZXDlyhVcXV3TXuvq6kpsbKwl4xVIwcFw\n5Ajs3QsBAfDbb3onyrpyRcoxp+0covpHcfnuZZ6d+yz/3ftfElJywd6vQuQTFr211cbGhqNHjxIf\nH09QUBDh4eEsX76coUOHMn78eDp27Iijo+NTH3fixIlp3wcEBBAQEJBzoQuA8uVhyxb4+GNo0EAb\nr+jaVe9UWedW3I1lnZbxy81feG/ne3wy9xPebfYufY19sbfN5WuqC2Eh4eHhhIeHZ/9AGfVDHT16\nNMM+qvnz5z91v9b777+vpk+fnu6xixcvKl9f37Tf//e//037XXBwsNqzZ88jx/mXyCILDh5Uqnp1\npfr1U+r+fb3T5IxDVw6pNivaqGqzq6mVx1aqVFOq3pGE0F1W3zsz7G7q3Lkzhw8ffuTxCRMmsGjR\noicWn7i4uLSZS4mJiWzbtg1vb2/i4uL+Kk5MmzaNfv36AdCuXTtCQ0NJTU0lNjaWEydO0KBBgyyU\nPfE06tfXup+Sk7UVZY8d0ztR9tWrUI8tvbawpOMSPj30Kb4LfdlwZoPcXyNEVmRUPQ4fPqyqVq2q\n9u7dq5RSymQyqQEDBqjmzZur+Pj4J1af48ePK19fX1W7dm1Vs2ZNNWnSJKWUUrNmzVLPPfec8vLy\nUu+8806610ydOlXVqlVLeXp6qs2bNz/2uP8SWWTTypVKlS6t1CefKGU2650mZ5jNZrXh9AblPd9b\n+X3up3b8ukPvSELoIqvvnf96x/Xx48fp3Lkz8+bNY/HixQB8/fXXWRpHyClyx7VlXbgAPXtC6dKw\nbBmULat3opxhVmZWn1jNezvfo2qJqkxrMY36FevrHUsIq8nxO65v376Nq6srX3zxBf/3f/+Hvb09\nCxcu5M8//+T27dvZCityL3d3be0nHx8wGmHbNr0T5Qwbgw09vXtyasgputbqSufQzrwQ+gK/3PxF\n72hC5GoZtiTc3NzSVt9USqVbidNgMPDrr79aJ+E/SEvCerZvh5df1loWU6aAg4PeiXJOYkoi8w7N\n48O9H9L22bZMCpiEW3E3vWMJYTGywJ+wiFu34NVX4do1WLUKqlfXO1HOik+KZ2bkTD499Ck9vXoy\nrtk4yhUpp3csIXKcLPAnLKJ0afj+e61F0agRrFihd6Kc9YzTM0wKnMTpIaext7XHc74nY7eP5Y/E\nPLjIlRAWIC0JkWnHj0OPHtqe2vPnQ7FieifKeZfjL/P+rvf57sx3jPQbyYiGIyjsUFjvWEJkm7Qk\nhMX5+MDhw1CkiDaofeCA3olyXqVnKrG442L29NnD8d+PU31udeYemMuD1Ad6RxNCF9KSEFnyzTcw\naBCMHAlvvw02+fTjRvS1aMbvHM8vN39hYvOJ9PLpha2Nrd6xhHhqVhu4fu655wAYOnQoQ4cOfeoT\nZpcUidzj8mVtm1Q7O3j55Qi++morDx7Y4eiYyvDhbQgObqZ3xByz+7fdjN0xlriEOKa0mIKDjQP+\nVfwp7lQ87Tl3ku6w99JegmsE65hUiMez6uymW7duceDAAYKDrf9/BikSuYvJpBWIVau2YDZPTXvc\n3X0cs2cH5atCoZRi8/nNjN0xFoBKxSrx5fNfUsK5BHeS7jBu+zimtpyarnAIkVtYtEicO3eOX3/9\nlaCgIBITE0lNTaVo0aJZCppdUiRyn6Cg8WzdOuUxj7/L5s2TdUhkWWZlZt0v6xi7fSyJqYks7rCY\nsLNhUiBErmaxges5c+bQo0cPBg8eDMD169fp0KHD0ycU+daDB49fcT4pKX/23dsYbOju2Z3TQ08z\nuN5ggr8OJjE1ERtDPh2YEQXaE/9VL1iwgH379lHsf/Mdq1atyh95caNkYTGOjo/f4u7UKRNXrlg5\njBXdT77P1XtXOfzaYSJjI3nu0+dYc3KNtHRFvvLEIuHg4JBuQT+z2UxycrJFQ4m8ZfjwNri7j0v3\nWLVqY2nRojW+vtqmRiaTTuEs5OExiLoV6hLZNxI/Vz8mhU8iaGUQZ+PO6h1RiBzxxDGJoUOHUr58\neZYvX85nn33GwoULqVixIh9//LG1MqYjYxK5U1hYBHPnbiMpyRYnJxPDhrUmOLgZp07BgAHafhWL\nFmn3WuQHYWfDaFK5ySOzm3bF7OLCHxeYtnsag+sP5h3/d3C2d9YxqRAaiw1cm0wm5s2bx9atWwEI\nCgpiyJAh2Og0MV6KRN5jNsOSJTBunLYO1HvvQaFCeqeyrNi7sYzaMorDVw8zt+1cmRYrdGeRImEy\nmfDx8eHkyZPZCpeTpEjkXdevazffHTwIn30GrVvrncjytl7YypBNQ/Aq68Xs/8ym8jOV9Y4kCiiL\nzG6ytbWlRo0aXMnPo4/CasqV01aS/fRT6N9fuxHvxg29U1lWG/c2/DzoZ+qUq0OdhXWYsWcGySYZ\n0xN5xxO7m5o2bUp0dDQNGjSgcGFtoTODwcCGDRusEvCfpCWRP/z5J0ycCMuXwwcfwCuvwENbluRL\nF25fYNiPw4i5E8P84PkEuAXoHUkUIBYbkwgPD3/s4wEBAU99spwgRSJ/iY7WWhVFimhdUDVr6p3I\nspRSfHf6O0ZsHkFzt+Z81PojXIq46B1LFACy6ZDIs0wmrQtq8mQYPhxGjwYdt1G3ivvJ95m8azJL\njy5lYvOJDKw3UBYOFBZlsSJRpEiRtK1Lk5OTSUlJoUiRIty9ezdrSbNJikT+dfkyDB0K585p02X9\n/fVOZHknb5xk8KbB/Jn8J/OD59OgYgO9I4l8yiotCbPZTFhYGPv27WP69OlPfbKcIEUif1MKvv1W\na1G0awczZkCJEnqnsiylFCuPr+Ttn97m+ZrPM63lNEo45/M/WlidVTYdsrGxoUOHDmzevPmpTyRE\nZhgM8MILcPIk2NuDpyeEhmrFI78yGAz0rt2bXwb/go3BhlrzavHl0S/lw5DIFZ7Ykli/fn3a92az\nmaioKLaA7HsVAAAgAElEQVRs2UJ0dLTFwz2OtCQKlshIbWC7UiVty1Q3N70TWd7hq4cZFDYIZztn\n5gfPx6usl96RRD5gse6mV155JW1MwsbGBldXVwYOHEj58uWzljSbpEgUPCkp8NFH8PHHMGYMvP66\nttFRfmYym1gUtYj3wt/jldqvMCFgAkUciugdS+RhFisSe/bswf8fI4h79+6lSZMmT32ynCBFouA6\nfx4GDoTbt7WB7Xr19E5keb/f/523f3qbnRd3MitoFi/UeiHtQ5sQT8NiRaJOnTocOXIk3WO+vr4c\nPXr0qU+WE6RIFGxKwcqV8NZb0KOHNm1Wp/2vrGpXzC4GbxpM5WcqM7ftXKqXrK53JJHHZPW9M8NG\ne2RkJPv27ePGjRvMnDkz7eAJCQk8ePAg60mFyAaDAXr3hrZttULh6aktRZ7f98Fq7tacowOO8sn+\nT/D73I9hDYYx2n80TnZOekcT+VyGs5uSk5O5d+8eJpOJe/fucf/+fe7fv4+joyPffPNNpg6elJRE\n/fr1MRqN1KhRg5EjRwJad5Wvry9eXl7Url2bffv2ARATE4OzszNGoxGj0Zi2G54Q/1S6NCxbBl98\nAW+8AV27wtWreqeyLHtbe95q8hbRA6I5fuM4XvO92HxeZhoKC1NPcPHixSc95V8lJCQopZRKSUlR\nDRs2VDt27FD+/v5q8+bNSimlNm3apPz9/dPO5eXl9a/Hy0RkUcAkJio1frxSpUsrNX++UiaT3oms\nI+xsmKo2u5rquqaruhx/We84IpfL6nvnE++TcHR0ZNiwYbRp04bAwEACAwNp0aJFpouQs7O24Upy\ncjImk4myZcvi6upKfHw8AHfu3KFKlSpZKnBCADg5aWMT4eHaeIW/P5w4oXcqy2v3bDtODDqBR2kP\nfD/z5aN9H5FiStE7lshnnlgkQkJCqF27NpcuXWLixIlUq1aNek8xrcRsNuPr64uLiwuBgYF4enry\nwQcf8MYbb1C5cmXeeuutdHdvx8TE4OvrS+PGjdmxY0fW/ipRIHl6wu7d8PLLEBgIY8dCYqLeqSzL\n2d6ZSYGTiOwbybZft2FcaGT3b7v1jiXykSfObvL29ubnn39O+y9Aw4YNOXDgwFOdKD4+nqCgID74\n4AOmTJnCkCFD6Ny5M2vXrmXRokVs27aN5ORkkpKSKFasGNHR0bRv356TJ09SvPjfW0QaDAYmTJiQ\n9nNAQIBuK9KK3OvaNe1+iqgoWLgQWrbUO5HlKaVYf2o9I7eMpGXVlnzY+kPKFi6rdyyhk/Dw8HSr\neE+aNClrM0Of1B/VoEEDpZRSzZs3V2FhYSoqKkpVrlw5S31b77//vpo+fboqXLhw2mNmszndzw9r\n06aNioyMTPdYJiILkWbjRqUqV1aqd2+lbtzQO4113E26q97Y8oYq82EZteDQApVqStU7ksgFsvre\n+cTupvHjx3P37l1mzpzJlClT6NevH5988kmmClBcXBz37t0DIDExkW3btuHl5UWVKlXYtWsXADt2\n7KBq1aoA3L59G7PZDGjdTidOnKB6dZkPLrIuOFhbB6p0afDygi+/zN/rQAEUdSzKR20+YvtL21l5\nfCWNlzYm6mqU3rFEXvVvFcRkMqmZM2dmqfoopdTx48eVr6+vql27tqpZs6aaNGmSUkqpvXv3qtq1\naysPDw9lNBrVgQMHlFJKrVu3Tnl6eipvb2/l5eWl1q1b98gxnxBZiAwdPqxUnTpKtWih1Nmzeqex\nDpPZpJZFL1Mu/3VRQ8OGqj8S/9A7ktBJVt87nzgm0ahRIyIjI61TsTJB7rgW2ZGaCnPnwtSp2pjF\n22+Dg4PeqSzvduJt3vnpHX44+wMftv6Q//P+P1neo4Cx2LIcI0eOxGw207VrVwoXLoxSCoPBQJ06\ndbIcNjukSIic8NtvMGQIXLyorQOl01JkVncg9gCDwgZRzLEY84Pn41HGQ+9IwkosViQCAgIe+4lj\n586dT32ynCBFQuQUpWDdOq1F0bEjTJ8OD02ky7dMZhMLDi9g0q5J9DX25d1m71LYobDesYSFyR7X\nQmTRnTvaEuQ//ACffKIt8VEQemKu37/Om1vfZPel3cz+z2w61ewkXVD5mMWKxJUrVxg9ejS///47\n27Zt48yZM+zatYv+/ftnOWx2SJEQlrJ3r7bBUdWq2qKBBWUhgJ0XdzJ402DcS7gzp+0cqpWopnck\nYQEW2760V69edOjQgd9//x0Ad3d35syZ8/QJhcjlmjSB6Gho1Ajq1oWZM7WB7vwusGogxwYew7+y\nPw0WN2BKxBQepMpKz0LzxCIRFxdHSEgItra2ANjZ2WGX37cFEwWWgwOMGwf79sHGjdCwIfxjO5V8\nycHWgTH+Yzjc/zCHrx7Ge4E32y5s0zuWyAWeWCQKFy5MXFxc2s/R0dE4OjpaNJQQeqtRA7Zvh+HD\ntb0r3ngD7t/XO5XluRV347se3/Fxm4/pv7E/Pdb14Oq9fL4Gu/hXTxyTiIyMZOjQoZw/fz5tob+1\na9dSv359a2VMR8YkhLXdvKkViYgIbawCIpgzZysPHtjh6JjK8OFtCA5upnfMHJeQksC03dP47PBn\njG82nmolqtGsSjOKO/09BexO0h32XtpLcI1gHZOKzLDo7KaUlBSOHz+OUgofHx8cdLz7SIqE0MtP\nP0Hv3hHcu7eFP/+cmva4u/s4Zs8OypeFAuDMrTMM2TSE6/evU7NUTZZ0WkJxp+LcSbrDuO3jmNpy\narrCIXInixWJhIQEZs+ezZ49ezAYDPj7+zNixIi0fSKsTYqE0FPr1uP56acpjzweFPQumzdP1iGR\ndSilCD0ZysgtIynhVILQrqF8dvgzKRB5iMVmN3Xv3p2LFy/y5ptvMmrUKC5evEi3bt2yFFKIvC4l\n5fGTNpKSbK2cxLoMBgM9vHpweshparvUxuczH7p4dJECUQA8cZpSTEwMGzduTPu5RYsWeHl5WTSU\nELmVo+Pj58T+/rsJsxlsnvixK29TKEo6l2Rqi6kEfx3Mis4r6OrRVe9YwoKe+E+6Tp06HDx4MO3n\nQ4cO6bZukxB6Gz68De7u49I9VqnSWKA1AQFw7pwusazi4TGIsU3H8m33b3n5u5eZuHOidAHnY08c\nk3juuec4e/YslSpVwmAwcOnSJWrWrImdnR0Gg4Hjx49bKysgYxJCf2FhEcydu42kJFucnEwMG9aa\n//ynGXPnwpQp2rapI0aAbT7rgQo7G0aTyk3SdTGdvHGS50Ofp16FeizpuIRC9oV0TCj+jcUGrmNi\nYv71AG5ubk990uyQIiFys/PnoW9fSEmBpUvhuef0TmR5iSmJDNg4gJ9v/Mx3Id9RpXgBWc8kj7HY\nwLWbmxuFCxfmzp073L59O+3Lzc3N6gVCiNyuenXYuRP+7/+gaVP48MP8v7SHs70zXz7/JS/Xfhm/\nJX7sitmldySRg57Ykhg9ejQrV66kevXq2Dw0KidLhQvx7y5ehH794N49rVVREOZ7/PTrT/T6phfv\nNnuXwfUHy6qyuYjFupvc3d05deqUrjfQPUyKhMhLlILFi7X1oP7aCc/eXu9UlvXrH7/SaXUnGlRo\nwPzg+TjayTI+uYHFupt8fX25e/dulkIJUdAZDNry41FRsHu3tmDgsWN6p7KsaiWqEdk3kvgH8QR8\nGcC1e9f0jiSy4YktiUOHDtGpUye8vLzSFvYzGAxs2LDBKgH/SVoSIq9SCr74AkaPhsGDtVlQuaSB\nbhFKKabunspnhz9jfff1NHRtqHekAs1i3U21atVi0KBBeHl5pY1JGAwGmjdvnrWk2SRFQuR1V67A\ngAFw+TIsWwb5/bajH878QN8NfZnRagZ9jH30jlNgWaxI+Pn5sX///iwHy2lSJER+oBR89ZW2umy/\nfvDee5CfV+A/dfMUnVZ3om31tnzU5iPsbfP5wEwuZLEiMWrUKJydnWnfvn26fST0uutaioTIT65f\nh0GD4OxZrVXRoIHeiSznTtIdeq7vSVJqEmu6raF0odJ6RypQLFYkAgICHjuNTabACpEzlILQUG32\n00svwaRJoNMiyxZnMpsYv2M8q0+u5ruQ76hdrrbekQoMi+4nkZtIkRD51Y0bMHQoHD+u3VfRuLHe\niSwn9EQoQ38cyrx28+ju2V3vOAWCxabAXrlyhV69etG6dWsAzpw5w6JFi54+oRDiX5UtC2vWwNSp\n0KULjBwJCQl6p7KMEK8QtvXexuifRjN2+1hMZpPekUQGnlgkevXqRYcOHfj9998B7ea6OXPmWDyY\nEAVVly7w889ay8LHR9s2NT/yLefLwX4HiYyNpOPqjsQnxesdSTxGhkUi9X8LzsTFxRESEoLt/5a0\ntLOzw87uidtQCCGyoXRpbfbTzJnw4oswbBjcv693qpxXpnAZtvbainsJdxp83oDTt07rHUn8Q4ZF\nosH/plkULlyYW7dupT0eHR2dbpZTRpKSkqhfvz5Go5EaNWowcuRIAPbu3Yuvry9eXl7Url2bffv2\npb1m+vTpeHh44O3tzdatW7P8RwmRX3TsCCdOaOs/+fjAjh16J8p59rb2zGk7h9FNRtNsWTM2nt34\n5BcJ61EZ8PX1VUoptW/fPlW3bl1VrFgx1bRpU1WlShV18ODBjF6WTkJCglJKqZSUFNWwYUO1Y8cO\n5e/vrzZv3qyUUmrTpk3K399fKaXU4cOHVb169VRqaqqKjY1Vbm5u6sGDB48c818iC5GvhYUpVamS\nUgMGKBUfr3cay4i8HKkqflxRTdk1RZnNZr3j5CtZfe/MsN/o5s2bzJw5E6UUISEh2NjYoJTCbDaz\ne/du6tev/8QC5Py/eXzJycmYTCbKli2Lq6sr8fFa3+OdO3eoUkVbez4sLIwePXpga2tLxYoV8fT0\n5ODBg/j7+2e/EgqRD7Rrp41VvPkmeHvDokUQFKR3qpzl5+rHwdcO8kLoCxz9/SjLOi2jiEMRvWMV\naBl2N5lMJu7du8f9+/dJSEjg/v37/PnnnyQmJnLv3r1MHdxsNuPr64uLiwuBgYF4enrywQcf8MYb\nb1C5cmXeeustpk+fDmizqFxdXdNe6+rqSmxsbDb/PCHyl2ee0VaVXbxYW9qjb1+4c0fvVDmrQtEK\nhL8STlGHojRe0piLf1zUO1KBlmFLoly5ckyYMCFbB7exseHo0aPEx8cTFBREeHg4U6ZMYc6cOXTu\n3Jm1a9fy6quvsm3btqc67sSJE9O+DwgIICAgIFs5hchr2rTRWhWjR2utis8+g+BgvVPlHCc7J5Z0\nXMKnBz+l0ZJGfPXCV7Ss1lLvWHlKeHg44eHh2T5OhjfTGY1GoqOjs32Cv0yePBl7e3umTJnC/f9N\n01BKUbRoUe7fv8/kyZNxdnbmzTffBKB9+/a88847NGnSJH1guZlOiHR27tRaFP7+8MknULKk3oly\n1s6LO3lx/YuM8R/DiIYjZCOjLMrxm+l++umnbAWKi4tL65ZKTExk27ZteHl5UaVKFXbt0rY33LFj\nB1WrVgWgXbt2hIaGkpqaSmxsLCdOnEibYSWEyFhgoHaXdvHiWqviu+/0TpSzAqsGsr/ffr44+gV9\nvu9DUmqS3pEKlAy7m0qVKpWtA1+9epWXXnoJpRRJSUn07NmT9u3bU7JkSQYPHkxKSgqOjo4sWbIE\ngLp169K5c2d8fHywsbFh4cKF2Of3LbyEyCFFisCcOdCtG7z6qrYW1Ny52v0W+YFbcTf2vrqXVze8\nSrNlzfg25FsqFquod6wCQdZuEiKfSUiAd9+Fr7/+u3DkF0opZuydwdyDc1nbbS2NK+XjBa5ymCzw\nJ4RIJzJSa1V4ecG8edraUPnFpnObeOW7V5jaYiqv1X1N7zh5gsUW+BNC5E2NGkF0NLi7a3drr1ql\nLUueH7R7th27++xm5v6ZDAkbQrIpWe9I+Za0JIQoAA4dgj59oHp1WLAAypfXO1HOiE+Kp9e3vYhP\nimdd93WULZyPmks5TFoSQogM1a8PUVHa7KfatWH58vzRqnjG6Rm+7/E9zao0o/7i+hy5dkTvSPmO\ntCSEKGCio7VWRcWKsHAhPLTQQZ627pd1DAobxOz/zKand0+94+Q60pIQQmSK0QgHD0LDhtr3S5bk\nj1ZFV4+ubH9pO+N3jOetrW/JRkY5RFoSQhRgx49rrYrSpbX1oCpX1jtR9sUlxNF9XXfsbOxY3WU1\nJZxL6B0pV5CWhBDiqfn4wIEDEBAAdetqa0CZzRAWFkFQ0HgCAiYSFDSesLC8sz1eqUKl2NJrCx6l\nPai/uD7zD83nTlL6VRDvJN0h7GyYTgnzFmlJCCEA+OUXrVWRmBhBfPwWLl2amvY7d/dxzJ4dRHBw\nMx0TPr3lx5YzcstIGlRswKouqyjuVJw7SXcYt30cU1tOpbhTcb0jWo3cTCeEyLbUVPD0HM/Zs1Me\n+V1Q0Lts3jxZh1TZc/DKQTqHdqZC0QqEdg3l430fF7gCAdLdJITIAXZ2UL7845d0S0qytXKanNGg\nYgOi+kehlMJ9jjv96/YvcAUiO6RICCHScXRMfezj586ZOHzYymFyiJOdE/Ur1KePbx+afdGMiJi8\nM8aiNykSQoh0hg9vg7v7uHSPubmNpU2b1nTtqi338fXXkJxHVsL4awxieqvpLO20lJltZhL0VRDz\nDs7TO1qeIGMSQohHhIVFMHfuNpKSbHFyMjFsWGuCg5thMsEPP2jLkJ86Bf37a9uo5uZlPsLOhtGk\ncpN0XUyRlyPptrYb7Z5tx5y2c3Cyc9IxoXXIwLUQwqpOnoRPP4XVq6FtWxg2DPz8IK9sHHf3wV36\nbujLxT8usq77OtyKu+kdyaJk4FoIYVWentpigRcvamtD9eql/ffLLyEpD2weV8yxGGu6rqGnd08a\nft6Qzec36x0pV5KWhBAiR5jN8OOPWldUdDT06weDBuWNtaF2/7abHut70L9Of95t/i42hvz3+Vm6\nm4QQucaZM1pX1FdfQcuWMHw4+Pvn7q6oa/euEbIuhMIOhVnZeSWlCmVvC+fcRrqbhBC5Rs2aWosi\nJgaaNdNaFX8tJpiYqHe6xytftDzbX9qOZxlP6i2uR9TVKL0j5QrSkhBCWJzZDNu2aYXjwAFtW9XB\ng6FKFb2TPd5fy45PazGNfnX6YcjNTaBMku4mIUSecOGCtuf2l19qrYxhwyAwMPd1RZ2+dZoXQl/A\nz9WPee3m4WzvrHekbJEiIYTIU+7fh5UrtdaFwQBDh0Lv3lC4sN7J/nY/+T79NvTjbNxZ1nVfR7US\n1fSOlGUyJiGEyFOKFIGBA+HECZgzB7Zs0fazGDVKa23kBkUcirCqyype8X2FRksasfHsRr0jWZ20\nJIQQuUZMjHbvxdKl2s55w4ZB69Zgkws+zu69tJeQdSH08e3DxICJ2NrkrQUPpbtJCJFvJCTAqlVa\nV1RiotYV9fLLUKyYvrl+v/87Pdb3wN7Gnq+7fE3pQqX1DfQUpLtJCJFvFCoEfftqN+V9/jns3g1u\nblrL4swZ/XK5FHFhW+9t1Clfh7qL6nLwykH9wliJFAkhRK5lMEDTprBmjbYf9zPPaDOigoJg40Zt\naq212dnY8UGrD5j9n9m0/7o9Cw4tyNe9G9LdJITIU5KSIDRU64q6cweGDNG2XS2uwz5C5+LO8cKa\nFzCWM/JZ+88oZF/I+iEyKVd2NyUlJVG/fn2MRiM1atRg5MiRAISEhGA0GjEajVStWhWj0QhATEwM\nzs7Oab8bPHiwJeMJIfIgJydtfOLQIVixQvtv1araOlEnT1o3y7OlnmV/3/0oFI2WNOL87fPWDWAF\nj9+nMIc4OTkRERGBs7Mzqamp+Pv7s3PnTkJDQ9Oe8+abb1L8oY8A1atXJzo62pKxhBD5gMGgbYDU\nqBFcuwYLF0KrVuDhoY1ddOgAtlaYgFTYoTDLn1/OgsMLaLykMYs7LKbTc50sf2IrsfiYhLOzdpdi\ncnIyJpMJFxeXtN8ppVizZg0vvviipWMIIfKx8uVh4kT47TdtwHvGDHB3hw8/hLg4y5/fYDAwuP5g\nNry4gWE/DuOdn94h1fz4bWDzGosXCbPZjK+vLy4uLgQGBuLh4ZH2u927d+Pi4oK7u3vaYzExMfj6\n+tK4cWN27Nhh6XhCiHzEwQF69oTISFi3Tut+ql5dW2Dw2DHLn9/P1Y+o/lEcvnaYoJVB3PjzhuVP\namEWLxI2NjYcPXqU2NhYIiIiCA8PT/vdqlWr6NmzZ9rPFSpU4MqVKxw9epR58+bRu3dv7ty5Y+mI\nQoh8qF49bX2oM2e0MYvgYG1m1Nq1kJJiufOWKVyGzf+3mUaujai7qC6RlyMtdzIrsOrspsmTJ2Nv\nb8+YMWNITU3F1dWVI0eOUKFChcc+PygoiEmTJuHn5/d3YIOBCRMmpP0cEBBAQECApaMLIfK4lBT4\n7jttVtTFi9qSIP37Q5kyljvnD2d+oO+Gvrzb7F2GNhhq1dVkw8PD030onzRpUtZmhioLunXrlrp7\n965SSqmEhATVtGlTtXHjRqWUUj/++KMKCAhI9/y4uDhlMpmUUkpdvHhRVahQQd28eTPdcywcWQhR\nAERHK9W3r1LFiyv10ktKHTpkuXOdjzuvai+orV5c96K6/+C+5U70BFl977Rod9PVq1dp1qwZvr6+\nGI1GWrVqRXBwMAChoaGPDFjv3LkTHx8ffHx86NChA3PmzKF06bxz27sQIm/w9dXu5D5/Xturu2tX\nbZbU119DcnLOnsu9pDuRfSNxtHOk4ecNORt3NmdPYGFyM50QosAzmeCHH7TVaE+fhgEDtK9y5XLu\nHEopFh9ZzPgd4/ms/We8UOuFnDt4JsgCf0IIkQNOnND25w4NhXbttHsuGjbMuU2RDl05RLe13ejm\n0Y3praZjZ2PR29XSSJEQQogc9McfsGyZtoteyZJasQgJAUfH7B87LiGO//vm/0hMTSS0ayjliuRg\nkyUDUiSEEMICTCb48UdtVtTRo/Daa9rMKFfXbB7XbOL9Xe+zJHoJq7uuxr+yf84EzkCuXLtJCCHy\nOltbaN9e2zkvIgLi48HHB7p315Ywz+pnVlsbWyYFTmJRh0V0WdOFWZGzcuUHYGlJCCHEU7p7V7tR\n79NPwdlZ64rq2VP7Pisu/nGRrmu7Ur1kdT7v8DlFHYvmbGCkJSGEEFZTrJhWGE6d0taJ+vZbbX/u\n0aO19aOeVtUSVdn76l6KORSjwecNOHXzVM6HziIpEkIIkUU2Nn9vgBQZqd3VXacOdO4MO3Y8XVeU\nk50Tizsu5q3Gb9Hsi2asObnGcsGfgnQ3CSFEDrp/H1au1Aa6DQZtf+7evaFw4cwf48i1I3Rd05VO\nNTvxYesPsbe1z3Yumd0khBC5iFKwc6dWLCIitI2ShgzRljDPjNuJt+n9bW/ik+JZ020NFYo+fo27\nzJIxCSGEyEUMBmjRQhuviIoCOzvw89M2Q9q69cn7c5d0LskPL/5AkHsQ9RbVY1fMLusE/wdpSQgh\nhJUkJGjrQ82dCw8eaF1RL78MRZ8wmWnrha289O1LvNn4Td5o9EaWVpOV7iYhhMgjlNLusZg7F7Zv\nh169tIJRo0bGr/ntzm90W9uNSs9UYlmnZRRzLPZU55TuJiGEyCMMhr83QDp2TGtJNG0K//kPhIU9\nviuqSvEq7O6zm7KFylJ/cX1O3jhpnazSkhBCCP0lJWmLCs6dC3fuaIPcffpA8eKPPnf5seW8sfUN\n5vxnDi96v/joEx5DupuEECIfUAr279eKxY8/Qo8e2o17Hh7pn3fs+jG6rOlC2+pt+TjoYxxsHf71\nuNLdJIQQ+YDB8PcGSL/8Ai4u0LKl9vXdd9qCgwC1y9XmcP/DXLp7iYAvAoi9G2uZPNKSEEKI3C05\nGdat01oX167B4MHQr5+2hLlZmZmxZwZzDs7hqxe+okXVFo89hnQ3CSFEAXD4sFYsNmyALl20rqja\ntWH7r9vp9W0vRjQcwdtN3sbGkL6jSIqEEEIUIDduwOLFsGABVKsGw4dDvRaxvPhtN8oWLsuXz39J\ncae/R72lSAghRAGUkqKNVcydCxcvwmsDk7lU6w12XdnMiIYjKHOtKkvnR7J161QpEkIIUZAdPart\ncbF+PXj3/IqosoNRV0uSuDwakkpIkRBCCAFxcbBkCbw7tz/JnXdAqhMsOClTYIUQQkCpUvD22+BX\nrQIsOgJ3s74htxQJIYTIp5ycUsFghj+qZfkYUiSEECKfenVwI4p1bgk7pmX5GFIkhBAinypSCxaF\nvE9Q84+zfAwZuBZCiAJA1m4SQgiR4yxWJJKSkqhfvz5Go5EaNWowcuRIAEJCQjAajRiNRqpWrYrR\naEx7zfTp0/Hw8MDb25utW7daKpoQQohMsrPUgZ2cnIiIiMDZ2ZnU1FT8/f3ZuXMnoaGhac958803\nKf6/xdKjoqL45ptv+Pnnn7l+/Tr+/v6cOXMGB4d/X/62IAsPDycgIEDvGLmCXIu/ybX4m1yL7LNo\nd5OzszMAycnJmEwmXFxc0n6nlGLNmjW8+KK2YUZYWBg9evTA1taWihUr4unpycGDBy0ZL88LDw/X\nO0KuIdfib3It/ibXIvssWiTMZjO+vr64uLgQGBiIx0O7ZuzevRsXFxfc3d0BuHLlCq6uf9/w4erq\nSmysZdZHF0IIkTkWLRI2NjYcPXqU2NhYIiIi0lX1VatW0bNnT0ueXgghRHYpK3n//ffV9OnTlVJK\npaSkKBcXF3XlypV0v//vf/+b9nNwcLDas2fPI8dxd3dXgHzJl3zJl3w9xZe7u3uW3rstNnAdFxeH\ng4MDRYsWJTExkW3btjF69GgAfvrpJ2rVqkWFChXSnt+uXTsGDhzI66+/zvXr1zlx4gQNGjR45Ljn\nz5+3VGQhhBD/YLEicfXqVV566SWUUiQlJdGzZ0+Cg4MBCA0NTRuw/kvdunXp3LkzPj4+2NjYsHDh\nQuzt7S0VTwghRCbkuTuuhRBCWE+uveN68+bNeHt74+HhwYwZMx77nOHDh+Pp6UmdOnWIjo62ckLr\neXPkaAMAAAoKSURBVNK1WLFiBT4+Pnh7e1OvXj2ioqJ0SGkdmfl3AXDo0CHs7Oz45ptvrJjOujJz\nLcLDw2nQoAG+vr40b97cygmt50nX4vr167Rs2RJPT09q1qzJwoULdUhpea+++iouLi54e3tn+Jyn\nft/M0kiGhSUlJSk3NzcVGxurUlJSVL169dSRI0fSPWfdunWqU6dOSimljhw5omrXrq1HVIvLzLU4\ncOCAunv3rlJKqR9//FH5+vrqEdXiMnMtlFIqNTVVBQYGquDgYLVu3TodklpeZq7FtWvXlKenp/r9\n99+VUkrFxcXpEdXiMnMtxo0bp8aMGaOUUurmzZuqePHiKikpSY+4FhUREaGOHDmivLy8Hvv7rLxv\n5sqWxIEDB/D09KRixYrY2dkREhJCWFhYuuds2rSJ3r17A2A0GklNTc2X91Vk5lo0aNCAokWLAtCk\nSROuXLmiR1SLy8y1AJg7dy5du3alTJkyOqS0jsxci9WrVxMSEkLZsmUBKFmypB5RLS4z16JSpUrc\nvXsXgLt371KmTBkcHR31iGtRTZs2pUSJEhn+Pivvm7mySMTGxlKpUqW0nx93Y11mnpMfPO3fuXDh\nQjp16mSNaFaXmWtx5coVvv/+ewYNGgRoK1/mR5m5FmfOnOHq1as0atQIHx8fPv/8c2vHtIrMXIvX\nXnuNkydPUqFCBWrXrs3s2bOtHTNXyMr7psVmN2VHZv+Prf4x5p4f3xCe5m8KDw9n6dKl7N2714KJ\n9JOZa/H666/zwQcfpC2L/M9/I/lFZq6FyWTixIkT7Nixg4SEBPz8/GjUqBGenp5WSGg9mbkW06ZN\nw9fXl/DwcC5cuEDr1q05duxYWgu8IHna981c2ZJwdXXl8uXLaT9fvnw5XfV73HNiY2PTLeuRX2Tm\nWgAcP36cfv36sWHDhn9tbuZlmbkWUVFR9OjRg6pVq7J+/XoGDx7Mhg0brB3V4jJzLSpXrkybNm1w\ndnamVKlSNG/enOPHj1s7qsVl5lrs2bOHbt26AeDu7k7VqlU5deqUVXPmBll638yxEZMclJiYqKpU\nqaJiY2NVcnKyqlevnoqKikr3nHXr1qnnn39eKaVUVFSU8vHx0SOqxWXmWvz222/K3d1dRUZG6pTS\nOjJzLR72yiuvqPXr11sxofVk5locOXJEtWzZUqWmpqo///xTeXh4qOjoaJ0SW05mrsXgwYPVxIkT\nlVJKXb9+XZUrVy5tQD+/uXjx4r8OXD/t+2au7G5ycnJiwYIFBAUFYTab6d27N3Xq1EmbtjZgwAC6\ndOnCzp078fT0xNHRkWXLlumc2jL+v737C2nqDeMA/i3pJlcLzEr7c1MIntx2VqFMtzWq5TCLjFUT\nhEosupjLwouMCtPUi+qiSDCCTKOM7GLRRYKZnloIXRjZuoiKRhQuWkkYNFn6/C6G5+ecZ2mFv/Xb\n87k67znvOe/7novz7JyXPe9U7kVNTQ0GBwfl7/Bz5sz5X2bQncq9SBRTuRd6vR42mw1arRahUAhl\nZWUQRfE/7vmfN5V7cfLkSZSUlEAQBIyMjOD06dPyhP7/SXFxMSRJQiAQwPLly3Hq1CmEQiEAv/7c\n5D/TMcYYUxSXcxKMMcbiAwcJxhhjijhIMMYYU8RBgjHGmCIOEowxxhRxkGCMMaaIgwSLG7Nnz5aT\njwHAjx8/kJqaiq1bt8Y87+rVqygvL59WW7t27UJWVtYfyeFTX18fUc7Ly/vtazIWLzhIsLiRnJyM\nFy9eIBgMAgA6OzuxbNmyn+aWmW7OLr/fj6dPn8Lr9eLQoUMRx0ZHR6fXaQANDQ0R5XjOnfUr42OJ\njYMEiysFBQVymue2tjYUFxfLCckCgQDy8/Oh0Wiwdu1a9PX1RZ3v9/tRWFgInU4HURQhSVJUnc2b\nN+PDhw/Q6/XweDywWCw4fPgwDAYDzp8/j7t37yInJwcajQZmsxkDAwMAgKGhITgcDqxevRo6nQ63\nb99GVVUVvn//Dr1eL78FqVQqAOEHcnl5OQRBgCAIaG1tBRBOxGixWOBwOJCRkYGdO3f+NBHh9u3b\nce3aNQDhTL8lJSVRdd68eYPc3FzodDoYjUb4fD4AwN69e3Hw4EHk5eXh6NGjEeesX78ez549k8tG\noxHPnz+P2ReWYP5YwhDGfpNKpaL+/n6y2+0UDAZJFEXq6emhwsJCIiLav38/1dfXExGRJEmUmZlJ\nRETNzc3kdDqJiKioqIg8Hg8R/ZvTaiKfzxeR28ZisZDL5ZLLX79+lbcvX74sX9vlclFlZWVUPZVK\nFTUOIqLr169Tfn4+EYUX/ElPT6f3799Td3c3qdVq8vv9NDo6SgaDgbq7u2Pem48fP9KqVavo4cOH\nlJGRQYODg1F1rFYr3bhxg4iIWlpayGazERHRnj175Hw9E7W0tFBFRQUREb18+ZLWrVsXsx8s8cRl\n7iaWuDQaDXw+H9ra2rBly5aIY48fP8axY8cAAGazGd++fUMgEIioc//+fbx9+1YuDw8PY2hoKCIl\nNE3yq91ut8vbr1+/xpEjR/D582eEQiGsWLECANDV1YU7d+7I9ebPnx9zLB6PBw6HA0B4wZ+NGzei\nt7cXqampyM7OxuLFiwEAoihGZOaczKJFi1BTU4MNGzbA7XZjwYIFUXV6e3tx7949AOEcPk6nE0D4\nc9yOHTsmva7dbkdtbS3OnDmDK1euYN++fTH7wRIPBwkWd7Zt24bKykpIkoRPnz5FHJv4gJ84HzFr\n1ix5fevpSE5OlredTieOHz+OgoICSJKE6upqxfZjGVvTYrL+jl8VLSkpaUpzBf39/Vi4cKHiyoOx\n5mbmzp2ruN9qtcLtdqO9vX3ST3gssfGcBIs7paWlqK6ujlocx2Qy4ebNmwCAR48eYd68eUhJSYmo\ns2nTJjQ1Ncllr9c7pTbHP8yDwSCWLFkCAPI8AgBYrVY5sygAeTnMpKQkjIyMRF3TZDKhvb0dRIQv\nX77gwYMHMBgMMQNNVVUV3G531P4nT56go6MDfX19OHv2rDzfMF5ubi5u3boFILx0qclk+smow8rK\nyuByuZCdnQ21Wj2lc1ji4CDB4sbYL+GlS5dGfCoZ219XV4eenh5otVpUVFTIE7nj6zQ1NaGzsxMa\njQZZWVm4cOFCzLYmK584cQJFRUXIyclBSkqKfKy2thbv3r2DIAgQRRFdXV0AwhPDmZmZ8sT1WP3d\nu3dj5cqVEAQBRqMRDQ0NSE9Pj+jvxPa9Xi/S0tIijg0PD+PAgQNobm5GWloazp07h9LS0qgxNTY2\n4uLFi9Bqtbh06RIaGxsVxzvemjVroFar+VMTmxSnCmcsjthsNnR0dMxomwMDAzCbzXj16tWMtsv+\nDvwmwVgcmekA0draCqPRiLq6uhltl/09+E2CMcaYIn6TYIwxpoiDBGOMMUUcJBhjjCniIMEYY0wR\nBwnGGGOKOEgwxhhT9A+y/HS4V4Zf1wAAAABJRU5ErkJggg==\n", + "text": [ + "<matplotlib.figure.Figure at 0x31cbbd0>" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEhCAYAAAB7mQezAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtcTPn/B/DXlFTW/VKsiVq3amq6bCHXFinKraWESVm7\n2HVb1mJZi69dsnx3V3ZtdvFVhMotIiKDsFFRwrJal8pl3VOabnN+f/g12+gy05gzZy7v5+PRY5uZ\nc3l3vr7nPe/z/pzP4TEMw4AQQgj5f0ZcB0AIIUS7UGIghBAihxIDIYQQOZQYCCGEyKHEQAghRA4l\nBkIIIXIoMRBOGRsbw8XFRfazevVqlbfVu3dvAMDt27fh6OgIAEhLS8OsWbMAAEuXLsXatWvrtS1C\nDFEDrgMghq1Ro0a4ePGiWrZ15syZau+5ubnBzc0NAMDj8RRuo6KiAsbGxjVui0uVcRGiCVQxEK20\nf/9+dOnSBT169MDMmTMxbNgwANW/9Ts4OODu3bsAgMaNG1fbjlgslq0LAJmZmejbty86deqEn3/+\nWbZM3759MWrUKAiFQrltvbn+9OnTsXXrVgCAtbU1Fi1aJEs+GRkZGDJkCKytrREeHl7j3xUREQF7\ne3u4uLhAJBIBAEJCQrB7927ZMlX3XRmXo6MjFi5ciF9++UW2XNVjsXz5cgiFQtjZ2WHhwoWKDzAh\ndaCKgXCquLgYLi4ustdfffUV/Pz8MHXqVJw7dw7W1tYYN26c7Nv+m9/6q75WVBEwDIOsrCykpaWh\nsLAQDg4OGD58OADg4sWLuH79Otq3b1/ntng8nlws1tbWSEtLw5w5cxASEoLz58+jsLAQdnZ2mDFj\nhty6GRkZWLt2LdLS0tC0aVMUFBQo/JuqxnXp0iXMnj0bn376KQAgNjYWR48eRXx8PPLz85GVlQWp\nVIoRI0bg2LFjGDRoUJ3Hg5DaUGIgnDI3N692Ken8+fPo2rUrrK2tAQBBQUHYuHHjW++Lx+Nh5MiR\naNCgAZo3b46BAwfijz/+gIWFBbp37y5LCvXh5+cHAHB0dERRURHMzMxgZmaGRo0a4fnz52jevLls\n2ePHjyMwMBBNmzYFANl/61I1LmdnZ/zzzz+4f/8+/vnnH7Ro0QLt27fHypUrcfToUVmCLSoqwu3b\nt+v9txBSiRID0TpGRvJXOKtO52VkZASpVCp7LZFI1LKvd955p9bPq+6vuLhY7nNTU1PZcg0bNqx1\nPeB1YqpparKqy0qlUpSWlso+ezOuMWPGIC4uDg8ePMDYsWNl73/99deYNGlS7X8oIfVAPQaidQQC\nAW7cuIE7d+4AAHbt2iW7vMLn85GRkQEAuHTpEm7duqX0dhmGQXx8PMrKyvD8+XMcP34cPXr0qPFk\nXYnP5+PKlSsoLS3Fy5cvkZycXOu2FRk4cCBiYmLw4sULAJD9l8/nIz09HQCQkJCAsrKyWrcRGBiI\nHTt2IC4uDmPGjAEAeHt7Y8uWLbIk+fDhQzx+/FhhPITUhioGwqk3ewxDhgzBd999h4iICAwaNAgt\nW7aEh4eH7Hp8QEAAtm7dCgcHB/Ts2RPdunWTrVtbv6FqT8DR0REDBgxAfn4+vvrqK/D5fOTk5NR6\nnf+9997DiBEjYGtri27dusHV1bXGv6Nq7+HN/VdycXHB3Llz0bNnT5iZmUEoFGLr1q2YOnUqhg4d\niiNHjsDHx0euif7mduzt7VFYWAg+nw9LS0sAwLBhw3D16lW4urqiYcOGMDU1xc6dO9G6desaYyVE\nER5Nu0203cmTJ7FmzRocOHCA61AIMQh0KYnoBGXuQSCEqAdVDIQQQuRQxUAIIUQOJQZCCCFyKDEQ\nQgiRQ4mBEEKIHEoMhBBC5FBiIIQQIocSAyGEEDmsJoZJkybB0tJS9jStmsycORMCgQCurq5qe2AL\nIYQQ1bGaGEJDQ5GYmFjr57t378bdu3dx5coVbNq0CaGhoWyGQwghRAmsJoa+ffuiRYsWtX5+6NAh\n2VOsXFxcUF5ejry8PDZDIoQQogCnPYa8vDxYWVnJXvP5fEoMhBDCMc6bz29O1USTpRFCCLc4fR4D\nn89Hbm4uevToAeB1BcHn86st17lzZ+Tk5Gg6PEII0W0tAOZp/edJ5bRiGDp0KLZv3w7g9YPSjY2N\na3zubk5ODhiGoR+GwTfffMN5DNryQ8eCjoUhH4uyijIc/uswguKC0GxlM3zw60hY++xBK6dBwFK8\n/nmm2rmZ1YohKCgIJ0+exOPHj2FlZYVly5bJHls4ZcoUfPjhhzhx4gQEAgFMTU2xZcsWNsMhhBCd\nl/kgE5GZkYjOjkbHZh0xThCM9lnh2PrfVlizBmjZtiFm/3ILOS6qX2VhNTHs2LFD4TLr169nMwRC\nCNF5917eQ/TlaERmRqKgpAAioQjiiWIU53VDSAjA5wOXLgHvvgsAvuDxgPAd4TiCIyrtj575rGM8\nPT25DkFr0LH4Fx2Lf+nLsSgqLcK+P/chMisSF/IvwN/OH+FDwtG3Y1+Ulxnh22+BDRuANWsAkQio\nOm7H18sXvl6+4G1RbTCPTjzBjcfjQQfCJISQtyJlpBDfFiMyMxL7r+9HL6teEAlFGN5tOBqZNALw\nujKorBI2bqysEmqm6rmTEgMhhHDs2qNriMyMxPbL29GqUSsEC4MR5BiEto3bypYpLUWdVUJNVD13\n0qUkQgjhwKOiR9iRvQNRWVG49/IexjuOR8K4BDhaVp9brmqV8G8vgT1UMRBCiIZIyiU4eOMgIjMj\ncerOKQzrNgzBwmAMsBkAYyPjasurUiVURRUDIYRoIYZhcCb3DKIyoxB3LQ4ubV0Q7BSM6A+j0bhh\n41rX03SVUBUlBkIIYUHO0xxEZUUhKisKZg3MECwMRubUTPCbVp/doaq3rRLUgRIDIYSoybPiZ4i5\nEoPIrEjcfHoTQQ5BiBkdA9d2rkrNA8dllVAV9RgIIeQtlFaUIvFmIiIzI3Hs72Pw7uwNkVAE707e\nMDE2UW4bLFUJ1GMghBANYRgGaffSEJkZiV1XdsG2tS1EQhF+H/47mps1r9e2tKVKqIoSAyGEKOnu\ni7vYlrUNkZmRqGAqIBKK8MfkP/Bei/fqvS1t6CXUhhIDIYTUoaCkALuv7kZUVhSyHmZhjP0YbBmx\nBT35PVV+fow2VglVUY+BEELeUC4tx7G/jyEqKwoJNxLgae2JYKdg+HbxhWkDU5W3q+kqgXoMhBDy\nljIfZCIqKwrbL29Hh2YdECwMxk8+P6F1o9ZvvW1trxKqosRACDFolVNaR2VF4bnkuWxK626tu6ll\n+9rcS6gNJQZCiMF5Vfbq9ZTWmZFIzU+Fv60/1vmsQ9+OfWHEU9+DLXWpSqiKegyEEIMgZaQ4efsk\nIrMise/PffDge0AkFGGE7QjZlNbqoi1VAvUYCCGkBtceXUNUVhS2ZW2TTWm9cuBKuSmt1UlXq4Sq\nKDEQQvTOo6JH2Jm9E5FZkcgvyMcE4YRap7RWF22pEtSBEgMhRC+8OaW1X1c/fDvgWwy0GVjjlNbq\npA9VQlXUYyCE6CyGYXA29ywiMyMRdy0Ozm2dESwMhr+dP5qYNmF9/9peJVCPgRBiMKpOaW1qbIpg\np2BcmnIJVs2sNBaDvlUJVVHFQAjRCZVTWkdlReHGkxsIcghCsFOw0lNaq4u2VwlVUcVACNE7lVNa\nR2VF4WjOUXh38saCPgvqNaW1OulzlVAVVQyEEK1SOaV1VFYUdmbvRLfW3RAsDMYYwZh6T2mtLrpU\nJVRFFQMhRKfdfXEX27O2IzIrEmUVZQh2ClZ5Smt1MpQqoSqqGAghnHlZ8hK7r+1GZGYkMh9mIsA+\nACInETz4HhrtG9REV6uEqqhiIITohHJpOY7/fRyRWZGyKa0/c/8Mfl393mpKa3UyxCqhKqoYCCEa\nkfUwC5GZkYi+HA2rZlYQCUUY6zBWLVNaq4s+VAlVUcVACNE691/eR/TlaERmReK55DkmOE5A8sRk\n2La25Tq0agy9SqiKKgZCiFq9OaX1KNtRCHYKRr+O/dQ6pbW66FuVUBVVDIQQzrw5pXVPfk9MdJqI\nPYF71D6ltTpRlVAzqhgIISr78/GfiMyMxLasbWhp3hLBTsEIcghCuybtuA6tTvpcJVRFFQMhRCMq\np7SOyopCXkEexjuOx8FxByG0FHIdmlKoSlCMKgZCiEKVU1pHZUXh5O2T8OvqB5FQhIHvDUQDI934\nfmkoVUJVVDEQQlSWkJSAddHrUMKUwJRnipnjZmLooKE4l3cOkZmRiL0aC+e2zhAJRdg2aptGprRW\nJ6oS6ofViiExMRHz5s1DRUUFJk6ciPnz58t9/uDBA4wfPx4PHjxAeXk55syZgylTplQPkioGQliT\nkJSAWT/PQo5Ljuy9FmdbwLSrKZrbNsdEp4kY7zheo1Naq4shVglVqXruZC0xlJSUwNbWFikpKbC0\ntISHhwc2btwIFxcX2TKLFy9GRUUFVq5cicePH6NLly548OABTE3l736kxEAIe7xDvXHU+mi19z1u\neODMtjOcT02hqqpVwsaNhlklqHruZG1QcWpqKgQCAdq3b48GDRogMDAQCQkJcstYWVmhoKAAAFBQ\nUIA2bdpUSwqEEHY9KXlS4/sNTRrqZFIoLQW++QYYPBiYMwc4cMAwk8LbYK3HkJeXByurf0tPPp8P\nsVgst8zHH3+MAQMG4N1338XLly8RExPDVjiEkDfceX4HX5/4GpfvXwa6Vf/czMhM80G9JeolqAdr\niUGZbxrfffcdnJ2dIRaLkZOTAy8vL2RmZqJJk+qNraVLl8p+9/T0hKenpxqjJcRwPCt+hu9Of4fN\nlzbjU7dPETUvCl9t/Equx9ApoxNmTJ/BYZT1Y+i9hEpisbjaF3BVsJYY+Hw+cnNzZa9zc3PlKggA\nSElJwddffw0A6NSpE2xsbHDt2jV079692vaqJgZCSP1JyiVYf349ws6Ewd/WH9nTsmU3or1j8g7C\nd4RDIpXAzMgMM6bPgK+XL8cRK4eqhH+9+aV52bJlKm2HtcTg7u6O7Oxs5Ofnw8LCAjExMYiIiJBb\nplOnTjh27Bh69+6Nhw8f4urVq7C2tmYrJEIMkpSRYnvWdiw+sRgubV1wKuQU7NrYyS3j6+WrM4mg\nElUJ7GEtMZiZmWHDhg3w9vaGVCqFSCSCq6urLDlMmTIFS5YswYQJE2Bvb4+KigqsWLECFhYWbIVE\niEFhGAZHc45i/rH5MDcxx3b/7ejToQ/XYakFVQnsqnO4qlQqxYIFC7B69WpNxlQNDVclpH4y7mfg\ny6QvkVuQi5UDV2KU7SidHGH0JqoS6oeVO5+NjIxw5swZlYMihGjWrWe3sPjEYiTfSsaSfksw2XUy\nTIxNuA5LLahK0ByFl5IcHR0xatQo+Pv7o1Gj19Pn8ng8+Pv7sx4cIUQ5T149wbenv8XWzK2Y0X0G\nfvX9VeemragNVQmapzAxSCQSNGvWDMnJyXLvU2IghHvFZcVYl7oO35/9HgGCAFz59AraNm7LdVhq\nQ1UCN2h2VUJ0UIW0ApGZkVgiXoLu7bvjuwHfoVvrGu5S01FUJagHa7OrhoaGVtsRAGzevLneOyOE\nvB2GYXD45mHMPzYfzUybYdfoXehl1YvrsNSKqgTuKUwMvr6+smRQXFyMffv2oV077X46EyH6KO1e\nGr5M+hL3C+9j1cBVGN5tuF6MNKpEVYL2qPelJIZh0LdvX6SkpLAVUzV0KYkYspynOViUvAin757G\nN/2/wSSXSTrzcBxl0Uyo7NDY7KrXr1+Xm+qCEMKOR0WPMOvwLHT/vTsEbQS4Mf0GPnn/E71KCjQT\nqnZS+C+scePGsnKVYRi0atUKK1euZD0wQgzVq7JX+PGPH/Hfc/9FkEMQrn12DRbv6N+MANRL0F4K\nE0NhYaEm4iDE4JVLy7H10lZ8I/4Gvax64dxH59ClVReuw1I76iVoP6Vq0l27duH06dPg8Xjo168f\nxowZw3ZchBgMhmFw8MZBLDi+AK0btcbugN3owe/BdVisoCpBNyhsPs+ePRtXrlxBUFAQGIZBTEwM\n7Ozs8OOPP2oqRmo+E72VmpeKeUnz8KT4CcIGhcG3i69ejTSqRFUCN1h75rO9vT2ys7NhZPS6Ty2V\nSiEQCHDt2jXVIlUBJQaib/568he+Sv4K53LPYZnnMkx0nqhXTeWqaMQRd1gdlVT5XOY3fyeE1M8/\nRf9g+qHp8NjkAde2rrgx4wY+cv1IL5MCjTjSXQr/Nc6bNw8ODg4YOHAgACA5ORnLly9nPTBC9Elh\naSH+e+6/+Cn1J4iEIvw5/U+0btSa67BYQ70E3abUDW53795FamoqAMDDwwN8Pp/1wKqiS0lEV5VL\ny7EpYxOWnVyG/tb98e2Ab/Fei/e4Dos11EvQLqzNlcQwDM6cOYOUlBTweDxUVFRg7NixKgVJiKFg\nGAb7r+/HwuML0a5xO8QHxcPtXTeuw2IVVQn6Q2HFEBoaivv37yMwMBAMwyA2Nhbt2rXT6CR6VDEQ\nXXI29yy+TPoSBSUFCBsUBp/OPno50qgSVQnai7VRSd26dcOff/4pd/ezra0trl+/rlqkKqDEQHTB\n9cfXsfD4QqTdS8PyD5ZDJBTB2MiY67BYRSOOtBtro5K6deuGvLw82eu8vDzY2trWe0eE6KsHhQ8w\n7eA09N7cGz3a98D16dcR4hyi10mBRhzpN4U9hufPn6Nr167o3r07eDwezp8/D3d3dwwbNgw8Hg/x\n8fGaiJMQTiUkJWBd9DqUMCUw5Zli5riZ6NevH9aeW4vw8+EIcQrB9enX0apRK65DZR31EvSfwktJ\nYrG49pV5PPTv31/dMdW4H7qURLiSkJSAWT/PQo5Ljuy91udao/y9cvgO8sWKAStg3dyauwA1hHoJ\nuoe1HoM2oMRAuOQd6o2j1kerve9xwwNnt5/lICLNo16CbmKtx3Dy5EkIhUKYmZnBxMQERkZGaNq0\nqUpBEqKLSpiSGt9vaNJQw5FoHvUSDJPCHsNnn32GvXv3IiAgAGlpaYiOjsaVK1c0ERshWuFp0dMa\n3zczMtNwJJpFvQTDpbBiMDExQZcuXVBaWgpjY2OIRCIkJSVpIjZCOPW0+CnGxo3Fs3efgX9B/m7/\nThmdMCNoBkeRsYuqBKLUE9zKysrg4OCA+fPnw9LSEq9evdJEbIRwJvFmIibHT8YY+zG4seYGksXJ\nCN8RDolUAjMjM8yYPgO+Xr5ch6l2VCUQQInm8507d2BpaYmioiKsXbsWEokE06ZNQ5cumnuyFDWf\niaYUlRbhi6Nf4NDNQ9gyYgsG2AzgOiSNoBFH+om1UUm7d++Gn58fTE1NVQ7ubVFiIJpwLvccgvcF\no5dVL6zzWYdmZs24DkkjaMSR/mJtVNKBAwfQpUsXiEQiHDx4EOXl5SoFSIi2Kq0oxaLjizBq1yiE\nDQrD1pFbDSIpUC+B1Eap+xhKS0tx+PBhxMTE4PTp0/Dy8sKmTZs0ER8AqhgIe7L/yYZorwhWTa2w\ncdhGtG3cluuQNIKqBMPA+g1upaWlOHLkCDZv3oxTp07hyZMn9d6ZqigxEHWrkFbghz9+QNiZMIQN\nCkOoc6hez4BaiXoJhoW15zEcOnQIMTExOHHiBDw9PfHxxx8jNjZWpSAJ0Qa3nt1CyP4QMAyD85PP\nw6aFDdchaQSNOCLKUlgxBAUFITAwED4+PjAz4+aGHqoYiDowDIPNFzdjwfEFmN97Pj7v+blez4Ba\niaoEw0VzJRFSh4eFD/HxgY+RW5CLqFFRcLBw4DokjaBegmFjbVQSIbpu77W9cPrVCY4WjkidnGoQ\nSYFGHJG3wWpiSExMhKOjI+zt7REWFlbjMmKxGN27d4ezs7NGpvAmhuOF5AUm7puIeUnzsCdwD74d\n+C0aGuv/xHeXLgHduwPp6a9/Dw6mS0eknhiWSCQSxtramsnLy2PKysoYNzc3JiMjQ26Z+/fvMwKB\ngHn48CHDMAzz5MmTGrfFYphETx3/+zjT4YcOzLSD05iXJS+5DkcjSkoYZskShmnThmG2bmUYqZTr\niAjXVD13KhyVlJycjOXLlyM3NxdSqRTA6+tWf//9d53rpaamQiAQoH379gCAwMBAJCQkwMXFRbbM\nzp07ERgYCAsLCwBAy5YtVUxvhLxWXFaMhccXIu5qHH4f/jt8OvtwHZJG0Igjok4KE8NHH32EX375\nBa6urjA2Vn4ER15eHqysrGSv+Xx+tafBXb9+HQDg4eGBoqIizJw5E5MnT1Z6H4RUlXYvDaK9IjhZ\nOiFrWhZamuv/Fw0acUTYoDAxtGvXDkOGDKn3hpW5WaiiogLZ2dlITk7Gq1ev0LNnT3h4eEAgEFRb\ndunSpbLfPT094enpWe+YiH4qqyjDypSVWH9+PdYNWYexDmO5DkkjqEogbxKLxXU+jllZChNDv379\nsGDBAowYMUJuIj1XV9c61+Pz+cjNzZW9zs3NlasgAKBDhw549913YW5uDnNzc/Tv3x9ZWVkKEwMh\nla4/vg7RXhFamLfAxSkX0b5pe65DYh1VCaQ2b35pXrZsmUrbUZgY/vjjD/B4PKSmpsq9f+LEiTrX\nc3d3R3Z2NvLz82FhYYGYmBhERETILePr64t58+ahoqICJSUlOHfuHKZPn67Cn0EMjZSR4ufzP2P5\nqeVY7rkcU92mGsSUFlQlEE1QmBhULUvMzMywYcMGeHt7QyqVQiQSwdXVVZYcpkyZAhcXF/j4+EAo\nFKKsrAyTJ0+Gs7OzSvsjhiP3RS4mxU/Cy5KXODvpLLq00tyzQbhCVQLRpFrvfI6KioJIJMLatWvl\nvokxDAMej4c5c+ZoLki685ng9b+96MvR+PzI55jVYxbm95mPBkYKv9voPLp7mahK7ZPoVT6+8+XL\nlwZRohPt9vjVY0xLmIarj67iyIQjcGnnonglHUdVAuEKzZVEtF7CjQR8cvATBDkEYcWAFTBrwM1k\njppEVQJRB9am3SaEK4WlhZhzZA6O5hxFtH80+lvr/5QpVCUQbUCJgWillLspmLhvIvp37I+saVlo\natqU65BYRyOOiLagxEC0Skl5Cb4Rf4OtmVvxq++vGGE7guuQWEdVAtE2ChNDUVERYmNjq82VtGTJ\nEtaDI4Yl62EWRHtFeK/Fe8icmgmLdyy4Dol1VCUQbaQwMfj6+sLS0hLvv/9+veZKIkRZFdIKrDm7\nBmvOrcEarzUIdgrW+5FwVCUQbaYwMTx+/Fgtc28QUpOcpzmYuG8iTIxNkPZxGjo278h1SKyjKoFo\nO4UP6unTpw+ys7M1EQsxIAzDYGP6RvTc1BOj7UfjePBxvU8K9FQ1oisU3sdgZ2eHmzdvwsbGRjaJ\nHo/HQ1ZWlkYCrNwf3cegP+6/vI/JBybjQeEDRI2Kgn0be65DYh3dl0C4oOq5U2FiuH37tmwHAGQ7\nsba2rvfOVEWJQX/EXY3D9EPT8cn7n2Bxv8V6/6hN6iUQLrF2g5u1tTVSU1Nx+vRp8Hg89OvXD+7u\n7ioFSQzXs+JnmHF4Bs7nn8f+sfvRg9+D65BYR70EoqsU9hjCwsLw0UcfoaCgAM+fP8ekSZOwevVq\nTcRG9MSxv4/B6VcntDBrgUtTL+l9UqBeAtF1SvUYLl68CDOz1/PTSCQSuLi44Nq1axoJEKBLSbrq\nVdkrLDi2AHv/3ItNwzdhcKfBXIfEOuolEG2i6rlTYcUAAEZGRjX+Tkhtzuefh0uEC54UP0HW1Cy9\nTwpUJRB9orDHMGHCBLi5ucHf3x8Mw2Dfvn0QiUSaiI3ooLKKMqw4tQK/pv+K8CHhCBAEcB0S66iX\nQPSNUtNunz17FikpKeDxeOjTpw88PDw0EZsMXUrSTglJCVgXvQ4lTAlMeaYY6TsSm55ugsU7Ftg0\nfBPaNWnHdYisohFHRNupfbhqQUEBmjZtiqdPnwL4d5hq5bDVli1bqhprvVFi0D4JSQmY9fMs5Ljk\nyN4zSjbC1MCpWD9tvd5PaUG9BKIL1D5cNSgoCAkJCXB1da3x/+S3bt2q986I/lgXvU4uKQCAdIAU\nOWk5ep0UqEoghqDWxJCQkADg3xvcCKmqhCmp8X2JVKLhSDTn4kUgNJR6CUT/KRxiNHDgQKXeI4ZF\nUlpzAjAz0r/HblaOOPL2phFHxDDUWjEUFxfj1atXePTokazPALx+PsOdO3c0EhzRTkk5SbjW9Bra\nprbFgx4PZO93yuiEGdNncBiZ+l28+LqXYGVFVQIxHLUmhoiICPz000+4d+8e3n//fdn75ubmmDZt\nmkaCI9on9kosph+ejoMLD6LgRgHCd4RDIpXAzMgMM6bPgK+XL9chqgX1EoghUzhcNTw8HDNmcPst\nkEYlaYdf037Ff079B4fGHYJTWyeuw2FN1SqBRhwRXcbanc9SqRQvXryQvX7x4gXWr19f7x0R3cUw\nDP5z8j/4/uz3OBVySm+TQtVewty51EsghkthxeDk5ITMzEy595ydnXHp0iVWA6uKKgbuSBkpPk/8\nHOI7YiSOT9Tbm9aoSiD6iLVpt0tLS+VeMwwDiUR/hySSf5VVlCF0fyjuvriLkyEn0dysOdchqR31\nEgipTmFiGDBgAMaOHYuPP/4YDMPgt99+w4ABAzQRG+FQUWkRxsSOQQOjBjgy4QjMTcy5DkntaMQR\nITVTeCmpvLwc4eHhOH78OADAy8sL06dPh7GxsUYCBOhSkqY9LX4Kv2g/dGnVBb8P+x0mxiZch6RW\nVCUQQ8Haoz21ASUGzckvyIfPdh94d/LGaq/VMOLp1zTr1EsghoS1UUlXr17FsGHD0LVrV9jY2MDG\nxgbvvfeeSkES7fbXk7/QZ0sfTHCcgO+9vterpEAjjghRnsIeg0gkQlhYGObMmYOkpCRERkZWa0gT\n3Xfx/kX4Rvti+QfLMdl1MtfhqBX1EgipH6WHqzo4OCA7OxsA4O7ujgsXLmgkQIAuJbFNfFuMgNgA\n/Or3K/zt/LkOR22ol0AMHWvDVRs1agSGYdCxY0f88ssvaNu2LZ48eaJSkET77PtzHz458Al2jd6F\nD2w+4DoctaEqgRDVKawYLly4ADs7Ozx69AiLFi2CRCLBF198gV69emkqRqoYWLIpYxMWn1iMhHEJ\ncG3nynUpNki2AAAbIUlEQVQ4akFVAiH/YqX5LJVKERMTg8aNG8PGxgbR0dHYs2eP0kkhMTERjo6O\nsLe3R1hYWK3LXbhwAQ0aNMCePXvqFz1R2eozq7Hi9AqcDDmpN0nh4kXA3R1IT39dJQQHU1IgRBV1\nXkoyMjLC2bNnVdpwSUkJpk2bhpSUFFhaWsLDwwODBw+Gi4uL3HIVFRWYP38+fHx8qCrQAIZh8GXS\nlzh88zBSQlPQvml7rkN6a1QlEKJeCnsMjo6OGDVqFPz9/dGoUSMAr8sTf/+6m5SpqakQCARo3/71\niScwMBAJCQnVEkN4eDhGjx6t0Wa2oSqXlmNy/GRcf3Idp0JPoaW55p7bzRbqJRCifgoTg0QiQfPm\nzZGcnCz3vqLEkJeXBysrK9lrPp8PsVgst0x+fj7279+P5ORkXLhwQa+fFcy14rJijN09FqUVpTgm\nOoZ3Gr7DdUhvhaoEQthTa2KYP38+wsLCMHToUAQEBNR7w8qc5GfPno1Vq1bJGiR0KYkdLyQvMHzn\ncLRv0h6xY2LR0Lgh1yG9FaoSCGFXrYkhPj4eq1atwsqVK1VKDHw+H7m5ubLXubm5chUEAKSnp2Ps\n2LEAgMePH+Pw4cMwMTHB8OHDq21v6dKlst89PT3h6elZ75gM0YPCB/DZ5oO+HfripyE/6fTdzFWr\nhLVrgQkTqEogpCqxWFztyowqah2uOnfuXGzatAmFhYUwN5efWZPH46GgoKDODUskEtja2uLMmTOw\nsLBAr169EBERAVfXmkfAhIaGYtiwYTVeoqLhqqr5+9nfGBw1GMFOwfi639c6famuskro0AGIiKAq\ngRBlqH246tq1a/H8+XMMHToUL1++lPtRlBQAwMzMDBs2bIC3tzecnJzg7+8PV1dXREREICIiot6B\nkvrJepiFflv6Ya7HXCzpv0Rnk0LVOY6++AKIj6ekQAjbaHZVPZRyNwUfxnyI8CHhCBDU/zKgtqAq\ngZC3w9rsqkS3JNxIgP8uf0SNitLZpEBVAiHcUjhcleiOqMwozEuahwNBB9CD34PrcFRStUqgEUeE\ncEOpiuHly5e4evUq27GQt/DDuR+wKHkRTkw8oZNJgaoEQrSHwsQQGxsLFxcXDB06FACQnZ0NX19f\n1gMjymEYBl8d/woR6RFImZQCuzZ2XIdUb5VzHGVkvK4S6GY1QrilMDEsXboUaWlpaNGiBQDAwcFB\n7v4Ewp0KaQWmHJyCpL+TcDr0NDo068B1SPVCVQIh2klhj6FBgwZo3ry53Hvl5eWsBUSUU1JegvF7\nxuO55DmSg5PRxLQJ1yHVC/USCNFeCisGe3t7bN++HeXl5bh16xbmzZsHd3d3TcRGavGy5CWGRg8F\nj8dDwrgEnUoKVCUQov0UJobffvsN6enpYBgGw4YNg1QqxYYNGzQRG6nBo6JH+GDrB+jSsgt2frgT\npg1MuQ5JadRLIEQ30A1uOuTO8zsYvG0wAuwDsPyD5TpzNzPNcUQIN9T+zOdhw4bVubP4+Ph674yo\n7so/V+Cz3QdfeHyBWT1ncR2O0qiXQIjuqTUxzJ07t9aVdOWbqr74I+8PjNg5AmsHr8UE4QSuw1EK\nVQmE6C6lLiVJJBJkZ2eDx+PBwcEBpqaava5tyJeSjtw8AtFeEf438n8Y2mUo1+EoheY4IkQ7qP1S\nUqUjR44gJCQEXbp0AQD89ddf2Lp1KwYPHlz/KEm97MzeiVmJs7A3cC96d+jNdTgKUZVAiH5QWDE4\nOjpi79696Ny5MwAgJycHI0eOxOXLlzUSIGCYFcPP53/GypSVODz+MBwtHbkORyGqEgjRPqxVDFKp\nVJYUAKBTp06QSqX13hFRDsMwWHZyGbZf3o7Toadh08KG65DqRFUCIfpHYWIQCoWYMmUKgoKCwDAM\ndu3aBaFQqInYDI6UkWLm4Zk4m3sWKaEpsGxsyXVIdaIRR4ToJ4WXkoqLi/HDDz/gzJkzAIC+ffti\n9uzZMDMz00iAgGFcSiqtKMXEfRNx/+V97B+7H83MmnEdUq2oSiBEN6h67qQb3LRAUWkRPoz5EGYN\nzLBz9E6YNdBc0q0v6iUQojtYe4Lbnj174ODggGbNmqFJkyZo0qQJmjZtqlKQpLonr55gYORAtG/S\nHnEBcVqbFGiOI0IMh8KKoUOHDjh48CAcHBxgZMTNk0D1qWJISErAuuh1KGFKwFQw+Lvl3xjnNw6r\nBq3S2hsHqUogRDexNiqpc+fOcHR01NqTli5JSErArJ9nIcclR/Zeq7Ot0M+vn1YeX+olEGKYFFYM\nqampWLJkCTw9PdGwYcPXK/F4mDNnjkYCrNyfPlQM3qHeOGp9tPr7d7yRuDmRg4hqR1UCIbqPtYph\n8eLFaNKkCSQSCUpLS1UKjrxWwpTU+L5EKtFwJLWjKoEQojAxPHz4EElJSZqIRe/xmJrPsGZG2tFw\npvsSCCGAEqOShgwZQolBDUrKS/BP23/Q/Iz8Y1I7ZXTCjKAZHEX1Go04IoRUpbDH0LhxY7x69QoN\nGzaEiYnJ65V4PBQUFGgkwMr96XKPgWEYhO4PxYuSF5jUYhJ+3vkzJFIJzIzMMCNoBny9fDmLjXoJ\nhOgvusFNi61KWYWYKzE4HXoa7zR8h+twAFAvgRBDwFrzmbydPdf2YP359fhj8h9akxSol0AIqQs3\nd6wZiPR76ZhycAr2j90PflM+1+FQL4EQohSqGFiSX5CPETtHIMIvAu+/+z7X4VCVQAhRGlUMLCgq\nLcKwHcMwvft0+Nv5cxoLVQmEkPqqd2KwtbWFra0t1q9fz0Y8Ok/KSDFh7wQILYWY33s+p7FcvAi4\nuwMZGa+rBJGIGsyEEMXqfSnpzz//xOPHj5GamspGPDpv4bGFePLqCXZ+uJOz+Y+qjjhas4YSAiGk\nfhRWDOvWrcOzZ8/k3mvdujV8fbkbe6+tNl/cjN3XdmNP4B6YNjDlJIbKKiE9/XWVEBxMSYEQUj8K\nE8PDhw/h7u6OgIAAJCYm6vT9BGwS3xZjwbEFODjuIFo3aq3x/VftJcydCxw4QL0EQohqlLrBTSqV\n4ujRo/jf//6HtLQ0BAQEYNKkSejcubMmYtT6G9z+evIX+mzpg+3+2zHovUEa33/liCMrK2DjRkoI\nhJDXWHuCGwAYGRmhbdu2sLS0hLGxMZ49e4aAgAClpt5OTEyEo6Mj7O3tERYWVu3zqKgoCIVCODo6\nws3NDenp6fX+I7j0tPgp/Hb4Ybnnco0nBaoSCCGsYBT48ccfGVdXV8bLy4vZtWsXU1payjAMw0il\nUqZr1651riuRSBhra2smLy+PKSsrY9zc3JiMjAy5ZVJTU5mCggKGYRjm8OHDjLOzc7XtKBEmJ0rL\nS5kP/vcB83ni5xrfd0YGwwiFDOPryzD5+RrfPSFEB6h67lQ4Kunp06fYs2cPOnbsKPc+j8fD3r17\n61w3NTUVAoEA7du3BwAEBgYiISEBLi4usmW6d+8u+713797Iz8+vR1rjDsMw+DThUzQyaYTvvb7X\n2H5pxBEhhG0KE8OyZctq/cze3r7OdfPy8mBlZSV7zefzIRaLa10+IiICI0aMUBSSVvjhjx+Qmp+K\nM5POwNjIWCP7rNpLoLuXCSFsYXVKjPqM4xeLxdi8eTPOnDlT4+dLly6V/e7p6QlPT8+3jE518dfj\nsebsGpz76ByamDZhfX9UJRBClCEWi+v88q0sVhMDn89Hbm6u7HVubq5cBVEpKysLkydPRmJiIlq0\naFHjtqomBi5denAJH8V/hINBB9GxeUfFK7wlqhIIIcp680tzXVd86sLqXEnu7u7Izs5Gfn4+ysrK\nEBMTgyFDhsgtc/fuXfj7+2Pbtm0aG/6qqvsv72P4juH4eejP6MHvweq+aMQRIYQrrFYMZmZm2LBh\nA7y9vSGVSiESieDq6oqIiAgAwJQpU7B8+XI8e/YM06ZNAwCYmJjg/PnzbIalkldlrzBi5wh87Pox\nAgQBrO6LqgRCCJfoCW5KkDJSBMYFoqFxQ2wbtY21OZCol0AIUSd6ghuLlpxYgnsv7+F48HHWkgJV\nCYQQbUHPY1AgKjMK0ZejsTdwL8wamKl9+9RLIIRoG6oY6pByNwVzj87FiYknYPGOhdq3T1UCIUQb\nUcVQi7+f/Y3RMaMROSoSAguBWrdNVQIhRJtRxVCD55Ln8Iv2w+J+i+HT2Uet26YqgRCi7WhU0hvK\npeUYun0ourXqhvCh4WrbLo04IoRoGo1KUgOGYTDz8EwY8Yzwg88PatsuVQmEEF1CPYYq1p9fj5N3\nTmLX6F1oYPT2OZN6CYQQXUQVw/87/NdhfJfyHc5OOotmZs3eentUJRBCdBVVDACy/8nGxH0TETcm\nDjYtbN5qW1QlEEJ0ncFXDA8LH8Iv2g8/eP+A3h16v9W2qEoghOgDg64YJOUSjNw1EsFOwRgvHK/y\ndqhKIIToE4MdrsowDMbvGY8KpgI7PtwBI55qObJqlbBxIyUEQoj2oOGq9bT85HLkPMuBeKJYpaRA\n9yUQQvSVQSaGHZd3YPOlzUidnApzE/N6r0+9BEKIPjO4HsMfeX9gZuJMHAg6gLaN29ZrXeolEEIM\ngUFVDHee34H/Ln9sGbEFQkthvdalKoEQYigMpmIoKCmA3w4/zOs1D35d/ZRej6oEQoihMYiKoVxa\njqDdQejF74XZPWcrvR5VCYQQQ2QQFcMXR79ASXkJ1g9dr9SjOalKIIQYMr2vGDZc2IDEm4k499E5\nmBibKFyeqgRCiKHT64ohKScJy04uw8FxB9HCvEWdy1KVQAghr+ltxXDt0TWM3zMecQFx6Nyyc53L\nUpVACCH/0suK4VHRI/jt8MNqr9Xo17FfrctRlUAIIdXpXcVQUl4C/xh/BNgHIMQ5pNblqEoghJCa\n6dUkegzDIGR/CF6WvERcQFyNcyDRHEeEEENBk+gBWJWyCtn/ZONUyKkakwJVCYQQopje9Bjirsbh\nl7RfcCDoAN5p+I7cZ9RLIIQQ5elFxXAh/wKmJUzDkQlH8G4T+TM+VQmEEFI/Ol8x5L7IxchdI/Hb\nsN/g2s5V9j5VCYQQohqdrhgKSwsxfOdwzOoxCyNtR8repyqBEEJUp7OjkiqkFfCP8Udr89b4ffjv\n4PF4NOKIEEKqMLhRSQuOLcALyQvEjokFj8ejKoEQQtREJ3sMv2f8jn3X92F3wG6goiH1EgghRI10\nrmI4cesEFiUvwqmQU7h7vRVVCYQQomasVgyJiYlwdHSEvb09wsLCalxm5syZEAgEcHV1xcWLF+vc\n3o0nNzB291hEDt+B6PBuVCUQQggLWEsMJSUlmDZtGhITE5GVlYW4uLhqJ/7du3fj7t27uHLlCjZt\n2oTQ0NBat/e0+Cn8ov0wpfO3+HLMAKSnv64SgoMNq8EsFou5DkFr0LH4Fx2Lf9GxeHusJYbU1FQI\nBAK0b98eDRo0QGBgIBISEuSWOXToEEQiEQDAxcUF5eXlyMvLq3F7nUd2hlGGA379ZLJBVwn0j/5f\ndCz+RcfiX3Qs3h5riSEvLw9WVlay13w+v9pJX5llKj3r9Qy5V7KwJjzB4KoEQgjRJNYSgzLPVgZQ\nbYxtXeu98s1B9JHwt4qLEEKIAgxLTp06xfj6+sper169mlmxYoXcMpMmTWJiY2NlrwUCAZOXl1dt\nW2gBBqAf+qEf+qGf+vx06tRJpfM3a8NV3d3dkZ2djfz8fFhYWCAmJgYRERFyywwdOhTbtm3D6NGj\nkZGRAWNjY7Rv377atpinDFthEkIIeQNricHMzAwbNmyAt7c3pFIpRCIRXF1dZclhypQp+PDDD3Hi\nxAkIBAKYmppiy5YtbIVDCCFESToxVxIhhBDN0aopMdR9Q5wuU3QsoqKiIBQK4ejoCDc3N6Snp3MQ\npWYo8+8CAC5cuIAGDRpgz549GoxOc5Q5DmKxGN27d4ezszP69++v4Qg1R9GxePDgAQYOHAiBQIBu\n3bpVu4ytTyZNmgRLS0s4OjrWuky9z5sqdSZYIJFIGGtrayYvL48pKytj3NzcmIyMDLll4uLimBEj\nRjAMwzAZGRmMk5MTF6GyTpljkZqayhQUFDAMwzCHDx9mnJ2duQiVdcocC4ZhmPLycuaDDz5gfH19\nmbi4OA4iZZcyx+H+/fuMQCBgHj58yDAMwzx58oSLUFmnzLFYtGgRs2DBAoZhGObRo0dM8+bNGYlE\nwkW4rDt16hSTkZHBODg41Pi5KudNrakY1H1DnC5T5lh0794dTZo0AQD07t0b+fn5XITKOmWOBQCE\nh4dj9OjRaNOmDQdRsk+Z47Bz504EBgbCwsICANCyZUsuQmWdMsfCysoKBQUFAICCggK0adMGpqam\nXITLur59+6JFixa1fq7KeVNrEoO6b4jTZfX9OyMiIjBixAhNhKZxyhyL/Px87N+/H9OmTQOg/D00\nukSZ43D9+nXcu3cPHh4eEAqF+P333zUdpkYocyw+/vhjXLlyBe+++y6cnJzw008/aTpMraHKeVNr\nZldl44Y4XVWfv0ksFmPz5s04c+YMixFxR5ljMXv2bKxatUr2UJI3/43oA2WOQ0VFBbKzs5GcnIxX\nr16hZ8+e8PDwgEAg0ECEmqPMsfjuu+/g7OwMsViMnJwceHl5ITMzU1ZlG5r6nje1pmLg8/nIzc2V\nvc7NzZXLcjUtk5eXBz6fr7EYNUWZYwEAWVlZmDx5MuLj4+ssJXWZMsciPT0dY8eOhY2NDXbv3o1P\nP/0U8fHxmg6VVcochw4dOmDw4MEwNzdHq1at0L9/f2RlZWk6VNYpcyxSUlIwZswYAECnTp1gY2OD\na9euaTRObaHSeVNtHZC3VFxczHTs2JHJy8tjSktLGTc3NyY9PV1umbi4OGbkyJEMwzBMeno6IxQK\nuQiVdcocizt37jCdOnVizp07x1GUmqHMsagqJCSE2b17twYj1AxljkNGRgYzcOBApry8nCkqKmLs\n7e2ZixcvchQxe5Q5Fp9++imzdOlShmEY5sGDB0zbtm1lTXl9dOvWrTqbz/U9b2rNpSS6Ie5fyhyL\n5cuX49mzZ7Lr6iYmJjh//jyXYbNCmWNhCJQ5Di4uLvDx8YFQKERZWRkmT54MZ2dnjiNXP2WOxZIl\nSzBhwgTY29ujoqICK1askDXl9U1QUBBOnjyJx48fw8rKCsuWLUNZWRkA1c+bdIMbIYQQOVrTYyCE\nEKIdKDEQQgiRQ4mBEEKIHEoMhBBC5FBiIIQQIocSAyGEEDmUGIhOE4vFGDZsWL3WmTt3Luzs7DB/\n/vy33v+PP/6I4uJi2WtfX1/Z5G1vIyIiAlFRUUovf/v2bdm0y2lpaZg1a5bK+/7mm29w/Pjxau+r\ncqyJbtKaG9wI0ZRNmzbh2bNn1eaLkUqlMDKq33eln376CSKRCObm5gBQ48yvqnibG/fc3Nzg5uam\n8vrLli1TeV2iH6hiIGp14cIFODk5oaSkBEVFRXBwcMDVq1frXKdx48aYP38+hEIhvLy8kJqaigED\nBqBDhw6yh+4UFxcjKCgIAoEAjo6OOHLkSLXtFBYWIigoCE5OThAIBIiNja22zPDhw1FYWAhXV1fE\nxMQgJCQEU6dORe/evTF//nxcuHABHh4ecHJywvvvvy+Lvby8HJ999hns7Oxks3WGh4fj3r17+OCD\nDzBw4EAAgLW1NZ4+fQoA+Pbbb2FnZwc7OzvZw2Ru374NOzs7TJ06FQ4ODvD09ERRUVG1OJcuXYq1\na9cCADw9PbFgwQL06tULNjY2SE5OrvN4Vv1m/+jRI/Tt2xfOzs745JNPZPFVrTAAYM2aNbKEEBIS\ngt27dwMA9u/fjy5duqBHjx7Yu3dvnfsl+oMqBqJW7u7uGD58OBYvXozi4mKIRCLY29vXuc6rV68w\naNAghIWFwd/fH0uWLMHx48dx+fJljBs3Dv7+/vjhhx/QtGlTXLlyBTdv3kTfvn1x69Ytue0sWbIE\nfn5+2LFjB54/fw43Nzf4+PjIzagZHx+PJk2ayJ5idfjwYTx8+FA2O21hYSHOnj0LHo+HY8eOYf78\n+Thw4ADCw8Px5MkT2URsL168QLNmzfDf//4XYrFY9uyDyirk7Nmz2LVrFzIzMyGVSuHm5gZPT09Y\nWlri5s2biI2Nxa+//orAwEDExsYiJCRE7m/h8XiybVXd5uHDh7F8+XIMGDBAqf89Fi9ejKFDh2Lh\nwoU4evRorVNxv7k/Ho+H4uJiTJ06FefOnYO1tTXGjRunl7MZk+ooMRC1W7JkCdzc3GBubo7w8HCF\nyzds2BBeXl4AAEdHR5iZmYHH48HBwUE2K+SZM2cwb948AEDnzp3RpUsXZGdny23n6NGjSEpKwpo1\nawC8/pafm5urMDH5+/vLfn/06BECAwNx584dGBkZQSKRAACOHz+Ozz//XLZcs2bNat0ewzBISUmB\nv78/GjZsKNvH6dOnMWbMGNjY2MDBwQEA8P7778vNfFmbyudtuLq6KrV8pZSUFCxcuBAAMHjw4Dpn\n4a06Ow7DMLh8+TK6du0Ka2trAK/n5Nm4caPS+ya6ixIDUbvHjx+jqKgIFRUVKC4uRqNGjepc3sTE\nRPa7kZGR7GRqZGQEqVQq++zNab1q+vYaHx8PGxubesVbNb5FixbB19cXn376Ke7cuQNPT89a91+X\nymdDVF23Mt6qTxIzNjaW+xtrU7mOssvXFkelN49tcXFxteP5Zr+FplUzHNRjIGo3ZcoUrFixAuPG\njZMb+WNra6vyNvv27Ytdu3YBAHJycvDXX3/JvnVX8vb2xi+//CJ7/WZFoQyJRIK2bdsCACIjI2Xv\ne3l54bfffpOdHF+8eAEAMDc3r9Yj4PF46NOnD/bt24fS0lJIJBLs27cP/fr1q9fJVR0n4j59+siO\nW1JSEp49ewYAsLCwwIMHD/D06VOUlZVVa5pXVmw3btzAnTt3AEC2HaL/KDEQtYqMjISpqSnGjh2L\nBQsW4MKFCxCLxXj8+HGt67z5TbXq68rfZ8+ejRcvXkAgEGDkyJHYunUrTE1N5a6N/+c//8E///wD\ne3t7CIXCWoej1rW/L774Al988QXc3d1RWloq+2z69Olo1aoV7Ozs4OzsLBtK+tFHH8k1nyt5eHgg\nMDAQTk5OcHFxgUgkgru7u8L9q+v9qsfk0KFDcHZ2RlxcHDp06ADg9dTVCxYsgIuLC7y9vWFnZ1dt\ne2ZmZoiIiMCgQYPQo0cPtGnThnoMBoKm3SYakZCQgFu3bmH69Olch2LQbGxskJ6eLmuWE1IT6jEQ\njfD19eU6BAL9fEY6UT+qGAghhMihHgMhhBA5lBgIIYTIocRACCFEDiUGQgghcigxEEIIkUOJgRBC\niJz/A9vzOGCUmCVhAAAAAElFTkSuQmCC\n", + "text": [ + "<matplotlib.figure.Figure at 0x3e71b10>" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 7.6 page no : 158" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "# variables\n", + "p = 100 # pressure Kpa\n", + "# from table\n", + "n_heptaneA = 13.8587\n", + "n_hexaneA = 13.8216\n", + "n_heptaneB = 2911.32\n", + "n_hexaneB = 2697.55\n", + "n_heptaneC = 56.51\n", + "n_hexaneC = 48.78\n", + "xA = .25\n", + "\n", + "# Calculations and Results\n", + "\n", + "# for T = 360 Initial guess\n", + "T1 = 360\n", + "lnPaS = n_hexaneA - (n_hexaneB/(T1- n_hexaneC))\n", + "PaS = round(math.e**lnPaS,2)\n", + "lnPbS = n_heptaneA - (n_heptaneB/(T1- n_heptaneC))\n", + "PbS = round(math.e**lnPbS,2)\n", + "P = xA*PaS + (1 - xA)*PbS\n", + "\n", + "print \"P = %.1f kPa\" %P\n", + "\n", + "# Since total pressure < 100 Kpa, equilibrium temperature is not equal to 360K.\n", + "# for T = 365 - Assume\n", + "T1 = 365\n", + "lnPaS = n_hexaneA - (n_hexaneB/(T1- n_hexaneC))\n", + "PaS = round(math.e**lnPaS,2)\n", + "lnPbS = n_heptaneA - (n_heptaneB/(T1- n_heptaneC))\n", + "PbS = round(math.e**lnPbS,2)\n", + "P = xA*PaS + (1 - xA)*PbS\n", + "\n", + "print \"P = %.2f kPa\"%P\n", + "\n", + "# As the pressure > 100 kPa, the temperature lies between 360 and 365 K.\n", + "# for T = 361.125 -- assumption\n", + "T1 = 361.125\n", + "lnPaS = n_hexaneA - (n_hexaneB/(T1- n_hexaneC))\n", + "PaS = round(math.e**lnPaS,2)\n", + "lnPbS = n_heptaneA - (n_heptaneB/(T1- n_heptaneC))\n", + "PbS = round(math.e**lnPbS,2)\n", + "P = xA*PaS + (1 - xA)*PbS\n", + "\n", + "print \"P = %.f kPa\"%P\n", + "print \"Therefore, the bubble point temperature = %.3f K\"%T1 # last assumed for T1\n", + "\n", + "\n", + "# Part b\n", + "Pa = xA*PaS\n", + "Ya = Pa/P\n", + "\n", + "print \"Partial pressure of n-Hexane in vapour at the bubble point is = %.2f kPa\"%Pa\n", + "print \"Mole fraction of hexane in the vapour is Ya = %.4f\"%Ya\n", + "print \"The vapour contains %.2f %% hexane and %.2f %% heptane.\"%(Ya*100,(1-Ya)*100)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "P = 96.7 kPa\n", + "P = 112.04 kPa\n", + "P = 100 kPa\n", + "Therefore, the bubble point temperature = 361.125 K\n", + "Partial pressure of n-Hexane in vapour at the bubble point is = 44.65 kPa\n", + "Mole fraction of hexane in the vapour is Ya = 0.4465\n", + "The vapour contains 44.65 % hexane and 55.35 % heptane.\n" + ] + } + ], + "prompt_number": 25 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 7.7 page no : 159" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math \n", + "\n", + "# Variables \n", + "#lnPas = 14.5463 - 2940.46/(T - 35.93)\n", + "#lnPbs = 14.2724 - 2945.47 / (T - 49.15)\n", + "#xa = (P - Pbs)/(Pas - Pbs)\n", + "#Ya = Pas * (P - Pbs)/(P * (Pas - Pbs))\n", + "Ya = 0.4 # vapour phase\n", + "P = 65. #kPa\n", + "#various temperature value are assumed and tried till LHS = RHS, we get\n", + "T = 334.15 #K\n", + "\n", + "# Calculation \n", + "Pas = math.exp(14.5463 - 2940.46/(T - 35.93)) \n", + "Pbs = math.exp(14.2724 - 2945.47 / (T - 49.15)) \n", + "xa = (P - Pbs)/(Pas - Pbs) \n", + "\n", + "# Result \n", + "print \"(a)The Dew point temperature at 65 kPa = \",T,\"K\"\n", + "print \" Concentration of the first drop of liquid = %.2f\"%xa\n", + "T1 = 327. #K\n", + "Pas1 = math.exp(14.5463 - 2940.46/(T1 - 35.93)) \n", + "Pbs1 = math.exp(14.2724 - 2945.47 / (T1 - 49.15)) \n", + "xa1 = Ya * Pbs1 / (Pas1 - Ya*(Pas1 - Pbs1)) \n", + "P1 = xa1 * Pas1 / Ya \n", + "print \"(b)The dew point pressure at 327 K = %.2f kPa\"%P1\n", + "print \" Concentration at 327K = %.4f\"%xa1\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a)The Dew point temperature at 65 kPa = 334.15 K\n", + " Concentration of the first drop of liquid = 0.24\n", + "(b)The dew point pressure at 327 K = 50.09 kPa\n", + " Concentration at 327K = 0.2354\n" + ] + } + ], + "prompt_number": 14 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 7.8 pageno : 163" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "# variables \n", + "MW = 44.032 # mole fraction of acetaldehyde\n", + "Mwater = 18.016 \n", + "x = 2. #% acetaldehyde weight\n", + "Pa = 41.4 #kPa solution\n", + "\n", + "# Calculation \n", + "Mfr = (x/MW)/(x/MW + (100-x)/Mwater) \n", + "#henry's law gives Pa = Ha * xa\n", + "Ha = Pa / Mfr \n", + "Molality = 0.1 \n", + "Mfr1 = Molality / (1000/Mwater + Molality) \n", + "Pa1 = Ha * Mfr1 \n", + "\n", + "# Result\n", + "print \"Partial Pressure = %.f kPa\"%Pa1\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Partial Pressure = 9 kPa\n" + ] + } + ], + "prompt_number": 16 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 7.9 pageno : 177" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math \n", + "\n", + "# Variables \n", + "#1 - pentane, 2 - hexane, 3 - heptane\n", + "\n", + "x1 = 0.6 \n", + "x2 = 0.25 \n", + "x3 = 0.15 \n", + "A1 = 13.8183 \n", + "A2 = 13.8216 \n", + "A3 = 13.8587 \n", + "B1 = 2477.07 \n", + "B2 = 2697.55 \n", + "B3 = 2911.32 \n", + "C1 = 39.94 \n", + "C2 = 48.78 \n", + "C3 = 56.51 \n", + "#As raoults law is applicable, Ki = yi/xi = Pis/P\n", + "#yi = xi*Pis/P\n", + "#ln P = A- B/(T-C)\n", + "#Assuming,\n", + "P = 400. #kPa\n", + "T = 369.75 #K\n", + "\n", + "# Calculation \n", + "Pas1 = math.exp(A1 - B1 / (T - C1)) \n", + "Pas2 = math.exp(A2 - B2 / (T - C2)) \n", + "Pas3 = math.exp(A3 - B3 / (T - C3)) \n", + "Yi = (x1*Pas1 + x2*Pas2 + x3*Pas3)/P \n", + "print \"(a)bubble point temperature of the mixture = \",T,\"K\"\n", + "y1 = x1*Pas1/P \n", + "y2 = x2*Pas2/P \n", + "y3 = x3*Pas3/P \n", + "\n", + "# Result \n", + "print \"(b)composition of n-pentane in vapour = %.2f %%\"%(y1*100)\n", + "print \"composition of n-hexane in vapour = %.2f %%\"%(y2*100)\n", + "print \"composition of n-heptane in vapour = %.2f %%\"%(y3*100)\n", + "T1 = 300. #K\n", + "Ps1 = math.exp(A1 - B1 / (T1 - C1)) \n", + "Ps2 = math.exp(A2 - B2 / (T1 - C2)) \n", + "Ps3 = math.exp(A3 - B3 / (T1 - C3)) \n", + "P1 = x1*Ps1 + x2*Ps2 + x3*Ps3 \n", + "print \"(c)Bubble point pressure = %.1f kPa\"%P1\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a)bubble point temperature of the mixture = 369.75 K\n", + "(b)composition of n-pentane in vapour = 82.32 %\n", + "composition of n-hexane in vapour = 14.08 %\n", + "composition of n-heptane in vapour = 3.60 %\n", + "(c)Bubble point pressure = 50.4 kPa\n" + ] + } + ], + "prompt_number": 18 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 7.10 pageno : 178" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math \n", + "\n", + "# Variables \n", + "#1 - pentane, 2 - hexane, 3 - heptane\n", + " \n", + "y1 = 0.6 \n", + "y2 = 0.25 \n", + "y3 = 0.15 \n", + "A1 = 13.8183 \n", + "A2 = 13.8216 \n", + "A3 = 13.8587 \n", + "B1 = 2477.07 \n", + "B2 = 2697.55 \n", + "B3 = 2911.32 \n", + "C1 = 39.94 \n", + "C2 = 48.78 \n", + "C3 = 56.51 \n", + "P = 400. #kPa\n", + "T = 300. #K\n", + "#As raoults law is applicable, Ki = yi/xi = Pis/P\n", + "#xi = yi*P/Pis\n", + "#ln P = A- B/(T-C)\n", + "#Assuming,\n", + "T1 = 385.94 #K\n", + "\n", + "# Calculation \n", + "Pas1 = math.exp(A1 - B1 / (T1 - C1)) \n", + "Pas2 = math.exp(A2 - B2 / (T1 - C2)) \n", + "Pas3 = math.exp(A3 - B3 / (T1 - C3)) \n", + "\n", + "# Result\n", + "print \"(a)Dew point temperature of the mixture = \",T1,\"K\"\n", + "Ps1 = math.exp(A1 - B1 / (T - C1)) \n", + "Ps2 = math.exp(A2 - B2 / (T - C2)) \n", + "Ps3 = math.exp(A3 - B3 / (T - C3)) \n", + "P1 = 1/(y1/Ps1 + y2/Ps2 + y3/Ps3) \n", + "print \"(b)Dew point pressure = %.2f kPa\"%P1\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a)Dew point temperature of the mixture = 385.94 K\n", + "(b)Dew point pressure = 23.79 kPa\n" + ] + } + ], + "prompt_number": 21 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 7.11 page no :180" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "# variables \n", + "#1 - methanol, 2 - ethanol, 3 - propanol\n", + "x1 = 0.45 \n", + "x2 = 0.3 \n", + "x3 = 1 - (x1 + x2) \n", + "P = 101.3 #kPa\n", + "# by drawing the temperature vs vapour pressure graph and interpolation,assuming,\n", + "T = 344.6 #K\n", + "Ps1 = 137.3 \n", + "Ps2 = 76.2 \n", + "Ps3 = 65.4 \n", + "\n", + "# Calculation \n", + "y1 = x1 * Ps1 / P \n", + "y2 = x2 * Ps2 / P \n", + "y3 = x3 * Ps3 / P \n", + "\n", + "# Result\n", + "print \"(a)Bubble point temperature = \",T,\"K\"\n", + "print \"Composition of methanol in vapour = %.f %%\"%(y1*100)\n", + "print \"Composition of ethanol in vapour = %.1f%%\"%(y2*100)\n", + "print \"Composition of propanol in vapour = %.1f%%\"%(y3*100)\n", + "#again, for xi = 1\n", + "T1 = 347.5 #K\n", + "P1 = 153.28 \n", + "P2 = 85.25 \n", + "P3 = 73.31 \n", + "xa = x1 * P / P1 \n", + "xb = x2 * P / P2 \n", + "xc = x3 * P / P3 \n", + "print \"(b)Dew point temperature = \",T1,\"K\"\n", + "print \"Composition of methanol in liquid = %.1f %%\"%(xa*100)\n", + "print \"Composition of ethanol in liquid = %.1f %%\"%(xb*100)\n", + "print \"Composition of propanol in liquid = %.1f %%\"%(xc*100)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a)Bubble point temperature = 344.6 K\n", + "Composition of methanol in vapour = 61 %\n", + "Composition of ethanol in vapour = 22.6%\n", + "Composition of propanol in vapour = 16.1%\n", + "(b)Dew point temperature = 347.5 K\n", + "Composition of methanol in liquid = 29.7 %\n", + "Composition of ethanol in liquid = 35.6 %\n", + "Composition of propanol in liquid = 34.5 %\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 7.12 pageno : 181" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "# variables \n", + "xp = 0.25 # propane\n", + "xnb = 0.4 # n-butane\n", + "xnp = 0.35 # n-pentane\n", + "P = 1447.14 #kPa \n", + "#assuming temperatures 355.4 K and 366.5 K , corresponding Ki \n", + "# values are found from nomograph and total Ki value are 0.928 and 1.075 resp, thus bubble point temperature lies between, using interpolation bubble point temperature is found to be,\n", + "Tb = 361. #K\n", + "print \"(a) The buuble point temperature = \",Tb,\"K\"\n", + "\n", + "\n", + "# Calculation \n", + "#At 361,\n", + "Kip = 2.12 \n", + "Kinb = 0.85 \n", + "Kinp = 0.37 \n", + "xp1 = Kip * xp \n", + "xnb1 = Kinb * xnb \n", + "xnp1 = Kinp * xnp \n", + "\n", + "# Result\n", + "print \"concentration of propane at bubble point = \",xp1\n", + "print \"concentration of n-butane at bubble point = \",xnb1\n", + "print \"concentration of n-pentane at bubble point = %.3f\"%xnp1\n", + "#At dew point Yi/Ki = 1, at 377.6K this is 1.1598 and at 388.8K \n", + "# it is 0.9677, by interpolation dew point is found to be\n", + "Td = 387. #K\n", + "Kip1 = 2.85 \n", + "Kinb1 = 1.25 \n", + "Kinp1 = 0.59 \n", + "yp1 = xp/Kip1 \n", + "ynb1 = xnb/Kinb1 \n", + "ynp1 = xnp/Kinp1 \n", + "print \"(b) The dew point temperature = \",Td,\"K\"\n", + "print \"concentration of propane at dew point = %.4f\"%yp1\n", + "print \"concentration of n-butane at dew point = %.4f\"%ynb1\n", + "print \"concentration of n-pentane at dew point = %.4f\"%ynp1\n", + "\n", + "#summation zi / (1 + L/VKi)= 0.45, using trial and error, we find\n", + "T = 374.6 #K\n", + "L = 0.55 \n", + "V = 0.45 \n", + "Kip2 = 2.5 \n", + "Kinb2 = 1.08 \n", + "Kinp2 = 0.48 \n", + "t = (xp/(1+L/(V*Kip2)))+(xnb/(1+L/(V*Kinb2))) + (xnp/(1+L/(V*Kinp2))) \n", + "yp2 = (xp/(1+L/(V*Kip2)))/t \n", + "ynb2 = (xnb/(1+L/(V*Kinb2)))/t \n", + "ynp2 = (xnp/(1+L/(V*Kinp2)))/t \n", + "xp2 = (xp - V * yp2)/L \n", + "xnb2 = (xnb - V * ynb2)/L \n", + "xnp2 = (xnp - V * ynp2)/L \n", + "print \"(c)Temperature of the mixture = \",T,\"K\"\n", + "print \"vapour phase concentration of propane = %.4f\"%yp2\n", + "print \"vapour phase concentration of n-butane = %.4f\"%ynb2\n", + "print \"vapour phase concentration of n-pentane = %.4f\"%ynp2\n", + "print \"liquid phase concentration of propane = %.4f\"%xp2\n", + "print \"liquid phase concentration of n-butane = %.4f\"%xnb2\n", + "print \"liquid phase concentration of n-pentane = %.4f\"%xnp2\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a) The buuble point temperature = 361.0 K\n", + "concentration of propane at bubble point = 0.53\n", + "concentration of n-butane at bubble point = 0.34\n", + "concentration of n-pentane at bubble point = 0.130\n", + "(b) The dew point temperature = 387.0 K\n", + "concentration of propane at dew point = 0.0877\n", + "concentration of n-butane at dew point = 0.3200\n", + "concentration of n-pentane at dew point = 0.5932\n", + "(c)Temperature of the mixture = 374.6 K\n", + "vapour phase concentration of propane = 0.3696\n", + "vapour phase concentration of n-butane = 0.4131\n", + "vapour phase concentration of n-pentane = 0.2173\n", + "liquid phase concentration of propane = 0.1521\n", + "liquid phase concentration of n-butane = 0.3893\n", + "liquid phase concentration of n-pentane = 0.4586\n" + ] + } + ], + "prompt_number": 27 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 7.13 pageno : 185" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "# variables \n", + "P = 93.30 #kPa pressure\n", + "T1 = 353. #K temperature\n", + "T2 = 373. #K temperature\n", + "Pwater1 = 47.98 #kPa pressure of water\n", + "Pwater2 = 101.3 #kPa\n", + "Pliq1 = 2.67 #kPa pressure of liquid\n", + "Pliq2 = 5.33 #kPa\n", + "\n", + "# Calculation \n", + "T = T1 + (T2 - T1)*(P - (Pwater1 + Pliq1))/(Pwater2 + Pliq2 - (Pwater1 + Pliq1)) \n", + "\n", + "# Result\n", + "print \"(a)The equilibrium temperature = %.1f K\"%T\n", + "Pwater = 88.50 \n", + "y = Pwater * 100 /P \n", + "print \"(b)Water vapour in vapour mixture = %.2f %%\"%y\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a)The equilibrium temperature = 368.2 K\n", + "(b)Water vapour in vapour mixture = 94.86 %\n" + ] + } + ], + "prompt_number": 29 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 7.14 pageno : 185" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "%pylab inline\n", + "\n", + "from matplotlib.pyplot import *\n", + "from numpy import *\n", + "\n", + "# variables \n", + "#the three phase temperature is first find out, which comes to be 342K, the\n", + "# corresponding Ps1 = 71.18, Ps2 = 30.12\n", + "T = [342, 343, 348, 353, 363, 373] \n", + "Ps2 = [30.12, 31.06, 37.99, 47.32, 70.11, 101.3] \n", + "Ps1 = [71.18, 72.91, 85.31, 100.5, 135.42, 179.14] \n", + "P = 101.3 #kPa\n", + "\n", + "y1 = zeros(6)\n", + "y2 = zeros(6)\n", + "\n", + "# Calculation \n", + "for i in range(6):\n", + " y1[i] = 1 - (Ps1[i])/P \n", + "\n", + "for i in range(6):\n", + " y2[i] = 1 - (Ps2[i])/P \n", + "\n", + "# Result\n", + "plot(y2,T) \n", + "plot(1-y1,T) \n", + "suptitle(\"temperature composition diagram\")\n", + "xlabel(\"x,y mole fraction of benzene\")\n", + "ylabel(\"Temperature\")\n", + "show()\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Populating the interactive namespace from numpy and matplotlib\n" + ] + }, + { + "output_type": "stream", + "stream": "stderr", + "text": [ + "WARNING: pylab import has clobbered these variables: ['draw_if_interactive']\n", + "`%pylab --no-import-all` prevents importing * from pylab and numpy\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEhCAYAAABlUDcAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlYlPX+//EnA6K4ZblgippHM2WTcUdRwQ0T3BcQl1Kz\nzMzU/B71WInZkeocT6nHyrK0bHGl3BdKcDcV8bjlkkkGhAsqIjDCzHx+f0zMTxJjkeEe4P24Lq+Y\nmXvueQ3czXvu+7M5KKUUQgghxJ/otA4ghBDCPkmBEEIIkScpEEIIIfIkBUIIIUSepEAIIYTIkxQI\nIYQQeZICUQ6kpqby4Ycfah2jQN5//30yMzO1jlHixo8fz9mzZwGYP39+rsc6depU7K8XHx+Pl5cX\nAEePHuWVV14p9tcQpZ+DjIMo++Lj4+nbty8nT57UOgo5h5uDg0Oejzdu3JijR49Ss2bNAu/TbDaj\n05Wd7zrVqlUjLS3Npq9hq2OirP0tyjv5S5YDM2fO5OLFi+j1embMmAHAm2++ibe3Ny1atGDWrFmA\n5UOjefPmjBs3jubNmzNixAiioqLo0qULjRs35sCBAwCEh4czatQoOnfuTJMmTViyZIn1tR6036ee\neopnn30WHx8fEhISmDBhAm3btqVZs2bMnDkTgEWLFpGUlERAQADdu3cHoGrVqtZ9r1u3jjFjxgDw\n7LPPMmHCBDp16sTMmTM5d+4cAQEBtGzZkvbt23P69On7fg9paWmEhobi4eFBy5YtWb9+PQDLly/H\n3d0dd3d3pkyZYt2+atWqzJgxA29vb3r27MmPP/5It27daNiwIZGRkQCsWLGC/v3706NHD5o2bcrs\n2bOtz//nP/9JixYtaNGiBe+88w4At2/fpk+fPrRs2RIvLy/WrFkDgL+/P7GxscycOZPMzEz0ej2j\nRo3K9Tswm828/PLL1qxffPEFADExMfj7+xMaGkqzZs0YOnQoeX3vO3jwIC1atKBt27Z88MEH1vtj\nYmLo27cvAIcPH8bX15eWLVvSunVrzpw5A0B6ejp9+/bFw8ODoUOH0qFDB44dO2bNN336dNq0acOh\nQ4eYO3cu7dq1o3nz5jz77LOYzWbre5w2bRodOnSgRYsWHDlyhMGDB9OkSRPrcSnsjBJlXnx8vPL0\n9LTe3rBhg3r++eeVUkqZTCYVHBysoqKi1KVLl5STk5P66aeflNlsVq1bt1bPPfec9TlBQUFKKaXm\nzJmjfHx8VHZ2trp586aqX7++unz58l/uV6fTqaNHj1ozpKamKqWUMhqNyt/fX8XGxiqllHriiSdU\nSkqKdbuqVataf163bp169tlnlVJKPfPMM2rAgAHWxzp27KguXLiglFLq0KFDqlOnTvf9HiZPnqym\nT5+eK8Ovv/6q6tevr27evKlMJpPq0aOHWrVqlVJKKQcHB7Vz506llFIDBw5UvXr1UmazWf3vf/9T\nHh4eSimlli9frh5//HGVmpqq7t69q7y8vNSBAwfU/v37lZeXl7p7967KzMxUHh4e6tChQ2rNmjXq\nxRdftGZIS0tTSqlcv4N73/O9t7/66isVGBiolFIqJSVF1atXTyUkJKjo6Gj1yCOPqOTkZGU2m5Wv\nr6+Kjo6+7/03a9ZMHThwQCml1KxZs6zHRHR0tAoODrbmMZvNSimloqKirPe/9dZb6qWXXlJKKfXT\nTz8pJycna14HBwcVGRmZ6/eaY9SoUWrdunXW9/iPf/xDKaXUwoUL1eOPP66uXbum7t69q+rVq6eu\nXr16X2ahLSetC5SwPfWnb5M7d+5k586d6PV6wPLtMD4+nqZNm9K4cWOaN28OgIeHB926dQPA09OT\n3377DbBcHurfvz9OTk7UqFGD7t27c+jQIXbv3v3A/TZq1IjWrVtbM3z66aesWLECBwcHkpKSOHv2\nLK1atSrwe3JwcGDQoEEAXL9+nWPHjjF06FDr43m1Y/zwww9s2LDBert69eps376dHj16UKNGDQCG\nDx/O3r17CQkJwdnZmZ49ewLg5eVFpUqVcHBwyPW7AOjVqxfVq1cHYODAgezbtw+AQYMG4ezsbP15\n79699O/fn5kzZzJz5kz69OlDly5dCvye9+3bR2hoKACPPfYY3bt35+DBg9SuXZt27drh6uoKgI+P\nT658AFevXsVgMODr62t9n5s2bbrvNa5du0ZISAi//vorOp0Og8EAwIEDB/j73/8OQPPmzfH29rY+\nx9HRkQEDBlhvb968mQULFmA0GklJSbEeTwDBwcGA5Xjy9PSkVq1aADRt2pTExERq165d4N+HsD0p\nEOXU66+/ztixY3PdFx8fT8WKFa23dTqd9QNOp9NZLxXkJadN4UH7rVKlivX2uXPnWLJkCcePH6dq\n1aqMGTMGo9GY537vLW5//tCvXLmydZvatWsTFxf3wHx57S8n9733KaWs76VChQrW+wv6u8h5vlIq\nz/0++eSTxMbGsmXLFubMmUNAQABvvPFGvrnzyppzH5Dr7+bo6Hhfvj+3+fx5Pzlmz55NUFAQEydO\n5Ndff8Xf3z/f5+QUToA7d+4wZcoUTpw4Qd26dZk7d26uv21OTp1Od9+x9lfHl9CGtEGUAy4uLmRk\nZFhvBwYGsnz5cuu3wytXrnD9+vUC708pxcaNG8nOzubmzZv88MMPdOjQocD7NRgMVK1alSpVqnD9\n+nW2bduWK2t6err1ds2aNTl79ixKKb777rs8G7dr165N7dq12bx5szVfXm0QPXv2ZOnSpdbbt2/f\nxtfXl127dnHr1i3MZjNr1qwp1Ld6gKioKG7fvk1WVhYbNmzAz88PPz8/vvvuO7KysjAYDHz33Xd0\n6dKF5ORkKleuzIgRI3j11Vc5evTofftzdHTEZDLdd3/nzp1Zu3YtSilu3LjBrl278PX1feAH971q\n165N5cqVOXToEACrV6/OczuDwUDdunUBrG0cAB07drS22Zw7d+6BjdtGoxGdTkeNGjXIzMxk7dq1\n+WYT9kvOIMoBV1dXfHx8cHd3p2/fvrzzzjucOXOGVq1a4ezsTMWKFVm1ahUODg73fQDfezvnZwcH\nB7y8vOjWrRuJiYn84x//wM3NDTc3twLtN6eB9sknn6RJkyb4+flZHxs3bhwBAQE0atSIH374gYiI\nCAIDA2nQoAF6vT5X8bh3n6tXr2b8+PH84x//wGQyMWzYMDw8PHK9l3nz5jFu3Djc3d1xdnZmzpw5\nDBw4kDfffNN66SUwMNB6qaogvwuAdu3aMXjwYC5dukRISAgdOnQAICQkhJYtWwIwZswY2rZty86d\nO5k+fTpOTk44OTnx3//+976/17PPPkuLFi1o3749K1eutL5WSEgI+/fvx93dHQcHByIiIqhXrx4X\nLlz4y6w5li9fztixY6latSoBAQF5vp/p06czcuRIIiIi6N27t/X+KVOmEBISgqenJ+7u7nh4eODi\n4nLfa9WoUYMxY8bQvHlzGjVqRPv27e/LkfOcB/VkE/ZDurmKQps7dy5Vq1bl1Vdf1TqK5lasWEFs\nbCyLFy/WOopNmc1mjEYjzs7OXLx4ka5du3Lp0qVcl+FE2SNnEKJI5NufRXn5Jnznzh26detGVlYW\nWVlZLFmyRIpDOSBnEEIIIfIkjdRCCCHyJAVCCCFEnqRACCGEyJMUCCGEEHmSAiGEECJPUiCEEELk\nSQqEEEKIPNlsoJzBYKBz584YjUbS09MJCgrivffeIyQkhPPnzwNw69YtatSoQVxcHPHx8bRo0cI6\n86Ovr2+uOeuFEEKULJsViEqVKrFnzx5cXFwwGo34+fkRHR2da5Kw6dOnW6dZBsuUvwWZkVMIIYTt\n2XSqjZzJvLKysjCZTNb56sEy4+aaNWuIjo62ZQQhhBBFZNM2CLPZjI+PD66urgQEBODu7m59bO/e\nvbi6utKkSRPrffHx8fj4+NCxY0d27dply2hCCCHyYdMzCJ1Ox/Hjx0lNTSUwMNC6di7AN998Q1hY\nmHXbevXqkZiYSPXq1YmLiyM4OJjTp0/nugQlhBCiBJXU2qZvvvmmioiIUEoplZ2drVxdXVViYuID\nt+/Vq5c6ePDgffc3adJEAfJP/sk/+Sf/CvGvSZMmhf7cttklppSUFNLS0gDLUpFRUVF4eXkB8P33\n39OiRQvq1atn3f7GjRvWJQfj4+M5deoUTZs2vW+/Fy9etC7naC//5syZo3kGyVS2ckkmyVTc/y5e\nvFjoz3GbXWJKSkpi9OjRKKUwGAyEhYURFBQEWFb/Gj58eK7to6OjmTNnDjqdDqUUixYtsi5oLoQQ\nouTZrEB4eXk9sMvq8uXL77tv8ODBDB482FZxhBBCFJKMpC4GOQ3v9kQyFZw95pJMBSOZbKvUrSjn\n4OBAKYsshBCaK8pnp5xBCCGEyJMUCCGEEHmSAiGEECJPUiCEEELkSQqEEEKIPEmBEEKIMuJy6mVM\nZlOx7a9UFog/ZuQQQgjxhy3nt9Dm4zYcSTpSbPsslQVi5kytEwghhH0wKzNv7n6TFza/wHeh39HB\nrUOx7dum033byubN8PjjMHWq1kmEEEI7qYZURn83musZ1zky/giPV3u8WPdfKs8gtm+H//wHVq3S\nOokQQmjjp2s/0W5ZO9yquRH9THSxFwcopWcQDRvC1q3QowfUqQPdummdSAghSk7kT5G8sPkF3u3x\nLmP0Y2z2OqV6Lqbdu2HoUNi5E3x8NA4mhBA2ZjKbeCP6DVaeWMn6YetpW79tgZ9blLmYSnWBAFi3\nDl55Bfbtg8aNNQwmhBA2dDPzJmGRYRiMBlYPWU2dKnUK9fxyOVnfkCEwaxb07g3XrmmdRgghit+J\nKydo80kbWtRqQdSoqEIXh6Iq9WcQOWbPhu+/h127oEoVDYIJIYQNrDq1ipe3vczC3gsJ8wor8n7K\n5SWmHErB2LFw9Sp89x1UqKBBOCGEKCZGs5GZ388k8qdIIkMi8an7cA2t5bpAAGRnw4ABlp5Nn30G\nDg4lHE4IIYrB9YzrhKwLwUnnxNeDvqZm5ZoPvc9y2QZxrwoVYM0aOHMGXntN6zRCCFF4x34/RpuP\n29CuXju2hm0tluJQVKVyHMRfqVIFtmyBTp0so60nTdI6kRBCFMwX//uCV3e+yodBHzLEfYjWccpe\ngQCoVcsy2trPD+rWtfR0EkIIe5VtymbajmnsuLiDmGdi8KjjoXUkoIwWCLCMidi8GQIDoXZt6NpV\n60RCCHG/5DvJDFs7jEcqPcLh8YepUamG1pGsbNYGYTAYaNu2LXq9nmbNmjH1j5n1QkJC0Ov16PV6\nGjdujF6vtz4nIiICd3d3vLy82Llz50Nn0Ovhm28so61Pnnzo3QkhRLE6lHCItp+0pVvjbmwI3WBX\nxQFseAZRqVIl9uzZg4uLC0ajET8/P6Kjo1m9erV1m+nTp1OjhuUXEhsbS2RkJCdPniQ5ORk/Pz/O\nnTuHs7PzQ+Xo3h0WLYI+fWD/fss8TkIIobWPYz/mtV2vsazfMvo91U/rOHmy6SUmFxcXALKysjCZ\nTLi6ulofU0qxZs0aoqOjAdiyZQuhoaE4OjpSv359PDw8OHz4MH5+fg+dIzQUkpMtl5v27YOa2nUK\nEEKUc3eNd3l528vsu7yPvWP28lStp7SO9EA27eZqNpvx8fHB1dWVgIAA3N3drY/t3bsXV1dXmjRp\nAkBiYiJubm7Wx93c3EhISCi2LFOmQN++ln8ZGcW2WyGEKLDE24l0XdGVlMwUfnzuR7suDmDjMwid\nTsfx48dJTU0lMDCQmJgY/P39Afjmm28ICyvasPHw8HDrz/7+/tZ95uftt+GZZ2D4cFi/HpzKbBO9\nEMLe7P11LyHrQni53cvM9JuJg41H8sbExBATE/NQ+yixkdTz5s2jQoUKzJw5E6PRiJubG8eOHaNe\nvXrWx11cXJg+fToAwcHBzJo1i06dOuUOXITRgPfKyrKcRTRqBEuXymhrIYRtKaX47+H/8tbet/h8\nwOf0btpbkxx2NZI6JSWFtLQ0ADIzM4mKisLLywuA77//nhYtWliLA0CfPn1YvXo1RqORhIQETp06\nRbt27Yo9l7OzZYrwY8dg7txi370QQlhlZmfy7IZnWRa3jIPjDmpWHIrKZhdZkpKSGD16NEopDAYD\nYWFhBAUFAbB69WqGDx+ea/vWrVszcOBAvL290el0LF26lAo2mnGvWrXco61feMEmLyOEKMd+vfUr\ng9YM4qmaT3Fg7AGqOJe+aabL1GR9hfXzz9ClC3z4IfTvXyy7FEIIdl3aRdj6MGZ0msGUDlNs3t5Q\nEEX57CzXzbRNm8LGjZYxErVqWc4ohBCiqJRSLDi4gAUHF/DN4G8IaBygdaSHUq7PIHLs2AGjR0N0\nNNzTE1cIIQosPSudcRvH8fONn4kMiaThI/Y1KteuGqlLk8BA+Pe/4emnoRiHXgghyomLNy7i+6kv\nLhVc2Dtmr90Vh6KSAvGHUaMsU4M//TTcvKl1GiFEabH95+10/KwjE9pM4LN+n+FSwUXrSMVGLjHd\nQymYNg1iY2HnTqhUySYvI4QoA8zKTMTeCD44+gGrh6zGr+HDTwtkS+V+ydHiYDZDWJhl+dI1a8DR\n0WYvJYQopW7fvc0z3z1D8p1k1g1dR/3q9bWOlC9pgygGOh18/jncugWTJ1vOKoQQIse56+dov6w9\nrlVciXkmplQUh6KSApGHihXh228t04PPn691GiGEvdhwdgOdl3fmVd9X+Sj4Iyo6VdQ6kk2V63EQ\nf6V6ddi2DTp2hHr1YMwYrRMJIbRiVmbCY8JZcXwFm4Zvor1be60jlQgpEH/h8ccta1t37Qp16sAf\nM4UIIcqRW4ZbjIgcwZ2sOxwZfwTXqq75P6mMkEtM+XjqKdiwwXIG8eOPWqcRQpSkU1dP0faTtjz5\n2JN8P+r7clUcQHoxFdiWLTBuHOzebSkaQoiybe3ptUzcOpH3At9jpPdIreM8NOnmamPLl8Obb1oa\nr++ZqVwIUYYYzUZm/zCbNWfWsH7Yelo93krrSMVCJuuzsTFj4PffLZP77d4NjzyidSIhRHFKyUgh\ndH0oAEfGH6FW5VoaJ9KWtEEU0qxZ4OcHAwfC3btapxFCFJe43+No80kbWtVtxbYR28p9cQC5xFQk\nJhOEhFhGWX/zjWVwnRCi9PryxJdM3TGVJX2WMMxjmNZxbELaIEqQwWCZBdbHB95/X9a2FqI0yjZl\n839R/8fm85v5NuRbvFy9tI5kMzLVRgmqVMnS/XXXLvjXv7ROI4QorCt3rtBjZQ8u3LjAkfFHynRx\nKCopEA+hRg3LaOslS2DlSq3TCCEK6nDiYdp+0paujbqyafgmHnV5VOtIdkl6MT0kNzdLkQgIsIy2\nDgzUOpEQ4q98euxTZv0wi4/7fsyA5gO0jmPXpA2imOzfb+nZtHUrtGmjdRohxJ9lmbJ4ZdsrRMdH\n813odzSv1VzrSCVK2iA01KkTfPIJ9OsHP/+sdRohxL2S0pLwX+FPcnoyh8cfLnfFoaikQBSj/v0h\nPNxymenKFa3TCCEA9l/eT9tP2hL0ZBDrh62nesXqWkcqNWxWIAwGA23btkWv19OsWTOmTp1qfWzx\n4sW0bNkSLy8v/u///g+A+Ph4XFxc0Ov16PV6Jk6caKtoNvX88zB6tGW0dVqa1mmEKL+UUnxw5AMG\nrRnEsr7LmN1lNjoH+U5cGDZrpK5UqRJ79uzBxcUFo9GIn58f0dHRZGRksGPHDmJjY3FyciIlJcX6\nnKZNmxIXF2erSCXmjTcgMREGD4bNm8HZWetEQpQvBqOBiVsmciTpCPvH7qfpY021jlQq2bScuri4\nAJCVlYXJZKJOnTosW7aMGTNm4ORkqU01a9a0ZQRNODjABx+AiwuMHWtZ51oIUTIup16m8/LOpGen\nc3DcQSkOD8GmBcJsNuPj44OrqysBAQF4eHhw9uxZduzYgY+PD76+vhw4cMC6fXx8PD4+PnTs2JFd\nu3bZMprNOTlZpuG4dAlmzNA6jRDlQ/SlaNova0+IRwirBq+iqnNVrSOVajYdB6HT6Th+/DipqakE\nBgYSExOD2WwmLS2N48ePc+TIEQYPHsyvv/5KvXr1SExMpHr16sTFxREcHMzp06epUaPGffsNDw+3\n/uzv74+/v78t30aRVa4MmzZZJverVw/uaYYRQhQjpRTvH3qfd/a/w5eDvqTH33poHUlzMTExxMTE\nPNQ+SmwcxLx586hQoQLff/89r7/+Ol27dgUs7Q779u2jbt26ubYPDAxk7ty5dOjQIXdgOx0H8Vcu\nX7Z0g/3XvyA0VOs0QpQtGdkZjN80np+u/URkSCRP1HhC60h2ya7GQaSkpJD2RzeezMxMoqKi8PLy\nIigoyHr56Pz582RkZFCnTh1u3LiB+Y+L9fHx8Zw6dYqmTcvGtcOGDS0D6F55BX74Qes0QpQdv9z8\nhY6fdsRJ58T+sfulOBQzm11iSkpKYvTo0SilMBgMhIWFERQURK9evRg7diyenp4ArFixAp1OR3R0\nNHPmzEGn06GUYtGiRdSqVXbmY/fygjVrYOhQ2LED9HqtEwlRuu28uJNR347itc6vMandJBxkSuVi\nJ1NtlLD162HyZNi3Dxo31jqNEKWPUop39r/Doh8XsWrIKro06qJ1pFJBlhwtBQYPtoyyDgy0zN9U\nu7bWiYQoPdLupjF241h+S/2Nw+MP41bdTetIZZoMK9TAxImWS01BQXDnjtZphCgdzqecp8OnHXi0\n0qPsfna3FIcSIJeYNKKUZRDdlSuWhYcqVNA6kRD2a/P5zYzdMJa3ur3F862f1zpOqSRLjpYy2dkw\nYIDlMtPy5bJsqRB/ZlZm5u2exyfHPmHt0LX4NvDVOlKpJQWiFEpPh27doHt3mD9f6zRC2I9UQyqj\nvh3FTcNN1g5dS92qdfN/kngguxoHIQqmShXYssXSu+m//9U6jRD24cy1M7Rb1o5GjzTih9E/SHHQ\niPRisgO1asH27ZYpOerWhSFDtE4khHbWn1nPhC0T+HfPf/OMzzNaxynXpEDYicaNLWcSvXpZ2iT+\nmIlEiHLDrMy8tus1vj75NdtHbKd1vdZaRyr3pA3CzuzcCePGwcmTkMc8hUKUSWZl5sXNL3Ly6kk2\nhG6gdhUZIFTcpJG6jHjxRTAaLWtcC1HWmZWZCZsncObaGbaN2Ea1itW0jlQmSYEoI27ftszdtGwZ\n9OypdRohbMeszLyw6QXOppxla9hWKQ42JL2Yyojq1WHpUsv61jLSWpRVZmXm+U3Pcy7lnJw52Ck5\ng7BjY8ZA1aqweLHWSYQoXmZl5rmNz3Hx5kW2hG2Rld9KgM3OIC5cuMCOHTsAy9oOt2/fLnw6UWj/\n+Q9ERsLevVonEaL4mMwmxm0cxy83f2Fr2FYpDnYs3wKxaNEiQkNDmThxIgDJycn069fP5sEEPPoo\nfPCBpVdTRobWaYR4eDnFIf5WPFvCtlDFuYrWkcRfyLdAfPjhhxw4cIDq1asD0LhxY27evGnzYMKi\nf39o3RrmzNE6iRAPx2Q2MXbjWC6nXmbz8M1SHEqBfAuEs7MzFStWtN42m81kZWXZNJTIbdEiWLkS\nfvxR6yRCFI3JbGLMhjEk3E5gc5gUh9Ii3wLRuXNn/vnPf5KRkUF0dDRhYWH06dOnJLKJP9SuDQsX\nWqYHv3tX6zRCFI7JbOKZ754hKS2JTcM3UblCZa0jiQLKtxeTyWRiyZIl7Ny5E4DAwEBeeukldDpt\nesiWp15M91IKBg0CT0+YN0/rNEIUjNFs5JnvnuFq+lU2hm7EpYKL1pHKrWIfKGcymfD29ub06dMP\nHa64lNcCAfD779CyJezYAXq91mmE+GtGs5HR347mesZ1NoRukOKgsWLv5uro6EizZs1ITEx8qGCi\neDz+OPzrX5ZLTdnZWqcR4sGMZiOjvh1FSmaKFIdSLN9LTJ07dyYuLo527dpRpYqlYcnBwYGNGzeW\nSMA/K89nEGC51NSnj2Vq8NmztU4jxP2MZiMjI0dyy3CL70K/o5JTJa0jCWw0F1NMTEye9/v7+xfq\nhYpLeS8QAJcvQ6tWsHs3eHhonUaI/y/blM2IyBGkZaXxbci3UhzsiF1N1mcwGOjcuTNGo5H09HSC\ngoJ47733AFi8eDHLli3DbDbTu3dv/vWvfwEQERHBypUrcXR0ZMGCBfTq1ev+wFIgAPjoI8s61gcO\ngKOj1mmEsBSHsMgwMrIzWD9svRQHO1OUz858FwyqWrUqDg4OAGRlZZGdnU3VqlXznW6jUqVK7Nmz\nBxcXF4xGI35+fkRHR5ORkcGOHTuIjY3FycmJlJQUAGJjY4mMjOTkyZMkJyfj5+fHuXPncHZ2LtQb\nKi+efx5Wr4b334dXX9U6jSjvsk3ZDF8/nExjJpHDIqnoVDH/Jwm7l29f1Tt37pCWlkZaWhqZmZls\n2LCBl156qUA7d3GxNExlZWVhMpmoU6cOy5YtY8aMGTg5WWpTzZo1AdiyZQuhoaE4OjpSv359PDw8\nOHz4cFHfV5mn01mmA4+IgAsXtE4jyrNsUzah60MxGA1SHMqYQg1m0Ol09O3bl+3btxdoe7PZjI+P\nD66urgQEBODh4cHZs2fZsWMHPj4++Pr6cuDAAQASExNxc3OzPtfNzY2EhITCxCt3mjSB116zzNVk\nNmudRpRHWaYsQtaFkG3KZv2w9VIcyph8LzGtX7/e+rPZbCY2NrbAO9fpdBw/fpzU1FQCAwOJiYnB\nbDaTlpbG8ePHOXLkCIMHDyY+Pr5QocPDw60/+/v7a9Zgbg9efhnWrIEPP4QCntgJUSxyioPJbGLt\n0LVSHOxMTEzMAzsZFVS+BWLTpk3WNgidToebmxtbt24t1Is88sgjBAUFcejQIRo0aMCgQYMAaNu2\nLc7Ozly5cgU3Nzd+++0363MSEhJo0KBBnvu7t0CUd46O8Nlnlm6vQUHwxBNaJxLlQZYpi2FrhwGw\nbtg6nB2lrdDe/PnL89y5cwu9j3x7Me3btw8/P79c9+3fv59OnTr95Y5TUlJwdnamWrVqZGZmEhgY\nyIwZMzh//jy3bt1i7ty5nD9/Hn9/fxISEoiLi2PChAkcPHjQ2kh94cIFKlSokDuw9GLK09tvww8/\nwM6d8EeVM5Y3AAAgAElEQVQ9F8ImskxZDF07FJ2DjtVDVktxKCVssmDQ5MmT77uvII3USUlJdOnS\nBR8fH/R6PT169CAoKIhJkybxyy+/4OnpyaBBg1ixYgU6nY7WrVszcOBAvL296d27N0uXLr2vOIgH\nmz4dbt60nE0IYSt3jXcZsmYIjg6OUhzKgQeeQRw8eJADBw7w3nvvMW3aNGvlycjI4Ouvv+ann34q\n0aA55AziwU6cgO7d4fhxqF9f6zSirLlrvMvgNYOp6FSRVYNXUcFRvsCVJsV6BpGVlUVaWhomk4m0\ntDTu3LnDnTt3qFixIpGRkQ8dVhQ/b29LQ/WECZYpOYQoLjnFoZJTJSkO5Ui+bRDx8fE8YUctn3IG\n8deysiwr0M2cCSNGaJ1GlAUGo4HBawZTuUJlvh70tRSHUsomU238/vvvzJ8/n3PnzpH9xxSiDg4O\n7Nq1q+hJH4IUiPwdPWrp0XTiBLi6ap1GlGYGo4GBqwdSzbkaXw36SopDKWaTRuqQkBBatmzJ5cuX\nCQ8P529/+xtt2rQpckhhe23awJgxMGmS1klEaZZTHKpXrM7Xg+XMoTzK9wzCy8uLkydPWv8L0L59\ne37UaIFkOYMomMxMy6JCb70FQ4ZonUaUNpnZmQxYPYDHXB5j5cCVOOnyHTIl7JxNziAqV7asH1uz\nZk22bt3KsWPHSE5OLlpCUWJcXODTTy0jrf+YD1GIAsnMzqT/qv7UdKkpxaGcy/cMYtOmTXTt2pWf\nf/6ZSZMmYTAYeP311xk4cGBJZcxFziAKZ8oUS4FYuVLrJKI0yMjOoP+q/tSpUofPB3wuxaEMKfZG\narPZzMKFC5k6depDhysuUiAKJz3d0v114UIIDtY6jbBnGdkZ9PumH3Wr1uXzAZ/jqJOFRsqSYr/E\npNPpWLNmzUOFEtqqUgU++QRefBFu3dI6jbBXGdkZ9P2mL49Xe1yKg7DK9xLT1KlTMZvNDBkyhCpV\nqqCUwsHBgVatWpVUxlzkDKJoJkwAk8lSLIS4V3pWOn2/6YtbdTeW918uxaGMssk4CH9/f+tsrveK\njo4uXLpiIgWiaG7fBk9PS8N1z55apxH2Ij0rneBvgmn0SCM+7fepFIcyzK7WpLYVKRBFt20bTJwI\nJ09C1apapxFayykOT9R4gmV9l0lxKONs0s01MTGRkSNH0vOPr53nzp3j448/LlpCoamnn4auXWHW\nLK2TCK3dybpDn6/70LhGYzlzEA+Ub4EYOXIkffv25cqVKwA0adKERYsW2TyYsI3//AciI2HvXq2T\nCK3cybpDn6/60PTRpizrtwydQ6FWHhblSL5HRkpKCiEhITg6Wr5hODk54eQkfaNLq8cegyVLLOtY\nZ2RonUaUtLS7aTz91dM8VfMpPun3iRQH8ZfyPTqqVKlCyj1DcePi4qhYUdaeLc0GDIBWrWDOHK2T\niJKUUxxa1GrB0r5LpTiIfOXbSH3w4EEmTZrEzz//bJ20b+3atbRt27akMuYijdTF49o18PKCDRug\nfXut0whbyykOHrU9+DD4QykO5ZDNejFlZ2dz4sQJlFJ4e3vj7KzdMoNSIIrPqlUwbx4cOwZyUlh2\n3b57m6e/ehqvOl58EPSBFIdyyiYFIiMjg4ULF7Jv3z4cHBzw8/PjlVdewcXF5aHCFpUUiOKjFAwc\naDmTmDdP6zTCFm7fvU3vL3vjU9eH//b5rxSHcswmBSI4OJh69eoxfPhwlFKsXr2axMRENm/e/FBh\ni0oKRPFKSgIfH9ixwzI9uCg7Ug2p9P6qN63qtuK/ff6b54BXUX7YpEB4enpy6tSpfO8rKVIgit+K\nFZbJ/A4fhgqyJkyZkGpIJfDLQNrUa8PipxdLcRC2GSjXqlUrDh8+bL195MgRzeZhErbxzDOWpUnf\nfVfrJKI43DLcoteXvWhbr60UB/FQ8j2DaN68OefPn6dBgwY4ODhw+fJlnnrqKZycnHBwcODEiRMl\nlRWQMwhbuXzZ0vV1927w8NA6jSiqW4Zb9FrZC183X97v/b4UB2Flk0tM8fHxf7mDJ554Is/7DQYD\nnTt3xmg0kp6eTlBQEO+99x7h4eEsW7aM2rVrAxAREUHv3r2Jj4+nRYsWNG/eHABfX18++OCD+wNL\ngbCZjz6C5cvhwAFwlJkXSp2bmTfp9WUvOjXoxHuB70lxELnYrJvrtWvXSExMxGw2W+8ryGWmzMxM\nXFxcMBqN+Pn5ERERwZ49e6hWrRrTpk3LtW18fDx9+/a1rnv9wMBSIGzGbIbu3S0LC736qtZpRGHc\nzLxJz5U96dywM/8J/I8UB3Gfonx25jtnxowZM/jyyy9p2rQpOt3/b7IoyHTfOV1hs7KyMJlMuLq6\nAsgHvJ3S6WDZMsvAuX794MkntU4kCuJG5g16ruxJ10ZdWdBrgRQHUWzybaRet24dly5dYvfu3URH\nR1v/FYTZbMbHxwdXV1cCAgJwd3cHYMmSJbRo0YKRI0dy48YN6/bx8fH4+PjQsWNHdu3aVcS3JB5G\nkybw2muWuZruOWEUdupG5g16fNGDgCcCpDiIYpfvJabBgwezdOlSatWqVeQXSU1NJTAwkLfffhtP\nT09q1qwJQHh4OBcvXuTLL78kKysLg8FA9erViYuLIzg4mNOnT1OjRo3cgR0cmHPPJEL+/v74+/sX\nOZu4n8kEnTvDiBHw0ktapxEPkpKRQo+VPejRuAfv9nxXioPIJSYmhpiYGOvtuXPnFn8bxJEjR+jf\nvz+enp7WSfocHBzYuHFjoV5o3rx5VKhQgZkzZ1rvS0pKIiAggHPnzt23fWBgIHPnzqVDhw65A0sb\nRIk4exb8/ODoUXhAPwShoZzi0OtvvXi7x9tSHES+bNIGMXr0aGbOnImnp6e1DaIgB2NKSgrOzs5U\nq1aNzMxMoqKimDFjBteuXbP2YFq/fj0ef/SpvHHjBjVq1ECn0xEfH8+pU6do2rRpod6MKD7Nm8P0\n6TB+POzcCfL5Yz+uZ1ynxxc96N20NxHdI6Q4CJvJt0A88sgjTJ48udA7TkpKYvTo0SilMBgMhIWF\nERQUxKhRozhx4gRZWVk0atSITz/9FLA0es+ZMwedTodSikWLFj3UZS3x8KZPh3Xr4LPPLG0SQnvX\nM67T/Yvu9Gnah/nd50txEDaV7yWmadOm4eLiQnBwcK51ILQaTS2XmErWiROWrq/Hj0P9+lqnKd+u\npV+j+xfd6dusL291e0uKgygUm4yD8Pf3z/NALGhPpuImBaLkhYdDbCxs3CiXmrSSUxz6PdWPeQHz\npDiIQrPZQDl7IgWi5GVlQevWMHOmpWeTKFlX06/S/YvuDGw+kLn+c6U4iCKxyWR9iYmJjBw5kp49\newJw7tw5Pv7446IlFKWSs7NlCo5p0+DKFa3TlC9X06/S7fNuDGo+SIqDKHH5FoiRI0fSt29frvzx\nydCkSRMWLVpk82DCvrRpA2PGwKRJWicpP67cuULA5wEMcR/C3AApDqLkPbBAGI1GwNJdNSQkBMc/\nZm9zcnLCySnfzk+iDJozB06etPRsEraVfCeZgM8DGOY+jHD/cK3jiHLqgQWiXbt2AFSpUoXr169b\n74+Li8vVm0mUHy4u8Omn8PLLkJKidZqyK6c4hHqGMsd/Tv5PEMJGHngqkNOY8Z///IfevXvzyy+/\n0KVLFy5fvszatWtLLKCwL506QUgITJkCK1dqnabs+T3td7p90Y0wzzBe7/q61nFEOffAXkxubm5M\nmzYNpRRms9k6gM1sNuPk5HTfdN0lRXoxaS89Hby9YfFi6NNH6zRlx9X0q3RZ3oVR3qOY3WW21nFE\nGVOsU22YTCbS0tIeOpQoe6pUgUWLLCOte/UCaZJ6eBnZGfT9pi9D3IdIcRB244FnEHq9nri4uJLO\nky85g7APSoG/v2U967FjtU5TupnMJgavGUz1itX5fMDn0ltJ2IRNxkEIkRcHB3jnHUvPpsxMrdOU\nXkoppmyfQlpWGsv6LZPiIOzKAwvE999/X5I5RCnUoQO0bWtpixBF896h94j5NYbIYZE4OzprHUeI\nXGSqDfFQfvoJunSB8+fh0Ue1TlO6rD29lmk7p3Fg7AEaPNJA6ziijJNLTKLEtWgBAwbA229rnaR0\n2X95Py9tfYlNwzdJcRB2S84gxENLTAQvL8vU4G5uWqexf+dTztNleRc+H/A5gU0DtY4jygk5gxCa\nqF8fnn/eMi24+GtX06/y9FdP889u/5TiIOyenEGIYnHzJjRrBnv2WC47iftlZGcQ8HkAvf7Wi3nd\n5mkdR5Qzsh6E0NS//gUHDsC332qdxP7IWAehNbnEJDQ1aRIcPQoHD2qdxL4opZi6Yyq3796WsQ6i\nVJECIYqNiwvMnQszZlhGWguL9w+9z65Lu4gMkbEOonSRAiGK1ejRlqnAt27VOol9WHdmHQsOLmDr\niK3UqFRD6zhCFIoUCFGsnJxg/nzL+tUmk9ZptHXgtwNM3DKRTcM30fCRhlrHEaLQpECIYtevH1Sv\nDl99pXUS7ZxPOc+g1YP4YuAX6B/Xax1HiCKxWYEwGAy0bdsWvV5Ps2bNmDp1KgDh4eG4ubmh1+vR\n6/Vs27bN+pyIiAjc3d3x8vJi586dtoombCxnIr/XXweDQes0Je9q+lX6fNWHt7q9Re+mvbWOI0SR\n2bSba2ZmJi4uLhiNRvz8/IiIiGDPnj1Uq1btvgWHYmNjmTBhAocOHSI5ORk/Pz/OnTuHs3PuRj3p\n5lp69OsHAQHwx3eDciEjO4Nun3ej5996ylgHYVfsrpuri4sLAFlZWZhMJlxdXQHyDLllyxZCQ0Nx\ndHSkfv36eHh4cPjwYVvGEzY2fz5EREBqqtZJSobJbGJE5Aia1WzGmwFvah1HiIdm0wJhNpvx8fHB\n1dWVgIAA3N3dAViyZAktWrRg5MiR3LhxA4DExETc7pnIx83NjYSEBFvGEzbm6QlBQZYBdGVdzliH\nVEOqjHUQZYZNF4vU6XQcP36c1NRUAgMDiYmJ4aWXXuKNN94ALO0RkydP5ssvvyzUfsPvmfTH398f\nf3//YkwtitPcuaDXw0svweOPa53GdnLGOuwbu0/GOgi7EBMTQ0xMzEPto8Sm2pg3bx4VKlRg5syZ\n1vuSkpIICAjg3LlzzJs3DxcXF6ZPnw5AcHAws2bNolOnTrkDSxtEqTN9OqSnw4cfap3ENtadWceU\n7VM4MO6AdGcVdsuu2iBSUlJIS0sDLI3VUVFReHl5ce3aNes269evx8PDA4A+ffqwevVqjEYjCQkJ\nnDp1inbt2tkqnihBs2bB2rWWRYXKmgO/HeDFLS/KWAdRJtnsElNSUhKjR49GKYXBYCAsLIygoCBG\njRrFiRMnyMrKolGjRnz66acAtG7dmoEDB+Lt7Y1Op2Pp0qVUqFDBVvFECapZE159FWbPthSKssI6\n1mGAjHUQZZPM5ipKREYGPPmkZabXsnBieDX9Kh0/7ciMTjMY33q81nGEyJddXWIS4l6VK8OcOZYp\nOEp7fc/IzqDfN/0I9QyV4iDKNDmDECXGaAQPD1i0CAJL6WJqJrOJoWuHUsW5Cl8M+EK6s4pSQ84g\nhF3Lmchvxgwwm7VOUzSv7nyVW4ZbfNrvUykOosyTAiFK1KBBULEirFqldZLCe//Q+0T9EiXrOohy\nQy4xiRIXEwNjx8LZs+BcSj5n159ZzyvbX5GxDqLUkktMolTw94fmzWHpUq2TFIyMdRDllZxBCE38\n73+WhuoLF6BaNa3TPNiFlAt0Xt6Z5f2X8/STT2sdR4gikzMIUWq0bAk9e8J772md5MFuGW7R5+s+\nzAuYJ8VBlEtyBiE0c+qU5Szi118tPZzsiVKKEZEjqFGpBh8EfaB1HCEempxBiFLF0xOeeAK2bNE6\nyf2+PPElx5OP8+9e/9Y6ihCakQIhNPX88/Dxx1qnyO2Xm78wbec0vhn8DZUrVNY6jhCakUtMQlMZ\nGdCgAcTFQUM76CCUbcqmy4ouDHMfxlTfcrRWqijz5BKTKHUqV4YRI+CPSX0199aet6hesTqvdHhF\n6yhCaE7OIITmTp6Ep5+G+HhtG6v3Xd7HkDVDiHshjserleHl70S5JGcQolTy8rJcXtq6VbsMtwy3\nGBk5ko/7fizFQYg/SIEQdkHLxmqlFBO3TKTPk33o91Q/bUIIYYekQAi7MGwYHDwIly+X/GtLl1Yh\n8iYFQtiFypVh+HD47LOSfd2cLq1fD/5aurQK8SfSSC3sxsmT0KcPXLpUMo3VRrORLsu7MMR9CNN8\np9n+BYXQkDRSi1LNywvc3GD79pJ5vXm751GtYjWmdJhSMi8oRCkjBULYlZJqrN53eR9LY5eyov8K\ndA7yv4EQeZFLTMKupKdbRlb/73+W/9rCLcMtfD7yYdHTi6TXkig35BKTKPWqVLF9Y/VLW1+SLq1C\nFIDNCoTBYKBt27bo9XqaNWvG1Km557VZsGABOp2OGzduABAfH4+Liwt6vR69Xs/EiRNtFU3Yueef\nh2XLwGQq/n1/eeJL4n6Pky6tQhSAzfqKVKpUiT179uDi4oLRaMTPz4/o6GgCAgL47bffiIqKolGj\nRrme07RpU+Li4mwVSZQSLVtCvXqWxuqgoOLb7y83f2HqjqlEjYqSLq1CFIBNLzG5uLgAkJWVhclk\nwtXVFYBp06bx7rvv2vKlRSn3wgvF21htNBsZGTmSWX6z8KnrU3w7FqIMs2mBMJvN+Pj44OrqSkBA\nAO7u7mzYsAE3Nze8vb3v2z4+Ph4fHx86duzIrl27bBlN2LmQENi7FxITi2d/0qVViMKz6XAknU7H\n8ePHSU1NJTAwkK1btxIREcHOnTut2+S0qterV4/ExESqV69OXFwcwcHBnD59mho1aty33/DwcOvP\n/v7++Pv72/JtCA1UqQKhoZbG6tdff7h97b+8n6WxS4l7IU66tIpyIyYmhpiYmIfaR4l1c503bx4O\nDg4sXryYypUt138TEhKoX78+hw8fpk6dOrm2DwwMZO7cuXTo0CF3YOnmWm4cPw79+llGVjs6Fm0f\nqYZUfJb6sLD3Qum1JMo1u+rmmpKSQlpaGgCZmZlERUWh1+u5cuUKly5d4tKlS7i5uXHs2DHq1KnD\njRs3MJvNgOVS06lTp2jatKmt4olSwMcH6taFHTuKvo+JWyfSu0lvKQ5CFIHNLjElJSUxevRolFIY\nDAbCwsII+lOXFAcHB+vP0dHRzJkzB51Oh1KKRYsWUatWLVvFE6VEzsjqPn0K/9ycLq1Hnz9a/MGE\nKAdkJLWwa3fuWBYTOnkS6tcv+PN+ufkL7Ze1J2pUlPRaEgI7u8QkRHGoWtXSo2n58oI/R7q0ClE8\npEAIu1fYkdVv7XmLqs5VpUurEA9JCoSwe3o91K4NUVH5b7v/8n4+OvoRKwbILK1CPCz5P0iUCs8/\nD0uX/vU2qYZURn47ko/7fky9avVKJpgQZZg0UotSIS0NGjWCU6cs8zTlZUTkCKo7V+fD4A9LNpwQ\npYA0Uosyq1o1GDbswY3VX534imO/H2NB4IKSDSZEGSZnEKLUOHYMBg2CX34B3T1fbS7dvES7Ze3Y\nOXIn+sf12gUUwo7JGYQo01q1gpo14d55HJVSjN04lpmdZkpxEKKYSYEQpcrAgbBt2/+/vevSLpLS\nkqRLqxA2IAVClCo9e0LOZMBKKcJ3h/N6l9dx1BVxNj8hxAPZdLpvIYpbmzaWNSJ+/x1+MkRzNf0q\noZ6hWscSokySAiFKFUdHCAiAqCjFMlM4r3V+DSedHMZC2IJcYhKlTq9e8OW+GJLvJDPca7jWcYQo\ns6RAiFKnZ0+IcQhntpw9CGFTUiBEqePWKIv2dTszoEmY1lGEKNNkoJwQQpQDMlBOCCFEsZECIYQQ\nIk9SIIQQQuRJCoQQQog8SYEQQgiRJykQQggh8mSzAmEwGGjbti16vZ5mzZoxderUXI8vWLAAnU7H\njRs3rPdFRETg7u6Ol5cXO3NmZBNCCKEJmxWISpUqsWfPHuLi4jhz5gwHDx4kOjoagN9++42oqCga\nNWpk3T42NpbIyEhOnjzJ9u3beeGFF8jKyrJVvGIVExOjdYT7SKaCs8dckqlgJJNt2fQSk4uLCwBZ\nWVmYTCZcXV0BmDZtGu+++26ubbds2UJoaCiOjo7Ur18fDw8PDh8+bMt4xcYeDwjJVHD2mEsyFYxk\nsi2bFgiz2YyPjw+urq4EBATg7u7Ohg0bcHNzw9vbO9e2iYmJuLm5WW+7ubmRkJBgy3hCCCH+gk1n\nOtPpdBw/fpzU1FQCAwPZunUrERERudoXZNoMIYSwTyU2F9O8efNwcHBg8eLFVK5cGYCEhATq16/P\njz/+yMcff4yLiwvTp08HIDg4mFmzZtGpU6dc+2natCkXL14sichCCFFmNGnShJ9//rlQz7FZgUhJ\nScHZ2Zlq1aqRmZlJYGAgM2bMICgoyLpN48aNiY2N5bHHHiM2NpYJEyZw8OBBkpOT8fPz48KFC1So\nUMEW8YQQQuTDZpeYkpKSGD16NEopDAYDYWFhuYoDWGYXzNG6dWsGDhyIt7c3Op2OpUuXSnEQQggN\nlbrpvoUQQpQMux1JvX37dry8vHB3d+edd97Jc5vJkyfj4eFBq1atiIuL0zzTypUr8fb2xsvLizZt\n2hAbG6t5phxHjhzBycmJyMhIu8gUExNDu3bt8PHxoWvXrppnSk5Opnv37nh4ePDUU0+xdOlSm2ca\nO3Ysrq6ueHl5PXCbkj7G88ukxTFekN8TlOwxXpBMJX2MFyRXoY9zZYcMBoN64oknVEJCgsrOzlZt\n2rRRx44dy7XNunXrVP/+/ZVSSh07dky1bNlS80w//vijun37tlJKqW3btikfHx/NMymllNFoVAEB\nASooKEitW7dO80y///678vDwUFeuXFFKKZWSkqJ5ptmzZ6uZM2cqpZS6du2aqlGjhjIYDDbNtWfP\nHnXs2DHl6emZ5+MlfYwXJFNJH+MFyaRUyR7jBclU0sd4QXMV9ji3yzOIH3/8EQ8PD+rXr4+TkxMh\nISFs2bIl1zZbt25l1KhRAOj1eoxGo03HTRQkU7t27ahWrRoAnTp1IjEx0WZ5CpoJYPHixQwZMoTa\ntWvbNE9BM61atYqQkBDq1KkDwGOPPaZ5pgYNGnD79m0Abt++Te3atalYsaJNc3Xu3JlHH330gY+X\n9DFekEwlfYwXJBOU7DFekEwlfYwXNFdhj3O7LBAJCQk0aNDAejuvQXMF2aakM91r6dKl9O/f32Z5\nCpopMTGRDRs28OKLLwK5OwZolencuXMkJSXh6+uLt7c3y5Yt0zzT+PHjOX36NPXq1aNly5YsXLjQ\nppkKoqSP8cIqiWO8IEr6GC+Ikj7GC6qwx7lNB8oVVUH/wOpP7eu2PDAKs++YmBg+++wz9u/fb7M8\nULBMU6ZM4e2337auR/vn35kWmUwmE6dOnWLXrl1kZGTQoUMHfH198fDw0CzT/Pnz8fHxISYmhosX\nL9KzZ0/+97//Wb8ta6Ukj/HCKKljvCBK+hgviJI+xguqsMe5XZ5BuLm58dtvv1lv//bbb7m+SeW1\nTUJCQq6pOrTIBHDixAmee+45Nm7cmO9pcUlkio2NJTQ0lMaNG7N+/XomTpzIxo0bNc3UsGFDevXq\nhYuLCzVr1qRr166cOHFC00z79u1j6NChgGVAUePGjfnpp59slqkgSvoYL6iSPMYLoqSP8YIo6WO8\noAp9nBdzG0mxyMzMVI0aNVIJCQkqKytLtWnTRsXGxubaZt26dWrAgAFKKaViY2OVt7e35pl+/fVX\n1aRJE3Xw4EGbZilMpns9++yzav369ZpnOnbsmOrevbsyGo0qPT1dubu7q7i4OE0zTZw4UYWHhyul\nlEpOTlZ169a1NjDa0qVLl/6ykbokj/GCZCrpY7wgme5VEsd4jr/KVNLHeEFzFfY4t8tLTJUqVeLD\nDz8kMDAQs9nMqFGjaNWqlbVL1gsvvMDgwYOJjo7Gw8ODihUrsnz5cs0zvfnmm9y8edN6LbRChQo2\nnZG2IJlKWkEy6fV6evfujbe3N9nZ2Tz33HP4+PhomumNN95g5MiRuLu7YzKZeOutt6wNjLYyfPhw\ndu/ezfXr12nQoAFz584lOzvbmqmkj/GCZCrpY7wgmbSQX6aSPsYLmquwx7kMlBNCCJEnu2yDEEII\noT0pEEIIIfIkBUIIIUSepEAIIYTIkxQIIYQQeZICIYQQIk9SIESptGLFCl5++eVCPWfYsGF4enoW\nyzxL8+fPz3X7z0vjFrezZ89ap/2+dOlSrseqVq1q09cW5ZcUCFEqFXZOouTkZOLi4jh16hSvvPJK\nrsfMZnOhXz8iIiLXbVvPSfTdd98RFhbGsWPHaNy4ca7H7GV+JlH2SIEQhXLkyBFatmzJ3bt3SU9P\nx9PTkzNnzuTaZs6cObm+pc+ePZtFixbl2iY+Pp7mzZszbtw4mjdvzogRI4iKiqJLly40btyYAwcO\nAHD9+nUCAwPx8vKidevWHDt27L5MycnJBAcH07JlS3x8fNi9e/d92/Tq1YvExET0ej379u3D39+f\nqVOn4uvry8KFC9m0aRPt27fHy8uLLl268PvvvwOQlpZGaGgoHh4etGzZknXr1jFr1iwyMzPR6/XW\n6bhzvsWbzWZefvll3N3dcXd354svvgAsk9v5+/sTGhpKs2bNGDp0aJ6Tyh0+fBi9Xo+XlxdPP/00\nN27cYOvWrSxcuJAPP/yQbt265fl3efXVV/Hx8aFTp05cvXoVsMwoGhAQQMuWLWnfvj2nT58G4Nln\nn+WVV16hS5cuNGzYkK+//hqAN954A71ej16vp379+owdOxaATz75hJYtW+Lh4cHYsWMxGo3W9/za\na69Zn5PzOyvI30OUEsU/E4go61577TU1ffp09dJLL6m33377vsfj4+NVq1atlFJKmUwm1aRJE3Xj\nxo1c21y6dEk5OTmpn376SZnNZtW6dWv13HPPKaWU2rBhgwoKClJKKTV+/Hg1f/58pZRSu3fvVi1a\ntOawb+EAAAU6SURBVFBKKbV8+XI1adIkpZRSAwcOVPv27VNK/f+5gvLKdO/8NP7+/mry5MnW26mp\nqdafP/nkE+u+J0+erKZPn37fdlWrVs21/5zbX331lQoMDFRKWRaJqVevnkpISFDR0dHqkUceUcnJ\nycpsNitfX18VHR19X85mzZqp/fv3K6WUmjt3rpowYYJSSqnw8HC1YMGC+7ZXSikHBwe1evVqpZRS\n//znP9Xzzz+vlFKqY8eO6sKFC0oppQ4dOqQ6deqklFLqmWeeUaGhoUoppc6cOaMaNWqUa3+3bt1S\nXl5e6tixY+r48eMqKChIGY1GpZRSL774ovrkk0+sr7tt2zallFJ///vf1Zw5c5RSBft7iNLBLudi\nEvbtjTfeoE2bNri4uLB48eL7Hm/UqBE1a9bk+PHjJCcn06pVqzxn/WzcuDHNmzcHwMPDw/rt2NPT\n0zqL6f79+/nHP/4BQJcuXbhz5w7Xr1/PtZ/vv/8+13X5u3fvkpaWlmsKY5XHt/UhQ4ZYf/7555+Z\nNm0aKSkpZGdn07BhQwB++OEHNmzYYN2uevXqf/m72bdvH6GhoYBlkZju3btz8OBBateuTbt27XB1\ndQXAx8cn10ytAFevXsVgMNCxY0cARo4cSb9+/az583oPADqdzvpehg8fTnBwMCkpKcTGxlpn7gTI\nzMwELJekcvbbokWLXL9PpRQjRozg1VdfRa/X8+9//5u4uDjatGlj3UfOojzOzs707t0bgNatW7Nj\nxw6gYH8PUTpIgRCFdv36ddLT0zGZTGRmZlK5cuX7tnnuuedYvnw5V65csV6q+LN7V7LS6XQ4Oztb\nf763XeDPH4x/vubu4OBgXY+4MKpUqWL9edKkSbz22mv06dOH3bt3Ex4e/sDX/ys5axLklffe9+vo\n6Jhv28e9+ynMGik5GerUqfPAdaxzftd/3nd4eDgNGzbkmWeesd43btw43nzzzfv2UaFCBevP9/7N\nivr3EPZH2iBEob3wwgu89dZbhIWFMWPGDOv9OWcDAAMHDmT79u0cPXqUwMDAIr9W586dWbVqFQB7\n9+6lWrVq1KxZM9c2PXr04KOPPrLePnXqVIH2fe8HsMFgoG7dugDWdgOAnj175lrYPWe5RkdHR0wm\nU555165di1KKGzdusGvXLnx9fQtUZOrUqYOLiwsHDx4E4Ouvv7Yudv9XzzebzURGRgKwevVq/Pz8\nqFWrFrVr12bz5s3W5/+5rejPNm3axA8//JCr/ahnz56sWbOGmzdvWt9/fqvaFfXvIeyPFAhRKF98\n8QUVK1YkNDSUmTNncuTIEWJiYu677FOhQgW6devGsGHD/l87d6yiMBCEcfzfW9rZamOIa4KgjYJ9\nqlQ+hBa2FoKgYiVp06dSW61EsNI3sBUs8hxXiIHT9bgT4e7g+1ULuySzSTGzGcjT6td2ErgfT6dT\n9vs9xhj6/T5JkmTztzVxHLPdbqlUKriu+9AQ/879hsMhYRjSaDTI5/PZ3Hg85nK54DgOnuex2+2A\na6O3XC5nTerb+k6nQ7FYxHEcms0ms9mMQqHwKd5n8QAkSUK328UYw+FwYDKZPOz3Xi6X43g84vs+\n6/U6q/YXiwXz+RxjDK7rslqtvnzWURSRpin1eh3f9xmNRlSrVQaDAa1WC8/zaLfbpGlqvcZP34f8\nffrdt7zFZrPhfD7T6/WAa8Vaq9VYLpeUSqVfjk5EXqGPhPIWQRBk49PpRBiGBEGg5CDyj+kEISIi\nVupBiIiIlRKEiIhYKUGIiIiVEoSIiFgpQYiIiJUShIiIWH0Ao4YPpkC7wdcAAAAASUVORK5CYII=\n", + "text": [ + "<matplotlib.figure.Figure at 0x27c4950>" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 7.15 pageno : 188" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math \n", + "\n", + "# Variables \n", + "T = 379.2 #K solution\n", + "P = 101.3 #kPa \n", + "Ps = 70. #kPa solution\n", + "Molality = 5\n", + "\n", + "# Calculation \n", + "Pws = math.exp(16.26205 - 3799.887/(T - 46.854)) \n", + "k = P / Pws \n", + "Pws1 = Ps / k \n", + "T1 = 3799.887 / (16.26205 - math.log( Pws1)) + 46.854 \n", + "\n", + "# Result \n", + "print \"Boiling point of the solution = %.1f K\"%T1\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Boiling point of the solution = 368.8 K\n" + ] + } + ], + "prompt_number": 33 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file |