summaryrefslogtreecommitdiff
path: root/Solid_state_physics_by_P._K._Palanisamy/Chapter_4.ipynb
diff options
context:
space:
mode:
authorkinitrupti2017-05-12 18:53:46 +0530
committerkinitrupti2017-05-12 18:53:46 +0530
commitf270f72badd9c61d48f290c3396004802841b9df (patch)
treebc8ba99d85644c62716ce397fe60177095b303db /Solid_state_physics_by_P._K._Palanisamy/Chapter_4.ipynb
parent64d949698432e05f2a372d9edc859c5b9df1f438 (diff)
downloadPython-Textbook-Companions-f270f72badd9c61d48f290c3396004802841b9df.tar.gz
Python-Textbook-Companions-f270f72badd9c61d48f290c3396004802841b9df.tar.bz2
Python-Textbook-Companions-f270f72badd9c61d48f290c3396004802841b9df.zip
Removed duplicates
Diffstat (limited to 'Solid_state_physics_by_P._K._Palanisamy/Chapter_4.ipynb')
-rwxr-xr-xSolid_state_physics_by_P._K._Palanisamy/Chapter_4.ipynb189
1 files changed, 189 insertions, 0 deletions
diff --git a/Solid_state_physics_by_P._K._Palanisamy/Chapter_4.ipynb b/Solid_state_physics_by_P._K._Palanisamy/Chapter_4.ipynb
new file mode 100755
index 00000000..019aaef9
--- /dev/null
+++ b/Solid_state_physics_by_P._K._Palanisamy/Chapter_4.ipynb
@@ -0,0 +1,189 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:c896524cb6d8dfdd75df5649979d411984ee380fa5c3cbff49f27851e63b1fb4"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 4:Defects in Solids"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.1, Page number 4.6"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "k = 1.38*10**-23 #Boltzmann constant(eV/K)\n",
+ "e = 1.6*10**-19 #Electronic charge(C)\n",
+ "T1 = 500 #First temperature for metal(K)\n",
+ "T2 = 1000 #Second temperature for metal(K)\n",
+ "Ev = 1 #Average energy required to create a vacancy in metal(eV)\n",
+ "\n",
+ "#Calculations\n",
+ "x = k/e\n",
+ "#n_500 = N*exp(-Ev/T1*k) ---(1)\n",
+ "#n_1000 = N*exp(-Ev/T2*k) ---(2)\n",
+ "#Dividing (1) by (2), we get the following expression\n",
+ "n = math.exp(Ev/(T2*x))\n",
+ "\n",
+ "#Result\n",
+ "print \"Ratio of vacancies=\",round((n/1E+5),3),\"*10^5\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Ratio of vacancies= 1.085 *10^5\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.2, Page number 4.7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "n1_by_N = 1.*10**-10 #frequency of vacancy sites at 500 C\n",
+ "T1 = 500.+273. #K\n",
+ "T2 = 1000.+273. #K\n",
+ "\n",
+ "#Calculations\n",
+ "x = math.exp((T1/T2)*math.log(n1_by_N))\n",
+ "\n",
+ "#Result\n",
+ "print \"Frequency of vacancy sites at 1000 C =\",round((x/1E-7),4),\"*10^-7\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Frequency of vacancy sites at 1000 C = 8.467 *10^-7\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.3, Page number 4.9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Variable declaration\n",
+ "r = 2.82*10**-10 #interionic distance(m)\n",
+ "n = 5*10**11 #density of Schottky defect(per m^3)\n",
+ "T = 25+273 #temperature(K)\n",
+ "k = 8.625*10**-5 #Boltzmann constant(/K)\n",
+ "\n",
+ "#Calculations\n",
+ "v = (2*r)**3 #volume of one unit cell(m^3)\n",
+ "N = 4/v #density of ion pairs\n",
+ "Es = 2*k*T*2.303*math.log10(N/n)\n",
+ "\n",
+ "#Result\n",
+ "print \"The average energy required for creation of one Schottky defect is\",round(Es,3),\"eV\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The average energy required for creation of one Schottky defect is 1.971 eV\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.4, Page number 4.11"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Variable declaration\n",
+ "T1 = 20+273 #K\n",
+ "T2 = 300+273 #K\n",
+ "Ef = 1.4 #average energy for creating a Freknel defect(eV)\n",
+ "k = 8.625*10**-5 #Boltzmann constant(J/K)\n",
+ "N = 1 #For simplicity assume total number of metal ions to be unity\n",
+ "Ni = 1 #For simplicity assume total number of metal ions to be unity\n",
+ "\n",
+ "#Calculations\n",
+ "n1 = (N*Ni)**0.5*math.exp(-Ef/(2*k*T1)) \n",
+ "n2 = (N*Ni)**0.5*math.exp(-Ef/(2*k*T2)) \n",
+ "x = n1/n2\n",
+ "\n",
+ "#Result\n",
+ "print \"The ratio of the number of Frenkel defects is\",round((x/1E-6),2),\"*10^-6 or\",round(((1/x)/1E+5),2),\"*10^5\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The ratio of the number of Frenkel defects is 1.32 *10^-6 or 7.56 *10^5\n"
+ ]
+ }
+ ],
+ "prompt_number": 27
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file