diff options
author | kinitrupti | 2017-05-12 18:53:46 +0530 |
---|---|---|
committer | kinitrupti | 2017-05-12 18:53:46 +0530 |
commit | f270f72badd9c61d48f290c3396004802841b9df (patch) | |
tree | bc8ba99d85644c62716ce397fe60177095b303db /Solid_state_physics_by_P._K._Palanisamy/Chapter_4.ipynb | |
parent | 64d949698432e05f2a372d9edc859c5b9df1f438 (diff) | |
download | Python-Textbook-Companions-f270f72badd9c61d48f290c3396004802841b9df.tar.gz Python-Textbook-Companions-f270f72badd9c61d48f290c3396004802841b9df.tar.bz2 Python-Textbook-Companions-f270f72badd9c61d48f290c3396004802841b9df.zip |
Removed duplicates
Diffstat (limited to 'Solid_state_physics_by_P._K._Palanisamy/Chapter_4.ipynb')
-rwxr-xr-x | Solid_state_physics_by_P._K._Palanisamy/Chapter_4.ipynb | 189 |
1 files changed, 189 insertions, 0 deletions
diff --git a/Solid_state_physics_by_P._K._Palanisamy/Chapter_4.ipynb b/Solid_state_physics_by_P._K._Palanisamy/Chapter_4.ipynb new file mode 100755 index 00000000..019aaef9 --- /dev/null +++ b/Solid_state_physics_by_P._K._Palanisamy/Chapter_4.ipynb @@ -0,0 +1,189 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:c896524cb6d8dfdd75df5649979d411984ee380fa5c3cbff49f27851e63b1fb4" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 4:Defects in Solids" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.1, Page number 4.6" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "import math\n", + "\n", + "#Variable declaration\n", + "k = 1.38*10**-23 #Boltzmann constant(eV/K)\n", + "e = 1.6*10**-19 #Electronic charge(C)\n", + "T1 = 500 #First temperature for metal(K)\n", + "T2 = 1000 #Second temperature for metal(K)\n", + "Ev = 1 #Average energy required to create a vacancy in metal(eV)\n", + "\n", + "#Calculations\n", + "x = k/e\n", + "#n_500 = N*exp(-Ev/T1*k) ---(1)\n", + "#n_1000 = N*exp(-Ev/T2*k) ---(2)\n", + "#Dividing (1) by (2), we get the following expression\n", + "n = math.exp(Ev/(T2*x))\n", + "\n", + "#Result\n", + "print \"Ratio of vacancies=\",round((n/1E+5),3),\"*10^5\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Ratio of vacancies= 1.085 *10^5\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.2, Page number 4.7" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "import math\n", + "\n", + "#Variable declaration\n", + "n1_by_N = 1.*10**-10 #frequency of vacancy sites at 500 C\n", + "T1 = 500.+273. #K\n", + "T2 = 1000.+273. #K\n", + "\n", + "#Calculations\n", + "x = math.exp((T1/T2)*math.log(n1_by_N))\n", + "\n", + "#Result\n", + "print \"Frequency of vacancy sites at 1000 C =\",round((x/1E-7),4),\"*10^-7\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Frequency of vacancy sites at 1000 C = 8.467 *10^-7\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.3, Page number 4.9" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "#Variable declaration\n", + "r = 2.82*10**-10 #interionic distance(m)\n", + "n = 5*10**11 #density of Schottky defect(per m^3)\n", + "T = 25+273 #temperature(K)\n", + "k = 8.625*10**-5 #Boltzmann constant(/K)\n", + "\n", + "#Calculations\n", + "v = (2*r)**3 #volume of one unit cell(m^3)\n", + "N = 4/v #density of ion pairs\n", + "Es = 2*k*T*2.303*math.log10(N/n)\n", + "\n", + "#Result\n", + "print \"The average energy required for creation of one Schottky defect is\",round(Es,3),\"eV\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The average energy required for creation of one Schottky defect is 1.971 eV\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.4, Page number 4.11" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "#Variable declaration\n", + "T1 = 20+273 #K\n", + "T2 = 300+273 #K\n", + "Ef = 1.4 #average energy for creating a Freknel defect(eV)\n", + "k = 8.625*10**-5 #Boltzmann constant(J/K)\n", + "N = 1 #For simplicity assume total number of metal ions to be unity\n", + "Ni = 1 #For simplicity assume total number of metal ions to be unity\n", + "\n", + "#Calculations\n", + "n1 = (N*Ni)**0.5*math.exp(-Ef/(2*k*T1)) \n", + "n2 = (N*Ni)**0.5*math.exp(-Ef/(2*k*T2)) \n", + "x = n1/n2\n", + "\n", + "#Result\n", + "print \"The ratio of the number of Frenkel defects is\",round((x/1E-6),2),\"*10^-6 or\",round(((1/x)/1E+5),2),\"*10^5\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The ratio of the number of Frenkel defects is 1.32 *10^-6 or 7.56 *10^5\n" + ] + } + ], + "prompt_number": 27 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file |