diff options
author | kinitrupti | 2017-05-12 18:40:35 +0530 |
---|---|---|
committer | kinitrupti | 2017-05-12 18:40:35 +0530 |
commit | 64d949698432e05f2a372d9edc859c5b9df1f438 (patch) | |
tree | 012fd5b4ac9102cdcf5bc56305e49d6714fa5951 /Solid_State_Physics_by_Dr._M._Arumugam | |
parent | 9c6ab8cbf3e1a84c780386abf4852d84cdd32d56 (diff) | |
download | Python-Textbook-Companions-64d949698432e05f2a372d9edc859c5b9df1f438.tar.gz Python-Textbook-Companions-64d949698432e05f2a372d9edc859c5b9df1f438.tar.bz2 Python-Textbook-Companions-64d949698432e05f2a372d9edc859c5b9df1f438.zip |
Revised list of TBCs
Diffstat (limited to 'Solid_State_Physics_by_Dr._M._Arumugam')
25 files changed, 4 insertions, 6574 deletions
diff --git a/Solid_State_Physics_by_Dr._M._Arumugam/Chapter1.ipynb b/Solid_State_Physics_by_Dr._M._Arumugam/Chapter1.ipynb index 51a24716..0faa0cad 100644 --- a/Solid_State_Physics_by_Dr._M._Arumugam/Chapter1.ipynb +++ b/Solid_State_Physics_by_Dr._M._Arumugam/Chapter1.ipynb @@ -16,7 +16,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 5, "metadata": { "collapsed": false }, @@ -33,7 +33,7 @@ "#importing modules\n", "import math\n", "from __future__ import division\n", - "from sympy import *\n", + "from sympy import diff\n", "import numpy as np\n", "\n", "#Variable declaration\n", @@ -54,7 +54,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 6, "metadata": { "collapsed": false }, @@ -95,7 +95,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 7, "metadata": { "collapsed": false }, @@ -132,18 +132,6 @@ "display_name": "Python 2", "language": "python", "name": "python2" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.11" } }, "nbformat": 4, diff --git a/Solid_State_Physics_by_Dr._M._Arumugam/Chapter10_kwPLX4G.ipynb b/Solid_State_Physics_by_Dr._M._Arumugam/Chapter10_kwPLX4G.ipynb deleted file mode 100644 index 76c25efb..00000000 --- a/Solid_State_Physics_by_Dr._M._Arumugam/Chapter10_kwPLX4G.ipynb +++ /dev/null @@ -1,212 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 10: Dielectric Properties" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 1, Page number 10.26" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "insulation resistance is 0.85 *10**18 ohm\n", - "answer varies due to rounding off errors\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "rho=5*10**16; #resistivity(ohm m)\n", - "l=5*10**-2; #thickness(m)\n", - "b=8*10**-2; #length(m)\n", - "w=3*10**-2; #width(m)\n", - "\n", - "#Calculation\n", - "A=b*w; #area(m**2)\n", - "Rv=rho*l/A; \n", - "X=l+b; #length(m)\n", - "Y=w; #perpendicular(m)\n", - "Rs=Rv*X/Y; \n", - "Ri=Rs*Rv/(Rs+Rv); #insulation resistance(ohm)\n", - "\n", - "#Result\n", - "print \"insulation resistance is\",round(Ri/10**18,2),\"*10**18 ohm\"\n", - "print \"answer varies due to rounding off errors\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 2, Page number 10.26" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "polarisability of He is 0.185 *10**-40 farad m**2\n", - "relative permittivity is 1.0000564\n", - "answer varies due to rounding off errors\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "epsilon0=8.84*10**-12;\n", - "R=0.55*10**-10; #radius(m)\n", - "N=2.7*10**25; #number of atoms\n", - "\n", - "#Calculation\n", - "alpha_e=4*math.pi*epsilon0*R**3; #polarisability of He(farad m**2)\n", - "epsilonr=1+(N*alpha_e/epsilon0); #relative permittivity\n", - "\n", - "#Result\n", - "print \"polarisability of He is\",round(alpha_e*10**40,3),\"*10**-40 farad m**2\"\n", - "print \"relative permittivity is\",round(epsilonr,7)\n", - "print \"answer varies due to rounding off errors\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 3, Page number 10.27" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "field strength is 3.535 *10**7 V/m\n", - "total dipole moment is 33.4 *10**-12 Cm\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "A=360*10**-4; #area(m**2)\n", - "V=15; #voltage(V)\n", - "C=6*10**-6; #capacitance(farad)\n", - "epsilonr=8;\n", - "epsilon0=8.84*10**-12;\n", - "\n", - "#Calculation\n", - "E=V*C/(epsilon0*epsilonr*A); #field strength(V/m)\n", - "dm=epsilon0*(epsilonr-1)*V*A; #total dipole moment(Cm)\n", - "\n", - "#Result\n", - "print \"field strength is\",round(E/10**7,3),\"*10**7 V/m\"\n", - "print \"total dipole moment is\",round(dm*10**12,1),\"*10**-12 Cm\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 4, Page number 10.27" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "the complex polarizability is (3.50379335033-0.0600074383321j) *10**-40 F-m**2\n", - "answer cant be rouned off to 2 decimals as given in the textbook. Since it is a complex number and complex numbers cant be converted to float\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "epsilonr=4.36; #dielectric constant\n", - "t=2.8*10**-2; #loss tangent(t)\n", - "N=4*10**28; #number of electrons\n", - "epsilon0=8.84*10**-12; \n", - "\n", - "#Calculation\n", - "epsilon_r = epsilonr*t;\n", - "epsilonstar = (complex(epsilonr,-epsilon_r));\n", - "alphastar = (epsilonstar-1)/(epsilonstar+2);\n", - "alpha_star = 3*epsilon0*alphastar/N; #complex polarizability(Fm**2)\n", - "\n", - "#Result\n", - "print \"the complex polarizability is\",alpha_star*10**40,\"*10**-40 F-m**2\"\n", - "print \"answer cant be rouned off to 2 decimals as given in the textbook. Since it is a complex number and complex numbers cant be converted to float\"" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 2", - "language": "python", - "name": "python2" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.11" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/Solid_State_Physics_by_Dr._M._Arumugam/Chapter10_uTyvarI.ipynb b/Solid_State_Physics_by_Dr._M._Arumugam/Chapter10_uTyvarI.ipynb deleted file mode 100644 index 76c25efb..00000000 --- a/Solid_State_Physics_by_Dr._M._Arumugam/Chapter10_uTyvarI.ipynb +++ /dev/null @@ -1,212 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 10: Dielectric Properties" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 1, Page number 10.26" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "insulation resistance is 0.85 *10**18 ohm\n", - "answer varies due to rounding off errors\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "rho=5*10**16; #resistivity(ohm m)\n", - "l=5*10**-2; #thickness(m)\n", - "b=8*10**-2; #length(m)\n", - "w=3*10**-2; #width(m)\n", - "\n", - "#Calculation\n", - "A=b*w; #area(m**2)\n", - "Rv=rho*l/A; \n", - "X=l+b; #length(m)\n", - "Y=w; #perpendicular(m)\n", - "Rs=Rv*X/Y; \n", - "Ri=Rs*Rv/(Rs+Rv); #insulation resistance(ohm)\n", - "\n", - "#Result\n", - "print \"insulation resistance is\",round(Ri/10**18,2),\"*10**18 ohm\"\n", - "print \"answer varies due to rounding off errors\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 2, Page number 10.26" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "polarisability of He is 0.185 *10**-40 farad m**2\n", - "relative permittivity is 1.0000564\n", - "answer varies due to rounding off errors\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "epsilon0=8.84*10**-12;\n", - "R=0.55*10**-10; #radius(m)\n", - "N=2.7*10**25; #number of atoms\n", - "\n", - "#Calculation\n", - "alpha_e=4*math.pi*epsilon0*R**3; #polarisability of He(farad m**2)\n", - "epsilonr=1+(N*alpha_e/epsilon0); #relative permittivity\n", - "\n", - "#Result\n", - "print \"polarisability of He is\",round(alpha_e*10**40,3),\"*10**-40 farad m**2\"\n", - "print \"relative permittivity is\",round(epsilonr,7)\n", - "print \"answer varies due to rounding off errors\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 3, Page number 10.27" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "field strength is 3.535 *10**7 V/m\n", - "total dipole moment is 33.4 *10**-12 Cm\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "A=360*10**-4; #area(m**2)\n", - "V=15; #voltage(V)\n", - "C=6*10**-6; #capacitance(farad)\n", - "epsilonr=8;\n", - "epsilon0=8.84*10**-12;\n", - "\n", - "#Calculation\n", - "E=V*C/(epsilon0*epsilonr*A); #field strength(V/m)\n", - "dm=epsilon0*(epsilonr-1)*V*A; #total dipole moment(Cm)\n", - "\n", - "#Result\n", - "print \"field strength is\",round(E/10**7,3),\"*10**7 V/m\"\n", - "print \"total dipole moment is\",round(dm*10**12,1),\"*10**-12 Cm\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 4, Page number 10.27" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "the complex polarizability is (3.50379335033-0.0600074383321j) *10**-40 F-m**2\n", - "answer cant be rouned off to 2 decimals as given in the textbook. Since it is a complex number and complex numbers cant be converted to float\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "epsilonr=4.36; #dielectric constant\n", - "t=2.8*10**-2; #loss tangent(t)\n", - "N=4*10**28; #number of electrons\n", - "epsilon0=8.84*10**-12; \n", - "\n", - "#Calculation\n", - "epsilon_r = epsilonr*t;\n", - "epsilonstar = (complex(epsilonr,-epsilon_r));\n", - "alphastar = (epsilonstar-1)/(epsilonstar+2);\n", - "alpha_star = 3*epsilon0*alphastar/N; #complex polarizability(Fm**2)\n", - "\n", - "#Result\n", - "print \"the complex polarizability is\",alpha_star*10**40,\"*10**-40 F-m**2\"\n", - "print \"answer cant be rouned off to 2 decimals as given in the textbook. Since it is a complex number and complex numbers cant be converted to float\"" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 2", - "language": "python", - "name": "python2" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.11" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/Solid_State_Physics_by_Dr._M._Arumugam/Chapter11_KQJlWAT.ipynb b/Solid_State_Physics_by_Dr._M._Arumugam/Chapter11_KQJlWAT.ipynb deleted file mode 100644 index 617a2a18..00000000 --- a/Solid_State_Physics_by_Dr._M._Arumugam/Chapter11_KQJlWAT.ipynb +++ /dev/null @@ -1,327 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 11: Magnetic Properties" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 1, Page number 11.31" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "temperature rise is 8.43 K\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "El=10**-2*50; #energy loss(J)\n", - "H=El*60; #heat produced(J)\n", - "d=7.7*10**3; #iron rod(kg/m**3)\n", - "s=0.462*10**-3; #specific heat(J/kg K)\n", - "\n", - "#Calculation\n", - "theta=H/(d*s); #temperature rise(K)\n", - "\n", - "#Result\n", - "print \"temperature rise is\",round(theta,2),\"K\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 2, Page number 11.31" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "magnetic field at the centre is 14 weber/m**2\n", - "dipole moment is 9 *10**-24 ampere/m**2\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "e=1.6*10**-19; #charge(coulomb)\n", - "new=6.8*10**15; #frequency(revolutions per second)\n", - "mew0=4*math.pi*10**-7;\n", - "R=5.1*10**-11; #radius(m)\n", - "\n", - "#Calculation\n", - "i=round(e*new,4); #current(ampere)\n", - "B=mew0*i/(2*R); #magnetic field at the centre(weber/m**2)\n", - "A=math.pi*R**2;\n", - "d=i*A; #dipole moment(ampere/m**2)\n", - "\n", - "#Result\n", - "print \"magnetic field at the centre is\",int(round(B)),\"weber/m**2\"\n", - "print \"dipole moment is\",int(round(d*10**24)),\"*10**-24 ampere/m**2\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 3, Page number 11.31" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "intensity of magnetisation is 5 ampere/m\n", - "flux density in material is 1.257 weber/m**2\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "chi=0.5*10**-5; #magnetic susceptibility\n", - "H=10**6; #field strength(ampere/m)\n", - "mew0=4*math.pi*10**-7;\n", - "\n", - "#Calculation\n", - "I=chi*H; #intensity of magnetisation(ampere/m)\n", - "B=mew0*(I+H); #flux density in material(weber/m**2)\n", - "\n", - "#Result\n", - "print \"intensity of magnetisation is\",int(I),\"ampere/m\"\n", - "print \"flux density in material is\",round(B,3),\"weber/m**2\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 4, Page number 11.31" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "number of Bohr magnetons is 2.22 bohr magneon/atom\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "B=9.27*10**-24; #bohr magneton(ampere m**2)\n", - "a=2.86*10**-10; #edge(m)\n", - "Is=1.76*10**6; #saturation value of magnetisation(ampere/m)\n", - "\n", - "#Calculation\n", - "N=2/a**3;\n", - "mew_bar=Is/N; #number of Bohr magnetons(ampere m**2)\n", - "mew_bar=mew_bar/B; #number of Bohr magnetons(bohr magneon/atom)\n", - "\n", - "#Result\n", - "print \"number of Bohr magnetons is\",round(mew_bar,2),\"bohr magneon/atom\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 5, Page number 11.32" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "average magnetic moment is 2.79 *10**-3 bohr magneton/spin\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "mew0=4*math.pi*10**-7;\n", - "H=9.27*10**-24; #bohr magneton(ampere m**2)\n", - "beta=10**6; #field(ampere/m)\n", - "k=1.38*10**-23; #boltzmann constant\n", - "T=303; #temperature(K)\n", - "\n", - "#Calculation\n", - "mm=mew0*H*beta/(k*T); #average magnetic moment(bohr magneton/spin)\n", - "\n", - "#Result\n", - "print \"average magnetic moment is\",round(mm*10**3,2),\"*10**-3 bohr magneton/spin\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 6, Page number 11.32" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "hysteresis loss per cycle is 188 J/m**3\n", - "hysteresis loss per second is 9400 watt/m**3\n", - "power loss is 1.23 watt/kg\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "A=94; #area(m**2)\n", - "vy=0.1; #value of length(weber/m**2)\n", - "vx=20; #value of unit length\n", - "n=50; #number of magnetization cycles\n", - "d=7650; #density(kg/m**3)\n", - "\n", - "#Calculation\n", - "h=A*vy*vx; #hysteresis loss per cycle(J/m**3)\n", - "hs=h*n; #hysteresis loss per second(watt/m**3)\n", - "pl=hs/d; #power loss(watt/kg)\n", - "\n", - "#Result\n", - "print \"hysteresis loss per cycle is\",int(h),\"J/m**3\"\n", - "print \"hysteresis loss per second is\",int(hs),\"watt/m**3\"\n", - "print \"power loss is\",round(pl,2),\"watt/kg\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 8, Page number 11.33" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "critical field is 33.64 *10**3 ampere/m\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "H0=64*10**3; #initial field(ampere/m)\n", - "T=5; #temperature(K)\n", - "Tc=7.26; #critical temperature(K)\n", - "\n", - "#Calculation\n", - "H=H0*(1-(T/Tc)**2); #critical field(ampere/m)\n", - "\n", - "#Result\n", - "print \"critical field is\",round(H/10**3,2),\"*10**3 ampere/m\"" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 2", - "language": "python", - "name": "python2" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.11" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/Solid_State_Physics_by_Dr._M._Arumugam/Chapter11_j1rU3Z4.ipynb b/Solid_State_Physics_by_Dr._M._Arumugam/Chapter11_j1rU3Z4.ipynb deleted file mode 100644 index 617a2a18..00000000 --- a/Solid_State_Physics_by_Dr._M._Arumugam/Chapter11_j1rU3Z4.ipynb +++ /dev/null @@ -1,327 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 11: Magnetic Properties" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 1, Page number 11.31" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "temperature rise is 8.43 K\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "El=10**-2*50; #energy loss(J)\n", - "H=El*60; #heat produced(J)\n", - "d=7.7*10**3; #iron rod(kg/m**3)\n", - "s=0.462*10**-3; #specific heat(J/kg K)\n", - "\n", - "#Calculation\n", - "theta=H/(d*s); #temperature rise(K)\n", - "\n", - "#Result\n", - "print \"temperature rise is\",round(theta,2),\"K\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 2, Page number 11.31" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "magnetic field at the centre is 14 weber/m**2\n", - "dipole moment is 9 *10**-24 ampere/m**2\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "e=1.6*10**-19; #charge(coulomb)\n", - "new=6.8*10**15; #frequency(revolutions per second)\n", - "mew0=4*math.pi*10**-7;\n", - "R=5.1*10**-11; #radius(m)\n", - "\n", - "#Calculation\n", - "i=round(e*new,4); #current(ampere)\n", - "B=mew0*i/(2*R); #magnetic field at the centre(weber/m**2)\n", - "A=math.pi*R**2;\n", - "d=i*A; #dipole moment(ampere/m**2)\n", - "\n", - "#Result\n", - "print \"magnetic field at the centre is\",int(round(B)),\"weber/m**2\"\n", - "print \"dipole moment is\",int(round(d*10**24)),\"*10**-24 ampere/m**2\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 3, Page number 11.31" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "intensity of magnetisation is 5 ampere/m\n", - "flux density in material is 1.257 weber/m**2\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "chi=0.5*10**-5; #magnetic susceptibility\n", - "H=10**6; #field strength(ampere/m)\n", - "mew0=4*math.pi*10**-7;\n", - "\n", - "#Calculation\n", - "I=chi*H; #intensity of magnetisation(ampere/m)\n", - "B=mew0*(I+H); #flux density in material(weber/m**2)\n", - "\n", - "#Result\n", - "print \"intensity of magnetisation is\",int(I),\"ampere/m\"\n", - "print \"flux density in material is\",round(B,3),\"weber/m**2\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 4, Page number 11.31" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "number of Bohr magnetons is 2.22 bohr magneon/atom\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "B=9.27*10**-24; #bohr magneton(ampere m**2)\n", - "a=2.86*10**-10; #edge(m)\n", - "Is=1.76*10**6; #saturation value of magnetisation(ampere/m)\n", - "\n", - "#Calculation\n", - "N=2/a**3;\n", - "mew_bar=Is/N; #number of Bohr magnetons(ampere m**2)\n", - "mew_bar=mew_bar/B; #number of Bohr magnetons(bohr magneon/atom)\n", - "\n", - "#Result\n", - "print \"number of Bohr magnetons is\",round(mew_bar,2),\"bohr magneon/atom\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 5, Page number 11.32" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "average magnetic moment is 2.79 *10**-3 bohr magneton/spin\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "mew0=4*math.pi*10**-7;\n", - "H=9.27*10**-24; #bohr magneton(ampere m**2)\n", - "beta=10**6; #field(ampere/m)\n", - "k=1.38*10**-23; #boltzmann constant\n", - "T=303; #temperature(K)\n", - "\n", - "#Calculation\n", - "mm=mew0*H*beta/(k*T); #average magnetic moment(bohr magneton/spin)\n", - "\n", - "#Result\n", - "print \"average magnetic moment is\",round(mm*10**3,2),\"*10**-3 bohr magneton/spin\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 6, Page number 11.32" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "hysteresis loss per cycle is 188 J/m**3\n", - "hysteresis loss per second is 9400 watt/m**3\n", - "power loss is 1.23 watt/kg\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "A=94; #area(m**2)\n", - "vy=0.1; #value of length(weber/m**2)\n", - "vx=20; #value of unit length\n", - "n=50; #number of magnetization cycles\n", - "d=7650; #density(kg/m**3)\n", - "\n", - "#Calculation\n", - "h=A*vy*vx; #hysteresis loss per cycle(J/m**3)\n", - "hs=h*n; #hysteresis loss per second(watt/m**3)\n", - "pl=hs/d; #power loss(watt/kg)\n", - "\n", - "#Result\n", - "print \"hysteresis loss per cycle is\",int(h),\"J/m**3\"\n", - "print \"hysteresis loss per second is\",int(hs),\"watt/m**3\"\n", - "print \"power loss is\",round(pl,2),\"watt/kg\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 8, Page number 11.33" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "critical field is 33.64 *10**3 ampere/m\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "H0=64*10**3; #initial field(ampere/m)\n", - "T=5; #temperature(K)\n", - "Tc=7.26; #critical temperature(K)\n", - "\n", - "#Calculation\n", - "H=H0*(1-(T/Tc)**2); #critical field(ampere/m)\n", - "\n", - "#Result\n", - "print \"critical field is\",round(H/10**3,2),\"*10**3 ampere/m\"" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 2", - "language": "python", - "name": "python2" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.11" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/Solid_State_Physics_by_Dr._M._Arumugam/Chapter12_0fvtKtc.ipynb b/Solid_State_Physics_by_Dr._M._Arumugam/Chapter12_0fvtKtc.ipynb deleted file mode 100644 index af17168c..00000000 --- a/Solid_State_Physics_by_Dr._M._Arumugam/Chapter12_0fvtKtc.ipynb +++ /dev/null @@ -1,160 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 12: Lasers" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 1, Page number 12.30" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "relative population in laser transition levels is 1.081 *10**30\n", - "answer given in the book is wrong\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "h=6.626*10**-34; #plancks constant(J s)\n", - "c=3*10**8; #velocity of light(m/s)\n", - "lamda=6943*10**-10; #wavelength of emission(m)\n", - "k=1.38*10**-23; #boltzmann constant\n", - "T=300; #temperature(K)\n", - "\n", - "#Calculation\n", - "new=c/lamda; #frequency(Hz)\n", - "x=h*new/(k*T);\n", - "N1byN2=math.exp(x); #relative population in laser transition levels\n", - "\n", - "#Result\n", - "print \"relative population in laser transition levels is\",round(N1byN2/10**30,3),\"*10**30\"\n", - "print \"answer given in the book is wrong\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 2, Page number 12.31" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "number of photons emitted is 7.323 *10**15 photons/second\n", - "power density is 2.3 kW/m**2\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "h=6.626*10**-34; #plancks constant(J s)\n", - "P=2.3*10**-3; #output power(W)\n", - "t=1; #time(sec)\n", - "new=4.74*10**14; #frequency(Hz)\n", - "s=1*10**-6; #spot area(m**2)\n", - "\n", - "#Calculation\n", - "n=P*t/(h*new); #number of photons emitted in each second \n", - "Pd=P/s; #power density(W/m**2)\n", - "\n", - "#Result\n", - "print \"number of photons emitted is\",round(n/10**15,3),\"*10**15 photons/second\"\n", - "print \"power density is\",Pd/10**3,\"kW/m**2\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 3, Page number 12.31" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "wavelength of emission is 8628 angstrom\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "h=6.626*10**-34; #plancks constant(J s)\n", - "c=3*10**8; #velocity of light(m/s)\n", - "Eg=1.44*1.6*10**-19; #band gap(J)\n", - "\n", - "#Calculation\n", - "lamda=h*c/Eg; #wavelength of emission(m)\n", - "\n", - "#Result\n", - "print \"wavelength of emission is\",int(round(lamda*10**10)),\"angstrom\"" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 2", - "language": "python", - "name": "python2" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.11" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/Solid_State_Physics_by_Dr._M._Arumugam/Chapter12_MsiPuok.ipynb b/Solid_State_Physics_by_Dr._M._Arumugam/Chapter12_MsiPuok.ipynb deleted file mode 100644 index af17168c..00000000 --- a/Solid_State_Physics_by_Dr._M._Arumugam/Chapter12_MsiPuok.ipynb +++ /dev/null @@ -1,160 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 12: Lasers" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 1, Page number 12.30" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "relative population in laser transition levels is 1.081 *10**30\n", - "answer given in the book is wrong\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "h=6.626*10**-34; #plancks constant(J s)\n", - "c=3*10**8; #velocity of light(m/s)\n", - "lamda=6943*10**-10; #wavelength of emission(m)\n", - "k=1.38*10**-23; #boltzmann constant\n", - "T=300; #temperature(K)\n", - "\n", - "#Calculation\n", - "new=c/lamda; #frequency(Hz)\n", - "x=h*new/(k*T);\n", - "N1byN2=math.exp(x); #relative population in laser transition levels\n", - "\n", - "#Result\n", - "print \"relative population in laser transition levels is\",round(N1byN2/10**30,3),\"*10**30\"\n", - "print \"answer given in the book is wrong\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 2, Page number 12.31" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "number of photons emitted is 7.323 *10**15 photons/second\n", - "power density is 2.3 kW/m**2\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "h=6.626*10**-34; #plancks constant(J s)\n", - "P=2.3*10**-3; #output power(W)\n", - "t=1; #time(sec)\n", - "new=4.74*10**14; #frequency(Hz)\n", - "s=1*10**-6; #spot area(m**2)\n", - "\n", - "#Calculation\n", - "n=P*t/(h*new); #number of photons emitted in each second \n", - "Pd=P/s; #power density(W/m**2)\n", - "\n", - "#Result\n", - "print \"number of photons emitted is\",round(n/10**15,3),\"*10**15 photons/second\"\n", - "print \"power density is\",Pd/10**3,\"kW/m**2\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 3, Page number 12.31" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "wavelength of emission is 8628 angstrom\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "h=6.626*10**-34; #plancks constant(J s)\n", - "c=3*10**8; #velocity of light(m/s)\n", - "Eg=1.44*1.6*10**-19; #band gap(J)\n", - "\n", - "#Calculation\n", - "lamda=h*c/Eg; #wavelength of emission(m)\n", - "\n", - "#Result\n", - "print \"wavelength of emission is\",int(round(lamda*10**10)),\"angstrom\"" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 2", - "language": "python", - "name": "python2" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.11" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/Solid_State_Physics_by_Dr._M._Arumugam/Chapter13_Nvp3wKs.ipynb b/Solid_State_Physics_by_Dr._M._Arumugam/Chapter13_Nvp3wKs.ipynb deleted file mode 100644 index 558f6667..00000000 --- a/Solid_State_Physics_by_Dr._M._Arumugam/Chapter13_Nvp3wKs.ipynb +++ /dev/null @@ -1,665 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 13: Fiber Optics" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 1, Page number 13.19" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "critical angle is 78.5 degrees\n", - "numerical aperture is 0.3\n", - "acceptance angle is 17.4 degrees\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "n2=1.47; #refractive index of cladding\n", - "n1=1.5; #refractive index of core\n", - "\n", - "#Calculation\n", - "phi_c=math.asin(n2/n1); #critical angle(radian)\n", - "phi_c=phi_c*180/math.pi; #critical angle(degrees)\n", - "NA=math.sqrt(n1**2-n2**2); #numerical aperture\n", - "phi_max=math.asin(NA); #acceptance angle(radian)\n", - "phi_max=phi_max*180/math.pi; #acceptance angle(degrees)\n", - "\n", - "#Result\n", - "print \"critical angle is\",round(phi_c,1),\"degrees\"\n", - "print \"numerical aperture is\",round(NA,1)\n", - "print \"acceptance angle is\",round(phi_max,1),\"degrees\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 2, Page number 13.19" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "total number of guided modes is 490\n", - "number of modes propagated inside fibre is 245\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "d=50*10**-6; #diameter(m)\n", - "NA=0.2; #numerical aperture(m)\n", - "lamda=1*10**-6; #wavelength(m)\n", - "\n", - "#Calculation\n", - "N=4.9*(d*NA/lamda)**2; #total number of guided modes\n", - "Nf=N/2; #number of modes propagated inside fibre\n", - "\n", - "#Result\n", - "print \"total number of guided modes is\",int(N)\n", - "print \"number of modes propagated inside fibre is\",int(Nf)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 3, Page number 13.19" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "total number of guided modes is 1\n", - "it is a single mode propagation\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "d=5*10**-6; #diameter(m)\n", - "n2=1.447; #refractive index of cladding\n", - "n1=1.45; #refractive index of core\n", - "lamda=1*10**-6; #wavelength(m)\n", - "\n", - "#Calculation\n", - "NA=math.sqrt(n1**2-n2**2); #numerical aperture\n", - "N=4.9*(d*NA/lamda)**2; #total number of guided modes\n", - "\n", - "#Result\n", - "print \"total number of guided modes is\",int(N)\n", - "print \"it is a single mode propagation\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 4, Page number 13.19" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "numerical aperture is 0.46\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "n1=1.46; #refractive index of core\n", - "delta=0.05; #refractive index difference\n", - "\n", - "#Calculation\n", - "NA=n1*math.sqrt(2*delta); #numerical aperture\n", - "\n", - "#Result\n", - "print \"numerical aperture is\",round(NA,2)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 5, Page number 13.20" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "V number is 94.72\n", - "maximum number of modes is 4486\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "a=50;\n", - "n2=1.5; #refractive index of cladding\n", - "n1=1.53; #refractive index of core\n", - "lamda0=1; #wavelength(micro m)\n", - "\n", - "#Calculation\n", - "V_number=round(2*math.pi*a*math.sqrt(n1**2-n2**2)/lamda0,2); #V number\n", - "n=V_number**2/2; #maximum number of modes\n", - "\n", - "#Result\n", - "print \"V number is\",V_number\n", - "print \"maximum number of modes is\",int(round(n))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 6, Page number 13.20" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "total number of modes is 49178\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "a=100*10**-6;\n", - "NA=0.3; #numerical aperture(m)\n", - "lamda=850*10**-9; #wavelength(m)\n", - "\n", - "#Calculation\n", - "V_number=round(2*math.pi**2*a**2*NA**2/lamda**2); #number of modes\n", - "\n", - "#Result\n", - "print \"total number of modes is\",int(2*V_number)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 7, Page number 13.20" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "cutoff wavelength is 1.315 micro m\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "a=25*10**-6;\n", - "n1=1.48; #refractive index of core\n", - "delta=0.01; #refractive index difference\n", - "V=25; #Vnumber\n", - "\n", - "#Calculation\n", - "lamda=2*math.pi*a*n1*math.sqrt(2*delta)/V; #cutoff wavelength(m)\n", - "\n", - "#Result\n", - "print \"cutoff wavelength is\",round(lamda*10**6,3),\"micro m\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 8, Page number 13.20" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "maximum value of core radius is 9.95 micro m\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "V=2.405; #Vnumber\n", - "lamda=1.3; #wavelength(micro m)\n", - "NA=0.05; #numerical aperture(m)\n", - "\n", - "#Calculation\n", - "amax=V*lamda/(2*math.pi*NA); #maximum value of core radius(micro m)\n", - "\n", - "#Result\n", - "print \"maximum value of core radius is\",round(amax,2),\"micro m\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 9, Page number 13.21" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "acceptance angle for meridional rays is 17.46 degrees\n", - "acceptance angle for skew rays is 25.104 degrees\n", - "answer for acceptance angle for skew rays given in the book is wrong\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "NA=0.3; #numerical aperture(m)\n", - "gama=45*math.pi/180; #angle(radian)\n", - "\n", - "#Calculation\n", - "thetaa=math.asin(NA); #acceptance angle for meridional rays(radian)\n", - "thetaa=thetaa*180/math.pi; #acceptance angle for meridional rays(degrees)\n", - "thetaas=math.asin(NA/math.cos(gama)); #acceptance angle for skew rays(radian)\n", - "thetaas=thetaas*180/math.pi; #acceptance angle for skew rays(degrees)\n", - "\n", - "#Result\n", - "print \"acceptance angle for meridional rays is\",round(thetaa,2),\"degrees\"\n", - "print \"acceptance angle for skew rays is\",round(thetaas,3),\"degrees\"\n", - "print \"answer for acceptance angle for skew rays given in the book is wrong\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 10, Page number 13.21" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "numerical aperture is 0.303\n", - "acceptance angle is 17.633 degrees\n", - "answer for angle given in the book varies due to rounding off errors\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "delta=0.0196; #relative refractive index difference\n", - "n1=1.53; #refractive index of core\n", - "\n", - "#Calculation\n", - "NA=n1*math.sqrt(2*delta); #numerical aperture\n", - "theta=math.asin(NA); #acceptance angle(radian)\n", - "theta=theta*180/math.pi; #acceptance angle(degrees)\n", - "\n", - "#Result\n", - "print \"numerical aperture is\",round(NA,3)\n", - "print \"acceptance angle is\",round(theta,3),\"degrees\"\n", - "print \"answer for angle given in the book varies due to rounding off errors\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 11, Page number 13.21" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "core radius is 1.548 micro m\n", - "answer given in the book is wrong\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "n2=1.465; #refractive index of cladding\n", - "n1=1.480; #refractive index of core\n", - "lamda=850*10**-9; #wavelength(m)\n", - "\n", - "#Calculation\n", - "delta=(n1**2-n2**2)/(2*n1**2); #relative refractive index difference\n", - "a=2.405*lamda*10**6/(2*math.pi*n1*math.sqrt(2*delta)); #core radius(micro m)\n", - "\n", - "#Result\n", - "print \"core radius is\",round(a,3),\"micro m\"\n", - "print \"answer given in the book is wrong\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 12, Page number 13.21" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "total number of reflections per metre is 2321\n", - "total distance travelled by light is 1.0067 m\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "n2=1.49; #refractive index of cladding\n", - "n1=1.5; #refractive index of core\n", - "a=25; #core radius(micro m)\n", - "\n", - "#Calculation\n", - "phic=math.asin(n2/n1); #angle(degrees)\n", - "l=2*a*math.tan(phic); #fibre length covered in 1 reflection(micro m)\n", - "n=10**6/l; #total number of reflections per metre\n", - "d=1/math.sin(phic); #total distance travelled by light(m)\n", - "\n", - "#Result\n", - "print \"total number of reflections per metre is\",int(n)\n", - "print \"total distance travelled by light is\",round(d,4),\"m\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 13, Page number 13.22" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "total number of modes is 309\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "alpha=1.85; #index profile\n", - "a=25; #core radius(micro m)\n", - "NA=0.21; #numerical aperture\n", - "lamda=1.3; #wavelength(micro m)\n", - "\n", - "#Calculation\n", - "n=(alpha*2*math.pi**2*a**2*NA**2)/(lamda**2*(alpha+2)); #number of modes\n", - "N=2*n; #total number of modes\n", - "\n", - "#Result\n", - "print \"total number of modes is\",int(N)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 14, Page number 13.22" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "signal attenuation per unit length is 1.7 dB km-1\n", - "overall signal attenuation is 17 dB\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "L=10; #transmission distance(km)\n", - "Pi=100; #optical power(micro W)\n", - "Po=2; #optical power output(micro W)\n", - "\n", - "#Calculation\n", - "sa=round(10*math.log10(Pi/Po)/L,1); #signal attenuation per unit length(dB km-1)\n", - "osa=sa*L; #overall signal attenuation(dB)\n", - "\n", - "#Result\n", - "print \"signal attenuation per unit length is\",sa,\"dB km-1\"\n", - "print \"overall signal attenuation is\",int(osa),\"dB\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 15, Page number 13.23" - ] - }, - { - "cell_type": "code", - "execution_count": 51, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "dispersion is 1343.3 ns\n", - "bandwidth length product is 7.44 *10**6 Hz-km\n", - "answer for bandwidth given in the book is wrong\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "L=10; #transmission distance(km)\n", - "n1=1.55; #refractive index of core\n", - "delta=0.026; #relative refractive index difference\n", - "C=3*10**5; \n", - "\n", - "#Calculation\n", - "deltaT=L*n1*delta/C; #dispersion(s)\n", - "blp=L/deltaT; #bandwidth length product(Hz-km)\n", - "\n", - "#Result\n", - "print \"dispersion is\",round(deltaT*10**9,1),\"ns\"\n", - "print \"bandwidth length product is\",round(blp/10**6,2),\"*10**6 Hz-km\"\n", - "print \"answer for bandwidth given in the book is wrong\"" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 2", - "language": "python", - "name": "python2" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.11" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/Solid_State_Physics_by_Dr._M._Arumugam/Chapter13_YE4TWNG.ipynb b/Solid_State_Physics_by_Dr._M._Arumugam/Chapter13_YE4TWNG.ipynb deleted file mode 100644 index 558f6667..00000000 --- a/Solid_State_Physics_by_Dr._M._Arumugam/Chapter13_YE4TWNG.ipynb +++ /dev/null @@ -1,665 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 13: Fiber Optics" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 1, Page number 13.19" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "critical angle is 78.5 degrees\n", - "numerical aperture is 0.3\n", - "acceptance angle is 17.4 degrees\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "n2=1.47; #refractive index of cladding\n", - "n1=1.5; #refractive index of core\n", - "\n", - "#Calculation\n", - "phi_c=math.asin(n2/n1); #critical angle(radian)\n", - "phi_c=phi_c*180/math.pi; #critical angle(degrees)\n", - "NA=math.sqrt(n1**2-n2**2); #numerical aperture\n", - "phi_max=math.asin(NA); #acceptance angle(radian)\n", - "phi_max=phi_max*180/math.pi; #acceptance angle(degrees)\n", - "\n", - "#Result\n", - "print \"critical angle is\",round(phi_c,1),\"degrees\"\n", - "print \"numerical aperture is\",round(NA,1)\n", - "print \"acceptance angle is\",round(phi_max,1),\"degrees\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 2, Page number 13.19" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "total number of guided modes is 490\n", - "number of modes propagated inside fibre is 245\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "d=50*10**-6; #diameter(m)\n", - "NA=0.2; #numerical aperture(m)\n", - "lamda=1*10**-6; #wavelength(m)\n", - "\n", - "#Calculation\n", - "N=4.9*(d*NA/lamda)**2; #total number of guided modes\n", - "Nf=N/2; #number of modes propagated inside fibre\n", - "\n", - "#Result\n", - "print \"total number of guided modes is\",int(N)\n", - "print \"number of modes propagated inside fibre is\",int(Nf)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 3, Page number 13.19" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "total number of guided modes is 1\n", - "it is a single mode propagation\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "d=5*10**-6; #diameter(m)\n", - "n2=1.447; #refractive index of cladding\n", - "n1=1.45; #refractive index of core\n", - "lamda=1*10**-6; #wavelength(m)\n", - "\n", - "#Calculation\n", - "NA=math.sqrt(n1**2-n2**2); #numerical aperture\n", - "N=4.9*(d*NA/lamda)**2; #total number of guided modes\n", - "\n", - "#Result\n", - "print \"total number of guided modes is\",int(N)\n", - "print \"it is a single mode propagation\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 4, Page number 13.19" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "numerical aperture is 0.46\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "n1=1.46; #refractive index of core\n", - "delta=0.05; #refractive index difference\n", - "\n", - "#Calculation\n", - "NA=n1*math.sqrt(2*delta); #numerical aperture\n", - "\n", - "#Result\n", - "print \"numerical aperture is\",round(NA,2)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 5, Page number 13.20" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "V number is 94.72\n", - "maximum number of modes is 4486\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "a=50;\n", - "n2=1.5; #refractive index of cladding\n", - "n1=1.53; #refractive index of core\n", - "lamda0=1; #wavelength(micro m)\n", - "\n", - "#Calculation\n", - "V_number=round(2*math.pi*a*math.sqrt(n1**2-n2**2)/lamda0,2); #V number\n", - "n=V_number**2/2; #maximum number of modes\n", - "\n", - "#Result\n", - "print \"V number is\",V_number\n", - "print \"maximum number of modes is\",int(round(n))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 6, Page number 13.20" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "total number of modes is 49178\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "a=100*10**-6;\n", - "NA=0.3; #numerical aperture(m)\n", - "lamda=850*10**-9; #wavelength(m)\n", - "\n", - "#Calculation\n", - "V_number=round(2*math.pi**2*a**2*NA**2/lamda**2); #number of modes\n", - "\n", - "#Result\n", - "print \"total number of modes is\",int(2*V_number)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 7, Page number 13.20" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "cutoff wavelength is 1.315 micro m\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "a=25*10**-6;\n", - "n1=1.48; #refractive index of core\n", - "delta=0.01; #refractive index difference\n", - "V=25; #Vnumber\n", - "\n", - "#Calculation\n", - "lamda=2*math.pi*a*n1*math.sqrt(2*delta)/V; #cutoff wavelength(m)\n", - "\n", - "#Result\n", - "print \"cutoff wavelength is\",round(lamda*10**6,3),\"micro m\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 8, Page number 13.20" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "maximum value of core radius is 9.95 micro m\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "V=2.405; #Vnumber\n", - "lamda=1.3; #wavelength(micro m)\n", - "NA=0.05; #numerical aperture(m)\n", - "\n", - "#Calculation\n", - "amax=V*lamda/(2*math.pi*NA); #maximum value of core radius(micro m)\n", - "\n", - "#Result\n", - "print \"maximum value of core radius is\",round(amax,2),\"micro m\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 9, Page number 13.21" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "acceptance angle for meridional rays is 17.46 degrees\n", - "acceptance angle for skew rays is 25.104 degrees\n", - "answer for acceptance angle for skew rays given in the book is wrong\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "NA=0.3; #numerical aperture(m)\n", - "gama=45*math.pi/180; #angle(radian)\n", - "\n", - "#Calculation\n", - "thetaa=math.asin(NA); #acceptance angle for meridional rays(radian)\n", - "thetaa=thetaa*180/math.pi; #acceptance angle for meridional rays(degrees)\n", - "thetaas=math.asin(NA/math.cos(gama)); #acceptance angle for skew rays(radian)\n", - "thetaas=thetaas*180/math.pi; #acceptance angle for skew rays(degrees)\n", - "\n", - "#Result\n", - "print \"acceptance angle for meridional rays is\",round(thetaa,2),\"degrees\"\n", - "print \"acceptance angle for skew rays is\",round(thetaas,3),\"degrees\"\n", - "print \"answer for acceptance angle for skew rays given in the book is wrong\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 10, Page number 13.21" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "numerical aperture is 0.303\n", - "acceptance angle is 17.633 degrees\n", - "answer for angle given in the book varies due to rounding off errors\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "delta=0.0196; #relative refractive index difference\n", - "n1=1.53; #refractive index of core\n", - "\n", - "#Calculation\n", - "NA=n1*math.sqrt(2*delta); #numerical aperture\n", - "theta=math.asin(NA); #acceptance angle(radian)\n", - "theta=theta*180/math.pi; #acceptance angle(degrees)\n", - "\n", - "#Result\n", - "print \"numerical aperture is\",round(NA,3)\n", - "print \"acceptance angle is\",round(theta,3),\"degrees\"\n", - "print \"answer for angle given in the book varies due to rounding off errors\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 11, Page number 13.21" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "core radius is 1.548 micro m\n", - "answer given in the book is wrong\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "n2=1.465; #refractive index of cladding\n", - "n1=1.480; #refractive index of core\n", - "lamda=850*10**-9; #wavelength(m)\n", - "\n", - "#Calculation\n", - "delta=(n1**2-n2**2)/(2*n1**2); #relative refractive index difference\n", - "a=2.405*lamda*10**6/(2*math.pi*n1*math.sqrt(2*delta)); #core radius(micro m)\n", - "\n", - "#Result\n", - "print \"core radius is\",round(a,3),\"micro m\"\n", - "print \"answer given in the book is wrong\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 12, Page number 13.21" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "total number of reflections per metre is 2321\n", - "total distance travelled by light is 1.0067 m\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "n2=1.49; #refractive index of cladding\n", - "n1=1.5; #refractive index of core\n", - "a=25; #core radius(micro m)\n", - "\n", - "#Calculation\n", - "phic=math.asin(n2/n1); #angle(degrees)\n", - "l=2*a*math.tan(phic); #fibre length covered in 1 reflection(micro m)\n", - "n=10**6/l; #total number of reflections per metre\n", - "d=1/math.sin(phic); #total distance travelled by light(m)\n", - "\n", - "#Result\n", - "print \"total number of reflections per metre is\",int(n)\n", - "print \"total distance travelled by light is\",round(d,4),\"m\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 13, Page number 13.22" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "total number of modes is 309\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "alpha=1.85; #index profile\n", - "a=25; #core radius(micro m)\n", - "NA=0.21; #numerical aperture\n", - "lamda=1.3; #wavelength(micro m)\n", - "\n", - "#Calculation\n", - "n=(alpha*2*math.pi**2*a**2*NA**2)/(lamda**2*(alpha+2)); #number of modes\n", - "N=2*n; #total number of modes\n", - "\n", - "#Result\n", - "print \"total number of modes is\",int(N)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 14, Page number 13.22" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "signal attenuation per unit length is 1.7 dB km-1\n", - "overall signal attenuation is 17 dB\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "L=10; #transmission distance(km)\n", - "Pi=100; #optical power(micro W)\n", - "Po=2; #optical power output(micro W)\n", - "\n", - "#Calculation\n", - "sa=round(10*math.log10(Pi/Po)/L,1); #signal attenuation per unit length(dB km-1)\n", - "osa=sa*L; #overall signal attenuation(dB)\n", - "\n", - "#Result\n", - "print \"signal attenuation per unit length is\",sa,\"dB km-1\"\n", - "print \"overall signal attenuation is\",int(osa),\"dB\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 15, Page number 13.23" - ] - }, - { - "cell_type": "code", - "execution_count": 51, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "dispersion is 1343.3 ns\n", - "bandwidth length product is 7.44 *10**6 Hz-km\n", - "answer for bandwidth given in the book is wrong\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "L=10; #transmission distance(km)\n", - "n1=1.55; #refractive index of core\n", - "delta=0.026; #relative refractive index difference\n", - "C=3*10**5; \n", - "\n", - "#Calculation\n", - "deltaT=L*n1*delta/C; #dispersion(s)\n", - "blp=L/deltaT; #bandwidth length product(Hz-km)\n", - "\n", - "#Result\n", - "print \"dispersion is\",round(deltaT*10**9,1),\"ns\"\n", - "print \"bandwidth length product is\",round(blp/10**6,2),\"*10**6 Hz-km\"\n", - "print \"answer for bandwidth given in the book is wrong\"" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 2", - "language": "python", - "name": "python2" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.11" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/Solid_State_Physics_by_Dr._M._Arumugam/Chapter14_6bEV9Al.ipynb b/Solid_State_Physics_by_Dr._M._Arumugam/Chapter14_6bEV9Al.ipynb deleted file mode 100644 index 92fbeef0..00000000 --- a/Solid_State_Physics_by_Dr._M._Arumugam/Chapter14_6bEV9Al.ipynb +++ /dev/null @@ -1,205 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 14: Acoustics of Buildings and Acoustic Quieting" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 1, Page number 14.18" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "reverbration time is 3.9 s\n", - "reverbration time when audience fill the hall is 1.95 s\n", - "reverbration time is reduced to one-half\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "V=2265; #volume(m**3)\n", - "a=92.9; #absorption(m**2)\n", - "\n", - "#Calculation\n", - "T=0.16*V/a; #reverbration time(s)\n", - "T2=T/2; #reverbration time when audience fill the hall(s)\n", - "\n", - "#Result\n", - "print \"reverbration time is\",round(T,1),\"s\"\n", - "print \"reverbration time when audience fill the hall is\",round(T2,2),\"s\"\n", - "print \"reverbration time is reduced to one-half\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 2, Page number 14.18" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "reverbration time is 0.8 second\n", - "reverbration time when hall is empty is 1.6 second\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "V=12*30*6; #volume(m**3)\n", - "A1=450; #area of plastered wall(m**2)\n", - "a1=0.03; #coefficient of absorption(m**2)\n", - "A2=360; #area of wooden floor(m**2)\n", - "a2=0.06; #coefficient of absorption(m**2)\n", - "A3=24; #area of glass(m**2)\n", - "a3=0.25; #coefficient of absorption(m**2)\n", - "A4=600; #area of seats(m**2)\n", - "a4=0.3; #coefficient of absorption(m**2)\n", - "A5=500; #area of hall with audience(m**2)\n", - "a5=0.43; #coefficient of absorption(m**2)\n", - "\n", - "#Calculation\n", - "A=(A1*a1)+(A2*a2)+(A3*a3)+(A4*a4)+(A5*a5); #total absorption(m**2)\n", - "Ae=A-(A5*a5); #absorption when hall is empty(m**2) \n", - "T=0.16*V/A; #reverbration time(second)\n", - "Te=0.16*V/Ae; #reverbration time when hall is empty(second)\n", - "\n", - "#Result\n", - "print \"reverbration time is\",round(T,1),\"second\"\n", - "print \"reverbration time when hall is empty is\",round(Te,1),\"second\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 3, Page number 14.19" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "total absorption is 1000 m**2 or OWU\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "V=7500; #volume(m**3)\n", - "T=1.2; #reverbration time(second)\n", - "\n", - "#Calculation\n", - "A=0.16*V/T; #total absorption(OWU)\n", - "\n", - "#Result\n", - "print \"total absorption is\",int(A),\"m**2 or OWU\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 4, Page number 14.19" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "change in reverbration time is 0.727 second\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "V=12*10**4; #volume(m**3)\n", - "a=13200; #absorption(m**2)\n", - "\n", - "#Calculation\n", - "T1=0.16*V/a; #reverbration time(s)\n", - "T2=T1/2; #reverbration time when audience fill the hall(s)\n", - "T=T1-T2; #change in reverbration time(second)\n", - "\n", - "#Result\n", - "print \"change in reverbration time is\",round(T,3),\"second\"" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 2", - "language": "python", - "name": "python2" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.11" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/Solid_State_Physics_by_Dr._M._Arumugam/Chapter14_EldnQKR.ipynb b/Solid_State_Physics_by_Dr._M._Arumugam/Chapter14_EldnQKR.ipynb deleted file mode 100644 index 92fbeef0..00000000 --- a/Solid_State_Physics_by_Dr._M._Arumugam/Chapter14_EldnQKR.ipynb +++ /dev/null @@ -1,205 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 14: Acoustics of Buildings and Acoustic Quieting" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 1, Page number 14.18" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "reverbration time is 3.9 s\n", - "reverbration time when audience fill the hall is 1.95 s\n", - "reverbration time is reduced to one-half\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "V=2265; #volume(m**3)\n", - "a=92.9; #absorption(m**2)\n", - "\n", - "#Calculation\n", - "T=0.16*V/a; #reverbration time(s)\n", - "T2=T/2; #reverbration time when audience fill the hall(s)\n", - "\n", - "#Result\n", - "print \"reverbration time is\",round(T,1),\"s\"\n", - "print \"reverbration time when audience fill the hall is\",round(T2,2),\"s\"\n", - "print \"reverbration time is reduced to one-half\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 2, Page number 14.18" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "reverbration time is 0.8 second\n", - "reverbration time when hall is empty is 1.6 second\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "V=12*30*6; #volume(m**3)\n", - "A1=450; #area of plastered wall(m**2)\n", - "a1=0.03; #coefficient of absorption(m**2)\n", - "A2=360; #area of wooden floor(m**2)\n", - "a2=0.06; #coefficient of absorption(m**2)\n", - "A3=24; #area of glass(m**2)\n", - "a3=0.25; #coefficient of absorption(m**2)\n", - "A4=600; #area of seats(m**2)\n", - "a4=0.3; #coefficient of absorption(m**2)\n", - "A5=500; #area of hall with audience(m**2)\n", - "a5=0.43; #coefficient of absorption(m**2)\n", - "\n", - "#Calculation\n", - "A=(A1*a1)+(A2*a2)+(A3*a3)+(A4*a4)+(A5*a5); #total absorption(m**2)\n", - "Ae=A-(A5*a5); #absorption when hall is empty(m**2) \n", - "T=0.16*V/A; #reverbration time(second)\n", - "Te=0.16*V/Ae; #reverbration time when hall is empty(second)\n", - "\n", - "#Result\n", - "print \"reverbration time is\",round(T,1),\"second\"\n", - "print \"reverbration time when hall is empty is\",round(Te,1),\"second\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 3, Page number 14.19" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "total absorption is 1000 m**2 or OWU\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "V=7500; #volume(m**3)\n", - "T=1.2; #reverbration time(second)\n", - "\n", - "#Calculation\n", - "A=0.16*V/T; #total absorption(OWU)\n", - "\n", - "#Result\n", - "print \"total absorption is\",int(A),\"m**2 or OWU\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 4, Page number 14.19" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "change in reverbration time is 0.727 second\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "V=12*10**4; #volume(m**3)\n", - "a=13200; #absorption(m**2)\n", - "\n", - "#Calculation\n", - "T1=0.16*V/a; #reverbration time(s)\n", - "T2=T1/2; #reverbration time when audience fill the hall(s)\n", - "T=T1-T2; #change in reverbration time(second)\n", - "\n", - "#Result\n", - "print \"change in reverbration time is\",round(T,3),\"second\"" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 2", - "language": "python", - "name": "python2" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.11" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/Solid_State_Physics_by_Dr._M._Arumugam/Chapter1_tdy6Tl6.ipynb b/Solid_State_Physics_by_Dr._M._Arumugam/Chapter1_tdy6Tl6.ipynb deleted file mode 100644 index 7770f9a6..00000000 --- a/Solid_State_Physics_by_Dr._M._Arumugam/Chapter1_tdy6Tl6.ipynb +++ /dev/null @@ -1,151 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 1: Bonding in Solids" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 1, Page number 1.21" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "-2*a/r**3 + 90*b/r**11\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "from sympy import diff,Symbol\n", - "import numpy as np\n", - "\n", - "#Variable declaration\n", - "n=1;\n", - "m=9;\n", - "a=Symbol('a')\n", - "b=Symbol('b')\n", - "r=Symbol('r')\n", - "\n", - "#Calculation\n", - "y=(-a/(r**n))+(b/(r**m));\n", - "y=diff(y,r);\n", - "y=diff(y,r);\n", - "\n", - "#Result\n", - "print y" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "young's modulus is 157 GPa\n" - ] - } - ], - "source": [ - "#since the values of a,b,r are declared as symbols in the above cell, it cannot be solved there. hence it is being solved here with the given variable declaration\n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "a=7.68*10**-29; \n", - "r0=2.5*10**-10; #radius(m)\n", - "\n", - "#Calculation\n", - "b=a*(r0**8)/9;\n", - "y=((-2*a*r0**8)+(90*b))/r0**11; \n", - "E=y/r0; #young's modulus(Pa)\n", - "\n", - "#Result\n", - "print \"young's modulus is\",int(E/10**9),\"GPa\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 2, Page number 1.22" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "effective charge is 0.72 *10**-19 coulomb\n", - "answer given in the book is wrong\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "dm=1.98*10**-29/3; #dipole moment\n", - "l=0.92*10**-10; #bond length(m)\n", - "\n", - "#Calculation\n", - "ec=dm/l; #effective charge(coulomb)\n", - "\n", - "#Result\n", - "print \"effective charge is\",round(ec*10**19,2),\"*10**-19 coulomb\"\n", - "print \"answer given in the book is wrong\"" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 2", - "language": "python", - "name": "python2" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.11" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/Solid_State_Physics_by_Dr._M._Arumugam/Chapter1_wnjphci.ipynb b/Solid_State_Physics_by_Dr._M._Arumugam/Chapter1_wnjphci.ipynb deleted file mode 100644 index 0faa0cad..00000000 --- a/Solid_State_Physics_by_Dr._M._Arumugam/Chapter1_wnjphci.ipynb +++ /dev/null @@ -1,139 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 1: Bonding in Solids" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 1, Page number 1.21" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "-2*a/r**3 + 90*b/r**11\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "from sympy import diff\n", - "import numpy as np\n", - "\n", - "#Variable declaration\n", - "n=1;\n", - "m=9;\n", - "a=Symbol('a')\n", - "b=Symbol('b')\n", - "r=Symbol('r')\n", - "\n", - "#Calculation\n", - "y=(-a/(r**n))+(b/(r**m));\n", - "y=diff(y,r);\n", - "y=diff(y,r);\n", - "\n", - "#Result\n", - "print y" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "young's modulus is 157 GPa\n" - ] - } - ], - "source": [ - "#since the values of a,b,r are declared as symbols in the above cell, it cannot be solved there. hence it is being solved here with the given variable declaration\n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "a=7.68*10**-29; \n", - "r0=2.5*10**-10; #radius(m)\n", - "\n", - "#Calculation\n", - "b=a*(r0**8)/9;\n", - "y=((-2*a*r0**8)+(90*b))/r0**11; \n", - "E=y/r0; #young's modulus(Pa)\n", - "\n", - "#Result\n", - "print \"young's modulus is\",int(E/10**9),\"GPa\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 2, Page number 1.22" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "effective charge is 0.72 *10**-19 coulomb\n", - "answer given in the book is wrong\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "dm=1.98*10**-29/3; #dipole moment\n", - "l=0.92*10**-10; #bond length(m)\n", - "\n", - "#Calculation\n", - "ec=dm/l; #effective charge(coulomb)\n", - "\n", - "#Result\n", - "print \"effective charge is\",round(ec*10**19,2),\"*10**-19 coulomb\"\n", - "print \"answer given in the book is wrong\"" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 2", - "language": "python", - "name": "python2" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/Solid_State_Physics_by_Dr._M._Arumugam/Chapter2_CYtbJvj.ipynb b/Solid_State_Physics_by_Dr._M._Arumugam/Chapter2_CYtbJvj.ipynb deleted file mode 100644 index 51d55e0b..00000000 --- a/Solid_State_Physics_by_Dr._M._Arumugam/Chapter2_CYtbJvj.ipynb +++ /dev/null @@ -1,319 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 2: Crystallography and Crystal Structures" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 2, Page number 2.21" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "spacing between (100) plane is 5.64 angstrom\n", - "spacing between (110) plane is 3.99 angstrom\n", - "answer for spacing between (110) plane given in the book is wrong\n", - "spacing between (111) plane is 3.26 angstrom\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "a=5.64; #lattice constant(angstrom)\n", - "h1=1;\n", - "k1=0;\n", - "l1=0;\n", - "h2=1;\n", - "k2=1;\n", - "l2=0;\n", - "h3=1;\n", - "k3=1;\n", - "l3=1;\n", - "\n", - "#Calculation\n", - "d100=a/math.sqrt(h1**2+k1**2+l1**2); #spacing between (100) plane\n", - "d110=a/math.sqrt(h2**2+k2**2+l2**2); #spacing between (110) plane\n", - "d111=a/math.sqrt(h3**2+k3**2+l3**2); #spacing between (111) plane\n", - "\n", - "#Result\n", - "print \"spacing between (100) plane is\",d100,\"angstrom\"\n", - "print \"spacing between (110) plane is\",round(d110,2),\"angstrom\"\n", - "print \"answer for spacing between (110) plane given in the book is wrong\"\n", - "print \"spacing between (111) plane is\",round(d111,2),\"angstrom\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 3, Page number 2.22" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "number of atoms in (100) is 1.535 *10**13 atoms/mm**2\n", - "number of atoms in (110) is 1.085 *10**13 atoms/mm**2\n", - "number of atoms in (111) is 1.772 *10**13 atoms/mm**2\n", - "answers given in the book vary due to rounding off errors\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "a=3.61*10**-7; #lattice constant(mm)\n", - "\n", - "#Calculation\n", - "A100=a**2; #surface area(mm**2)\n", - "n=1+(4*(1/4));\n", - "N1=n/A100; #number of atoms in (100)(per mm**2)\n", - "A110=math.sqrt(2)*a**2; #surface area(mm**2)\n", - "N2=n/A110; #number of atoms in (110)(per mm**2)\n", - "A111=math.sqrt(3)*a**2/2; #surface area(mm**2)\n", - "N3=n/A111; #number of atoms in (110)(per mm**2)\n", - "\n", - "#Result\n", - "print \"number of atoms in (100) is\",round(N1/10**13,3),\"*10**13 atoms/mm**2\"\n", - "print \"number of atoms in (110) is\",round(N2/10**13,3),\"*10**13 atoms/mm**2\"\n", - "print \"number of atoms in (111) is\",round(N3/10**13,3),\"*10**13 atoms/mm**2\"\n", - "print \"answers given in the book vary due to rounding off errors\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 4, Page number 2.23" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "wavelength of x rays is 1.552 angstrom\n", - "answer varies due to rounding off errors\n", - "energy of x rays is 8 *10**3 eV\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "n=4; \n", - "A=107.87; #atomic weight\n", - "rho=10500; #density(kg/m**3)\n", - "N=6.02*10**26; #number of molecules\n", - "theta=19+(12/60); #angle(degrees)\n", - "h=1;\n", - "k=1;\n", - "l=1;\n", - "h0=6.625*10**-34; #planck constant\n", - "c=3*10**8; #velocity of light(m/s)\n", - "e=1.6*10**-19; #charge(coulomb)\n", - "\n", - "#Calculation\n", - "theta=theta*math.pi/180; #angle(radian)\n", - "a=(n*A/(N*rho))**(1/3);\n", - "d=a*10**10/math.sqrt(h**2+k**2+l**2); \n", - "lamda=2*d*math.sin(theta); #wavelength of x rays(angstrom)\n", - "E=h0*c/(lamda*10**-10*e); #energy of x rays(eV)\n", - "\n", - "#Result\n", - "print \"wavelength of x rays is\",round(lamda,3),\"angstrom\"\n", - "print \"answer varies due to rounding off errors\"\n", - "print \"energy of x rays is\",int(E/10**3),\"*10**3 eV\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 5, Page number 2.23" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "density is 2332 kg/m**3\n", - "answer varies due to rounding off errors\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "n=8; #number of atoms\n", - "r=2.351*10**-10; #bond length(angstrom)\n", - "A=28.09; #Atomic wt. of NaCl\n", - "N=6.02*10**26 #Avagadro number\n", - "\n", - "#Calculation\n", - "a=4*r/math.sqrt(3); \n", - "rho=n*A/(N*a**3); #density(kg/m**3)\n", - "\n", - "#Result\n", - "print \"density is\",int(rho),\"kg/m**3\"\n", - "print \"answer varies due to rounding off errors\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 6, Page number 2.24" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "radius of largest sphere is 0.1547 r\n", - "maximum radius of sphere is 0.414 r\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "from sympy import Symbol\n", - "\n", - "#Variable declaration\n", - "r=Symbol('r')\n", - "\n", - "#Calculation\n", - "a1=4*r/math.sqrt(3);\n", - "R1=(a1/2)-r; #radius of largest sphere\n", - "a2=4*r/math.sqrt(2);\n", - "R2=(a2/2)-r; #maximum radius of sphere\n", - "\n", - "#Result\n", - "print \"radius of largest sphere is\",round(R1/r,4),\"r\"\n", - "print \"maximum radius of sphere is\",round(R2/r,3),\"r\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 7, Page number 2.25" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "percent volume change is 0.5 %\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "r1=1.258*10**-10; #radius(m)\n", - "r2=1.292*10**-10; #radius(m)\n", - "\n", - "#Calculation\n", - "a_bcc=4*r1/math.sqrt(3);\n", - "v=a_bcc**3;\n", - "V1=v/2;\n", - "a_fcc=2*math.sqrt(2)*r2;\n", - "V2=a_fcc**3/4;\n", - "V=(V1-V2)*100/V1; #percent volume change is\",V,\"%\"\n", - "\n", - "#Result\n", - "print \"percent volume change is\",round(V,1),\"%\"" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 2", - "language": "python", - "name": "python2" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.11" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/Solid_State_Physics_by_Dr._M._Arumugam/Chapter2_MymLk0N.ipynb b/Solid_State_Physics_by_Dr._M._Arumugam/Chapter2_MymLk0N.ipynb deleted file mode 100644 index 51d55e0b..00000000 --- a/Solid_State_Physics_by_Dr._M._Arumugam/Chapter2_MymLk0N.ipynb +++ /dev/null @@ -1,319 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 2: Crystallography and Crystal Structures" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 2, Page number 2.21" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "spacing between (100) plane is 5.64 angstrom\n", - "spacing between (110) plane is 3.99 angstrom\n", - "answer for spacing between (110) plane given in the book is wrong\n", - "spacing between (111) plane is 3.26 angstrom\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "a=5.64; #lattice constant(angstrom)\n", - "h1=1;\n", - "k1=0;\n", - "l1=0;\n", - "h2=1;\n", - "k2=1;\n", - "l2=0;\n", - "h3=1;\n", - "k3=1;\n", - "l3=1;\n", - "\n", - "#Calculation\n", - "d100=a/math.sqrt(h1**2+k1**2+l1**2); #spacing between (100) plane\n", - "d110=a/math.sqrt(h2**2+k2**2+l2**2); #spacing between (110) plane\n", - "d111=a/math.sqrt(h3**2+k3**2+l3**2); #spacing between (111) plane\n", - "\n", - "#Result\n", - "print \"spacing between (100) plane is\",d100,\"angstrom\"\n", - "print \"spacing between (110) plane is\",round(d110,2),\"angstrom\"\n", - "print \"answer for spacing between (110) plane given in the book is wrong\"\n", - "print \"spacing between (111) plane is\",round(d111,2),\"angstrom\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 3, Page number 2.22" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "number of atoms in (100) is 1.535 *10**13 atoms/mm**2\n", - "number of atoms in (110) is 1.085 *10**13 atoms/mm**2\n", - "number of atoms in (111) is 1.772 *10**13 atoms/mm**2\n", - "answers given in the book vary due to rounding off errors\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "a=3.61*10**-7; #lattice constant(mm)\n", - "\n", - "#Calculation\n", - "A100=a**2; #surface area(mm**2)\n", - "n=1+(4*(1/4));\n", - "N1=n/A100; #number of atoms in (100)(per mm**2)\n", - "A110=math.sqrt(2)*a**2; #surface area(mm**2)\n", - "N2=n/A110; #number of atoms in (110)(per mm**2)\n", - "A111=math.sqrt(3)*a**2/2; #surface area(mm**2)\n", - "N3=n/A111; #number of atoms in (110)(per mm**2)\n", - "\n", - "#Result\n", - "print \"number of atoms in (100) is\",round(N1/10**13,3),\"*10**13 atoms/mm**2\"\n", - "print \"number of atoms in (110) is\",round(N2/10**13,3),\"*10**13 atoms/mm**2\"\n", - "print \"number of atoms in (111) is\",round(N3/10**13,3),\"*10**13 atoms/mm**2\"\n", - "print \"answers given in the book vary due to rounding off errors\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 4, Page number 2.23" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "wavelength of x rays is 1.552 angstrom\n", - "answer varies due to rounding off errors\n", - "energy of x rays is 8 *10**3 eV\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "n=4; \n", - "A=107.87; #atomic weight\n", - "rho=10500; #density(kg/m**3)\n", - "N=6.02*10**26; #number of molecules\n", - "theta=19+(12/60); #angle(degrees)\n", - "h=1;\n", - "k=1;\n", - "l=1;\n", - "h0=6.625*10**-34; #planck constant\n", - "c=3*10**8; #velocity of light(m/s)\n", - "e=1.6*10**-19; #charge(coulomb)\n", - "\n", - "#Calculation\n", - "theta=theta*math.pi/180; #angle(radian)\n", - "a=(n*A/(N*rho))**(1/3);\n", - "d=a*10**10/math.sqrt(h**2+k**2+l**2); \n", - "lamda=2*d*math.sin(theta); #wavelength of x rays(angstrom)\n", - "E=h0*c/(lamda*10**-10*e); #energy of x rays(eV)\n", - "\n", - "#Result\n", - "print \"wavelength of x rays is\",round(lamda,3),\"angstrom\"\n", - "print \"answer varies due to rounding off errors\"\n", - "print \"energy of x rays is\",int(E/10**3),\"*10**3 eV\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 5, Page number 2.23" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "density is 2332 kg/m**3\n", - "answer varies due to rounding off errors\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "n=8; #number of atoms\n", - "r=2.351*10**-10; #bond length(angstrom)\n", - "A=28.09; #Atomic wt. of NaCl\n", - "N=6.02*10**26 #Avagadro number\n", - "\n", - "#Calculation\n", - "a=4*r/math.sqrt(3); \n", - "rho=n*A/(N*a**3); #density(kg/m**3)\n", - "\n", - "#Result\n", - "print \"density is\",int(rho),\"kg/m**3\"\n", - "print \"answer varies due to rounding off errors\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 6, Page number 2.24" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "radius of largest sphere is 0.1547 r\n", - "maximum radius of sphere is 0.414 r\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "from sympy import Symbol\n", - "\n", - "#Variable declaration\n", - "r=Symbol('r')\n", - "\n", - "#Calculation\n", - "a1=4*r/math.sqrt(3);\n", - "R1=(a1/2)-r; #radius of largest sphere\n", - "a2=4*r/math.sqrt(2);\n", - "R2=(a2/2)-r; #maximum radius of sphere\n", - "\n", - "#Result\n", - "print \"radius of largest sphere is\",round(R1/r,4),\"r\"\n", - "print \"maximum radius of sphere is\",round(R2/r,3),\"r\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 7, Page number 2.25" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "percent volume change is 0.5 %\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "r1=1.258*10**-10; #radius(m)\n", - "r2=1.292*10**-10; #radius(m)\n", - "\n", - "#Calculation\n", - "a_bcc=4*r1/math.sqrt(3);\n", - "v=a_bcc**3;\n", - "V1=v/2;\n", - "a_fcc=2*math.sqrt(2)*r2;\n", - "V2=a_fcc**3/4;\n", - "V=(V1-V2)*100/V1; #percent volume change is\",V,\"%\"\n", - "\n", - "#Result\n", - "print \"percent volume change is\",round(V,1),\"%\"" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 2", - "language": "python", - "name": "python2" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.11" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/Solid_State_Physics_by_Dr._M._Arumugam/Chapter3_Kh8IZS4.ipynb b/Solid_State_Physics_by_Dr._M._Arumugam/Chapter3_Kh8IZS4.ipynb deleted file mode 100644 index a9d0fcd4..00000000 --- a/Solid_State_Physics_by_Dr._M._Arumugam/Chapter3_Kh8IZS4.ipynb +++ /dev/null @@ -1,303 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 3: X-Ray Diffraction" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 1, Page number 3.9" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "maximum order of diffraction is 1.53\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "d=1.181; #lattice spacing(angstrom)\n", - "theta=90*math.pi/180; #glancing angle(radian)\n", - "lamda=1.540; #wavelength of X-rays(angstrom)\n", - "\n", - "#Calculation\n", - "n=2*d*math.sin(theta)/lamda; #maximum order of diffraction \n", - "\n", - "#Result\n", - "print \"maximum order of diffraction is\",round(n,2)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 2, Page number 3.9" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "cube edge of unit cell is 3.514 angstrom\n", - "answer given in the book varies due to rounding off errors\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "n=1; #order\n", - "theta=9.5*math.pi/180; #glancing angle(radian)\n", - "lamda=0.58; #wavelength(angstrom)\n", - "h=2;\n", - "k=0;\n", - "l=0;\n", - "\n", - "#Calculation\n", - "d=n*lamda/(2*math.sin(theta)); #lattice parameter(angstrom)\n", - "a=d*math.sqrt(h**2+k**2+l**2); #cube edge of unit cell(angstrom)\n", - "\n", - "#Result\n", - "print \"cube edge of unit cell is\",round(a,3),\"angstrom\"\n", - "print \"answer given in the book varies due to rounding off errors\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 3, Page number 3.10" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "glancing angle for 3rd order is 26 degrees 35 minutes\n", - "answer for minutes given in the book is wrong\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "theta=(8+(35/60))*math.pi/180; #glancing angle(radian)\n", - "lamda=0.842; #wavelength of X-rays(angstrom)\n", - "n1=1; #order\n", - "n3=3; #order \n", - "\n", - "#Calculation\n", - "theta3=math.asin(n3*lamda*math.sin(theta)/(n1*lamda))*180/math.pi; #glancing angle for 3rd order(degrees)\n", - "theta3d=int(theta3); #glancing angle for 3rd order(degrees) \n", - "theta3m=(theta3-theta3d)*60; #glancing angle for 3rd order(minutes)\n", - "\n", - "#Result\n", - "print \"glancing angle for 3rd order is\",theta3d,\"degrees\",int(theta3m),\"minutes\"\n", - "print \"answer for minutes given in the book is wrong\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 4, Page number 3.10" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "interplanar spacing is 2.22 angstrom\n", - "value of h**2+k**2+l**2 is 2\n", - "miller indices are (110) or (011) or (101)\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "theta=20.3*math.pi/180; #glancing angle(radian)\n", - "lamda=1.54; #wavelength of X-rays(angstrom)\n", - "n=1; #order\n", - "a=3.16; #lattice parameter(angstrom)\n", - "\n", - "#Calculation\n", - "d=n*lamda/(2*math.sin(theta)); #interplanar spacing(angstrom)\n", - "x=(a/d)**2; #assume x=(h**2+k**2+l**2)\n", - "\n", - "#Result\n", - "print \"interplanar spacing is\",round(d,2),\"angstrom\"\n", - "print \"value of h**2+k**2+l**2 is\",int(x)\n", - "print \"miller indices are (110) or (011) or (101)\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 5, Page number 3.11" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "wavelength is 1.553 angstrom\n", - "energy of X-rays is 8 *10**3 eV\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "n=4; #order\n", - "A=107.87; #atomic weight(kg)\n", - "theta=(19+(12/60))*math.pi/180; #glancing angle(radian)\n", - "h=1;\n", - "k=1;\n", - "l=1;\n", - "N=6.02*10**26; #avagadro number\n", - "rho=10500; #density(kg/m**3)\n", - "H=6.625*10**-34; #plancks constant(Js)\n", - "c=3*10**8; #velocity of light(m/s)\n", - "e=1.6*10**-19; #charge(coulomb)\n", - "\n", - "#Calculation\n", - "a=round(((n*A/(N*rho))**(1/3))*10**10,2); #lattice parameter(angstrom)\n", - "d=a/math.sqrt((h**2)+(k**2)+(l**2)); #lattice parameter(angstrom)\n", - "lamda=2*d*math.sin(theta); #wavelength(angstrom)\n", - "E=H*c/(lamda*10**-10*e); #energy of X-rays(eV)\n", - "\n", - "#Result\n", - "print \"wavelength is\",round(lamda,3),\"angstrom\"\n", - "print \"energy of X-rays is\",int(round(E/10**3)),\"*10**3 eV\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 6, Page number 3.12" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "specimen distance is 7.559 cm\n", - "answer given in the book varies due to rounding off errors\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "h=1;\n", - "k=1;\n", - "l=1;\n", - "a=4.57; #lattice parameter(angstrom)\n", - "lamda=1.52; #wavelength(angstrom)\n", - "r=5; #radius(cm)\n", - "\n", - "#Calculation\n", - "d=a/math.sqrt(h**2+k**2+l**2); #lattice parameter(angstrom)\n", - "theta=math.asin(lamda/(2*d)); #glancing angle(degrees)\n", - "X=r/math.tan(2*theta); #specimen distance(cm)\n", - "\n", - "#Result\n", - "print \"specimen distance is\",round(X,3),\"cm\"\n", - "print \"answer given in the book varies due to rounding off errors\"" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 2", - "language": "python", - "name": "python2" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.11" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/Solid_State_Physics_by_Dr._M._Arumugam/Chapter3_rTdfw6Q.ipynb b/Solid_State_Physics_by_Dr._M._Arumugam/Chapter3_rTdfw6Q.ipynb deleted file mode 100644 index a9d0fcd4..00000000 --- a/Solid_State_Physics_by_Dr._M._Arumugam/Chapter3_rTdfw6Q.ipynb +++ /dev/null @@ -1,303 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 3: X-Ray Diffraction" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 1, Page number 3.9" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "maximum order of diffraction is 1.53\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "d=1.181; #lattice spacing(angstrom)\n", - "theta=90*math.pi/180; #glancing angle(radian)\n", - "lamda=1.540; #wavelength of X-rays(angstrom)\n", - "\n", - "#Calculation\n", - "n=2*d*math.sin(theta)/lamda; #maximum order of diffraction \n", - "\n", - "#Result\n", - "print \"maximum order of diffraction is\",round(n,2)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 2, Page number 3.9" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "cube edge of unit cell is 3.514 angstrom\n", - "answer given in the book varies due to rounding off errors\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "n=1; #order\n", - "theta=9.5*math.pi/180; #glancing angle(radian)\n", - "lamda=0.58; #wavelength(angstrom)\n", - "h=2;\n", - "k=0;\n", - "l=0;\n", - "\n", - "#Calculation\n", - "d=n*lamda/(2*math.sin(theta)); #lattice parameter(angstrom)\n", - "a=d*math.sqrt(h**2+k**2+l**2); #cube edge of unit cell(angstrom)\n", - "\n", - "#Result\n", - "print \"cube edge of unit cell is\",round(a,3),\"angstrom\"\n", - "print \"answer given in the book varies due to rounding off errors\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 3, Page number 3.10" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "glancing angle for 3rd order is 26 degrees 35 minutes\n", - "answer for minutes given in the book is wrong\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "theta=(8+(35/60))*math.pi/180; #glancing angle(radian)\n", - "lamda=0.842; #wavelength of X-rays(angstrom)\n", - "n1=1; #order\n", - "n3=3; #order \n", - "\n", - "#Calculation\n", - "theta3=math.asin(n3*lamda*math.sin(theta)/(n1*lamda))*180/math.pi; #glancing angle for 3rd order(degrees)\n", - "theta3d=int(theta3); #glancing angle for 3rd order(degrees) \n", - "theta3m=(theta3-theta3d)*60; #glancing angle for 3rd order(minutes)\n", - "\n", - "#Result\n", - "print \"glancing angle for 3rd order is\",theta3d,\"degrees\",int(theta3m),\"minutes\"\n", - "print \"answer for minutes given in the book is wrong\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 4, Page number 3.10" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "interplanar spacing is 2.22 angstrom\n", - "value of h**2+k**2+l**2 is 2\n", - "miller indices are (110) or (011) or (101)\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "theta=20.3*math.pi/180; #glancing angle(radian)\n", - "lamda=1.54; #wavelength of X-rays(angstrom)\n", - "n=1; #order\n", - "a=3.16; #lattice parameter(angstrom)\n", - "\n", - "#Calculation\n", - "d=n*lamda/(2*math.sin(theta)); #interplanar spacing(angstrom)\n", - "x=(a/d)**2; #assume x=(h**2+k**2+l**2)\n", - "\n", - "#Result\n", - "print \"interplanar spacing is\",round(d,2),\"angstrom\"\n", - "print \"value of h**2+k**2+l**2 is\",int(x)\n", - "print \"miller indices are (110) or (011) or (101)\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 5, Page number 3.11" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "wavelength is 1.553 angstrom\n", - "energy of X-rays is 8 *10**3 eV\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "n=4; #order\n", - "A=107.87; #atomic weight(kg)\n", - "theta=(19+(12/60))*math.pi/180; #glancing angle(radian)\n", - "h=1;\n", - "k=1;\n", - "l=1;\n", - "N=6.02*10**26; #avagadro number\n", - "rho=10500; #density(kg/m**3)\n", - "H=6.625*10**-34; #plancks constant(Js)\n", - "c=3*10**8; #velocity of light(m/s)\n", - "e=1.6*10**-19; #charge(coulomb)\n", - "\n", - "#Calculation\n", - "a=round(((n*A/(N*rho))**(1/3))*10**10,2); #lattice parameter(angstrom)\n", - "d=a/math.sqrt((h**2)+(k**2)+(l**2)); #lattice parameter(angstrom)\n", - "lamda=2*d*math.sin(theta); #wavelength(angstrom)\n", - "E=H*c/(lamda*10**-10*e); #energy of X-rays(eV)\n", - "\n", - "#Result\n", - "print \"wavelength is\",round(lamda,3),\"angstrom\"\n", - "print \"energy of X-rays is\",int(round(E/10**3)),\"*10**3 eV\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 6, Page number 3.12" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "specimen distance is 7.559 cm\n", - "answer given in the book varies due to rounding off errors\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "h=1;\n", - "k=1;\n", - "l=1;\n", - "a=4.57; #lattice parameter(angstrom)\n", - "lamda=1.52; #wavelength(angstrom)\n", - "r=5; #radius(cm)\n", - "\n", - "#Calculation\n", - "d=a/math.sqrt(h**2+k**2+l**2); #lattice parameter(angstrom)\n", - "theta=math.asin(lamda/(2*d)); #glancing angle(degrees)\n", - "X=r/math.tan(2*theta); #specimen distance(cm)\n", - "\n", - "#Result\n", - "print \"specimen distance is\",round(X,3),\"cm\"\n", - "print \"answer given in the book varies due to rounding off errors\"" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 2", - "language": "python", - "name": "python2" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.11" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/Solid_State_Physics_by_Dr._M._Arumugam/Chapter4_OPOooLb.ipynb b/Solid_State_Physics_by_Dr._M._Arumugam/Chapter4_OPOooLb.ipynb deleted file mode 100644 index e9783bbb..00000000 --- a/Solid_State_Physics_by_Dr._M._Arumugam/Chapter4_OPOooLb.ipynb +++ /dev/null @@ -1,211 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 4: Defects in Crystals" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 1, Page number 4.14" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "equilibrium concentration of vacancy at 300K is 7.577 *10**5\n", - "equilibrium concentration of vacancy at 900K is 6.502 *10**19\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "N=6.023*10**26; #avagadro number\n", - "T1=1/float('inf'); #temperature 0K(K)\n", - "T2=300;\n", - "T3=900; #temperature(K)\n", - "k=1.38*10**-23; #boltzmann constant \n", - "deltaHv=120*10**3*10**3/N; #enthalpy(J/vacancy)\n", - "\n", - "#Calculation\n", - "#n1=N*math.exp(-deltaHv/(k*T1)); #equilibrium concentration of vacancy at 0K\n", - "#value of n1 cant be calculated in python, as the denominator is 0 and it shows float division error\n", - "n2=N*math.exp(-deltaHv/(k*T2)); #equilibrium concentration of vacancy at 300K \n", - "n3=N*math.exp(-deltaHv/(k*T3)); #equilibrium concentration of vacancy at 900K \n", - "\n", - "#Result\n", - "#print \"equilibrium concentration of vacancy at 0K is\",n1\n", - "print \"equilibrium concentration of vacancy at 300K is\",round(n2/10**5,3),\"*10**5\"\n", - "print \"equilibrium concentration of vacancy at 900K is\",round(n3/10**19,3),\"*10**19\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 2, Page number 4.15" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fraction of vacancies at 1000 is 8.5 *10**-7\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "nbyN1=1*10**-10; #fraction of vacancies\n", - "T1=500+273;\n", - "T2=1000+273;\n", - "\n", - "#Calculation\n", - "lnx=T1*math.log(nbyN1)/T2;\n", - "x=math.exp(lnx); #fraction of vacancies at 1000\n", - "\n", - "#Result\n", - "print \"fraction of vacancies at 1000 is\",round(x*10**7,1),\"*10**-7\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 3, Page number 4.16" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "concentration of schottky defects is 6.42 *10**11 per m**3\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "d=2.82*10**-10; #interionic distance(m)\n", - "T=300; #temperature(K)\n", - "k=1.38*10**-23; #boltzmann constant \n", - "e=1.6*10**-19; #charge(coulomb)\n", - "n=4; #number of molecules\n", - "deltaHs=1.971*e; #enthalpy(J)\n", - "\n", - "#Calculation\n", - "V=(2*d)**3; #volume of unit cell(m**3)\n", - "N=n/V; #number of ion pairs\n", - "x=deltaHs/(2*k*T);\n", - "n=N*math.exp(-x); #concentration of schottky defects(per m**3)\n", - "\n", - "#Result\n", - "print \"concentration of schottky defects is\",round(n*10**-11,2),\"*10**11 per m**3\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 4, Page number 4.17" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "concentration of schottky defects is 9.23 *10**12 per cm**3\n", - "amount of climb down by the dislocations is 0.1846 step or 0.3692 *10**-8 cm\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "N=6.026*10**23; #avagadro number \n", - "T=500; #temperature(K)\n", - "k=1.38*10**-23; #boltzmann constant \n", - "deltaHv=1.6*10**-19; #charge(coulomb)\n", - "V=5.55; #molar volume(cm**3)\n", - "nv=5*10**7*10**6; #number of vacancies\n", - "\n", - "#Calculation\n", - "n=N*math.exp(-deltaHv/(k*T))/V; #concentration of schottky defects(per m**3)\n", - "x=round(n/nv,4); #amount of climb down by the dislocations(step)\n", - "xcm=2*x*10**-8; #amount of climb down by the dislocations(cm)\n", - "\n", - "#Result\n", - "print \"concentration of schottky defects is\",round(n/10**12,2),\"*10**12 per cm**3\"\n", - "print \"amount of climb down by the dislocations is\",x,\"step or\",xcm*10**8,\"*10**-8 cm\" " - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 2", - "language": "python", - "name": "python2" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.11" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/Solid_State_Physics_by_Dr._M._Arumugam/Chapter4_WFPI35t.ipynb b/Solid_State_Physics_by_Dr._M._Arumugam/Chapter4_WFPI35t.ipynb deleted file mode 100644 index e9783bbb..00000000 --- a/Solid_State_Physics_by_Dr._M._Arumugam/Chapter4_WFPI35t.ipynb +++ /dev/null @@ -1,211 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 4: Defects in Crystals" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 1, Page number 4.14" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "equilibrium concentration of vacancy at 300K is 7.577 *10**5\n", - "equilibrium concentration of vacancy at 900K is 6.502 *10**19\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "N=6.023*10**26; #avagadro number\n", - "T1=1/float('inf'); #temperature 0K(K)\n", - "T2=300;\n", - "T3=900; #temperature(K)\n", - "k=1.38*10**-23; #boltzmann constant \n", - "deltaHv=120*10**3*10**3/N; #enthalpy(J/vacancy)\n", - "\n", - "#Calculation\n", - "#n1=N*math.exp(-deltaHv/(k*T1)); #equilibrium concentration of vacancy at 0K\n", - "#value of n1 cant be calculated in python, as the denominator is 0 and it shows float division error\n", - "n2=N*math.exp(-deltaHv/(k*T2)); #equilibrium concentration of vacancy at 300K \n", - "n3=N*math.exp(-deltaHv/(k*T3)); #equilibrium concentration of vacancy at 900K \n", - "\n", - "#Result\n", - "#print \"equilibrium concentration of vacancy at 0K is\",n1\n", - "print \"equilibrium concentration of vacancy at 300K is\",round(n2/10**5,3),\"*10**5\"\n", - "print \"equilibrium concentration of vacancy at 900K is\",round(n3/10**19,3),\"*10**19\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 2, Page number 4.15" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fraction of vacancies at 1000 is 8.5 *10**-7\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "nbyN1=1*10**-10; #fraction of vacancies\n", - "T1=500+273;\n", - "T2=1000+273;\n", - "\n", - "#Calculation\n", - "lnx=T1*math.log(nbyN1)/T2;\n", - "x=math.exp(lnx); #fraction of vacancies at 1000\n", - "\n", - "#Result\n", - "print \"fraction of vacancies at 1000 is\",round(x*10**7,1),\"*10**-7\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 3, Page number 4.16" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "concentration of schottky defects is 6.42 *10**11 per m**3\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "d=2.82*10**-10; #interionic distance(m)\n", - "T=300; #temperature(K)\n", - "k=1.38*10**-23; #boltzmann constant \n", - "e=1.6*10**-19; #charge(coulomb)\n", - "n=4; #number of molecules\n", - "deltaHs=1.971*e; #enthalpy(J)\n", - "\n", - "#Calculation\n", - "V=(2*d)**3; #volume of unit cell(m**3)\n", - "N=n/V; #number of ion pairs\n", - "x=deltaHs/(2*k*T);\n", - "n=N*math.exp(-x); #concentration of schottky defects(per m**3)\n", - "\n", - "#Result\n", - "print \"concentration of schottky defects is\",round(n*10**-11,2),\"*10**11 per m**3\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 4, Page number 4.17" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "concentration of schottky defects is 9.23 *10**12 per cm**3\n", - "amount of climb down by the dislocations is 0.1846 step or 0.3692 *10**-8 cm\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "N=6.026*10**23; #avagadro number \n", - "T=500; #temperature(K)\n", - "k=1.38*10**-23; #boltzmann constant \n", - "deltaHv=1.6*10**-19; #charge(coulomb)\n", - "V=5.55; #molar volume(cm**3)\n", - "nv=5*10**7*10**6; #number of vacancies\n", - "\n", - "#Calculation\n", - "n=N*math.exp(-deltaHv/(k*T))/V; #concentration of schottky defects(per m**3)\n", - "x=round(n/nv,4); #amount of climb down by the dislocations(step)\n", - "xcm=2*x*10**-8; #amount of climb down by the dislocations(cm)\n", - "\n", - "#Result\n", - "print \"concentration of schottky defects is\",round(n/10**12,2),\"*10**12 per cm**3\"\n", - "print \"amount of climb down by the dislocations is\",x,\"step or\",xcm*10**8,\"*10**-8 cm\" " - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 2", - "language": "python", - "name": "python2" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.11" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/Solid_State_Physics_by_Dr._M._Arumugam/Chapter5_YkzzeVY.ipynb b/Solid_State_Physics_by_Dr._M._Arumugam/Chapter5_YkzzeVY.ipynb deleted file mode 100644 index be92b558..00000000 --- a/Solid_State_Physics_by_Dr._M._Arumugam/Chapter5_YkzzeVY.ipynb +++ /dev/null @@ -1,121 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 5: Elements of Statistical Mechanics" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 3, Page number 5.32" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "temperature is 1261.6 K\n", - "answer given in the book is wrong\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "E=5.5; #energy(eV)\n", - "Ef=5; #fermi energy(eV)\n", - "p=1/100; #probability\n", - "e=1.6*10**-19; #charge(coulomb)\n", - "k=1.38*10**-23; #boltzmann constant \n", - "\n", - "#Calculation\n", - "x=E-Ef; #difference in energy(eV)\n", - "y=math.log((1/p)-1);\n", - "T=x*e/(k*y); #temperature(K)\n", - "\n", - "#Result\n", - "print \"temperature is\",round(T,1),\"K\"\n", - "print \"answer given in the book is wrong\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 4, Page number 5.32" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fermi energy is 3.15 eV\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "rho=970; #density(kg/m**3)\n", - "N=6.02*10**26; #avagadro number\n", - "A=23; #atomic weight(kg)\n", - "h=6.62*10**-34; #planks constant(Js)\n", - "m=9.1*10**-31; #mass(kg)\n", - "e=1.6*10**-19; #charge(coulomb)\n", - "\n", - "#Calculation\n", - "n=rho*N/A; #number of atoms per m**3\n", - "EF=(h**2/(8*m))*((3*n/math.pi)**(2/3)); #fermi energy(J)\n", - "EF=EF/e; #fermi energy(eV)\n", - "\n", - "#Result\n", - "print \"fermi energy is\",round(EF,2),\"eV\"" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 2", - "language": "python", - "name": "python2" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.11" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/Solid_State_Physics_by_Dr._M._Arumugam/Chapter5_q1gneks.ipynb b/Solid_State_Physics_by_Dr._M._Arumugam/Chapter5_q1gneks.ipynb deleted file mode 100644 index be92b558..00000000 --- a/Solid_State_Physics_by_Dr._M._Arumugam/Chapter5_q1gneks.ipynb +++ /dev/null @@ -1,121 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 5: Elements of Statistical Mechanics" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 3, Page number 5.32" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "temperature is 1261.6 K\n", - "answer given in the book is wrong\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "E=5.5; #energy(eV)\n", - "Ef=5; #fermi energy(eV)\n", - "p=1/100; #probability\n", - "e=1.6*10**-19; #charge(coulomb)\n", - "k=1.38*10**-23; #boltzmann constant \n", - "\n", - "#Calculation\n", - "x=E-Ef; #difference in energy(eV)\n", - "y=math.log((1/p)-1);\n", - "T=x*e/(k*y); #temperature(K)\n", - "\n", - "#Result\n", - "print \"temperature is\",round(T,1),\"K\"\n", - "print \"answer given in the book is wrong\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 4, Page number 5.32" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fermi energy is 3.15 eV\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "rho=970; #density(kg/m**3)\n", - "N=6.02*10**26; #avagadro number\n", - "A=23; #atomic weight(kg)\n", - "h=6.62*10**-34; #planks constant(Js)\n", - "m=9.1*10**-31; #mass(kg)\n", - "e=1.6*10**-19; #charge(coulomb)\n", - "\n", - "#Calculation\n", - "n=rho*N/A; #number of atoms per m**3\n", - "EF=(h**2/(8*m))*((3*n/math.pi)**(2/3)); #fermi energy(J)\n", - "EF=EF/e; #fermi energy(eV)\n", - "\n", - "#Result\n", - "print \"fermi energy is\",round(EF,2),\"eV\"" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 2", - "language": "python", - "name": "python2" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.11" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/Solid_State_Physics_by_Dr._M._Arumugam/Chapter6_MR0bNFM.ipynb b/Solid_State_Physics_by_Dr._M._Arumugam/Chapter6_MR0bNFM.ipynb deleted file mode 100644 index ab8cdc23..00000000 --- a/Solid_State_Physics_by_Dr._M._Arumugam/Chapter6_MR0bNFM.ipynb +++ /dev/null @@ -1,331 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 6: Principles of Quantum Mechanics" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 1, Page number 6.22" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "deBroglie wavelength is 0.66 angstrom\n", - "spacing between planes is 0.35 angstrom\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "V=344; #voltage(V)\n", - "theta=40; #angle(degrees)\n", - "n=1; \n", - "\n", - "#Calculation\n", - "lamda=12.26/math.sqrt(V); #deBroglie wavelength(angstrom)\n", - "theta=((180-theta)/2)*math.pi/180; #angle(radian)\n", - "d=n*lamda/(2*math.sin(theta)); #spacing between planes(angstrom)\n", - "\n", - "#Result\n", - "print \"deBroglie wavelength is\",round(lamda,2),\"angstrom\"\n", - "print \"spacing between planes is\",round(d,2),\"angstrom\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 2, Page number 6.22" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "deBroglie wavelength is 0.00286 angstrom\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "e=1.6*10**-19; #charge(coulomb)\n", - "m=1.675*10**-27; #mass(kg)\n", - "E=10*10**3*e; #kinetic energy(J)\n", - "h=6.625*10**-34; #planks constant(Js)\n", - "\n", - "#Calculation\n", - "v=math.sqrt(2*E/m); #velocity(m/sec)\n", - "lamda=h*10**10/(m*v); #deBroglie wavelength(angstrom)\n", - "\n", - "#Result\n", - "print \"deBroglie wavelength is\",round(lamda,5),\"angstrom\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 3, Page number 6.22" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "energy difference is 1.81 *10**-37 J\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "m=9.1*10**-31; #mass(kg)\n", - "h=6.63*10**-34; #planks constant(Js)\n", - "a=1; #length(m)\n", - "nx1=1;\n", - "ny1=1;\n", - "nz1=1;\n", - "nx2=1;\n", - "ny2=1;\n", - "nz2=2;\n", - "\n", - "#Calculation\n", - "E1=h**2*(nx1**2+ny1**2+nz1**2)/(8*m*a**2); #energy of 1st quantum state(J)\n", - "E2=h**2*(nx2**2+ny2**2+nz2**2)/(8*m*a**2); #energy of 2nd quantum state(J)\n", - "E=E2-E1; #energy difference(J)\n", - "\n", - "#Result\n", - "print \"energy difference is\",round(E*10**37,2),\"*10**-37 J\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 4, Page number 6.23" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "uncertainity in position of electron is 0.002 m\n", - "uncertainity in position of bullet is 0.4 *10**-31 m\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "m1=9.1*10**-31; #mass(kg)\n", - "m2=0.05; #mass(kg)\n", - "v=300; #velocity(m/sec)\n", - "p=0.01/100; #probability\n", - "h=6.6*10**-34; #planks constant(Js)\n", - "\n", - "#Calculation\n", - "p1=m1*v; #momentum of electron(kg m/s)\n", - "deltap1=p*p1; \n", - "deltax1=h/(deltap1*4*math.pi); #uncertainity in position of electron(m)\n", - "p2=m2*v; #momentum of bullet(kg m/s)\n", - "deltap2=p*p2; \n", - "deltax2=h/(deltap2*4*math.pi); #uncertainity in position of bullet(m)\n", - "\n", - "#Result\n", - "print \"uncertainity in position of electron is\",round(deltax1,3),\"m\"\n", - "print \"uncertainity in position of bullet is\",round(deltax2*10**31,1),\"*10**-31 m\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 5, Page number 6.24" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "probability of finding the particle is 0.2\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "deltax=10**-10; #uncertainity in position(m)\n", - "L=10*10**-10; #width(m)\n", - "\n", - "#Calculation\n", - "p=2*deltax/L; #probability of finding the particle\n", - "\n", - "#Result\n", - "print \"probability of finding the particle is\",p" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 6, Page number 6.24" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "deBroglie wavelength is 2.73 *10**-11 m\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "e=1.6*10**-19; #charge(coulomb)\n", - "m=9.1*10**-31; #mass(kg)\n", - "E=2*10**3*e; #kinetic energy(J)\n", - "h=6.6*10**-34; #planks constant(Js)\n", - "\n", - "#Calculation\n", - "p=math.sqrt(2*E*m); #momentum(kg m/s)\n", - "lamda=h/p; #deBroglie wavelength(m)\n", - "\n", - "#Result\n", - "print \"deBroglie wavelength is\",round(lamda*10**11,2),\"*10**-11 m\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 7, Page number 6.24" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "deBroglie wavelength is 1.807 angstrom\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "e=1.602*10**-19; #charge(coulomb)\n", - "m=1.676*10**-27; #mass(kg)\n", - "h=6.62*10**-34; #planks constant(Js)\n", - "E=0.025*e; #kinetic energy(J)\n", - "\n", - "#Calculation\n", - "mv=math.sqrt(2*E*m); #velocity(m/s)\n", - "lamda=h*10**10/mv; #deBroglie wavelength(angstrom)\n", - "\n", - "#Result\n", - "print \"deBroglie wavelength is\",round(lamda,3),\"angstrom\"" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 2", - "language": "python", - "name": "python2" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.11" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/Solid_State_Physics_by_Dr._M._Arumugam/Chapter6_wKefPQQ.ipynb b/Solid_State_Physics_by_Dr._M._Arumugam/Chapter6_wKefPQQ.ipynb deleted file mode 100644 index ab8cdc23..00000000 --- a/Solid_State_Physics_by_Dr._M._Arumugam/Chapter6_wKefPQQ.ipynb +++ /dev/null @@ -1,331 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 6: Principles of Quantum Mechanics" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 1, Page number 6.22" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "deBroglie wavelength is 0.66 angstrom\n", - "spacing between planes is 0.35 angstrom\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "V=344; #voltage(V)\n", - "theta=40; #angle(degrees)\n", - "n=1; \n", - "\n", - "#Calculation\n", - "lamda=12.26/math.sqrt(V); #deBroglie wavelength(angstrom)\n", - "theta=((180-theta)/2)*math.pi/180; #angle(radian)\n", - "d=n*lamda/(2*math.sin(theta)); #spacing between planes(angstrom)\n", - "\n", - "#Result\n", - "print \"deBroglie wavelength is\",round(lamda,2),\"angstrom\"\n", - "print \"spacing between planes is\",round(d,2),\"angstrom\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 2, Page number 6.22" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "deBroglie wavelength is 0.00286 angstrom\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "e=1.6*10**-19; #charge(coulomb)\n", - "m=1.675*10**-27; #mass(kg)\n", - "E=10*10**3*e; #kinetic energy(J)\n", - "h=6.625*10**-34; #planks constant(Js)\n", - "\n", - "#Calculation\n", - "v=math.sqrt(2*E/m); #velocity(m/sec)\n", - "lamda=h*10**10/(m*v); #deBroglie wavelength(angstrom)\n", - "\n", - "#Result\n", - "print \"deBroglie wavelength is\",round(lamda,5),\"angstrom\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 3, Page number 6.22" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "energy difference is 1.81 *10**-37 J\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "m=9.1*10**-31; #mass(kg)\n", - "h=6.63*10**-34; #planks constant(Js)\n", - "a=1; #length(m)\n", - "nx1=1;\n", - "ny1=1;\n", - "nz1=1;\n", - "nx2=1;\n", - "ny2=1;\n", - "nz2=2;\n", - "\n", - "#Calculation\n", - "E1=h**2*(nx1**2+ny1**2+nz1**2)/(8*m*a**2); #energy of 1st quantum state(J)\n", - "E2=h**2*(nx2**2+ny2**2+nz2**2)/(8*m*a**2); #energy of 2nd quantum state(J)\n", - "E=E2-E1; #energy difference(J)\n", - "\n", - "#Result\n", - "print \"energy difference is\",round(E*10**37,2),\"*10**-37 J\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 4, Page number 6.23" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "uncertainity in position of electron is 0.002 m\n", - "uncertainity in position of bullet is 0.4 *10**-31 m\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "m1=9.1*10**-31; #mass(kg)\n", - "m2=0.05; #mass(kg)\n", - "v=300; #velocity(m/sec)\n", - "p=0.01/100; #probability\n", - "h=6.6*10**-34; #planks constant(Js)\n", - "\n", - "#Calculation\n", - "p1=m1*v; #momentum of electron(kg m/s)\n", - "deltap1=p*p1; \n", - "deltax1=h/(deltap1*4*math.pi); #uncertainity in position of electron(m)\n", - "p2=m2*v; #momentum of bullet(kg m/s)\n", - "deltap2=p*p2; \n", - "deltax2=h/(deltap2*4*math.pi); #uncertainity in position of bullet(m)\n", - "\n", - "#Result\n", - "print \"uncertainity in position of electron is\",round(deltax1,3),\"m\"\n", - "print \"uncertainity in position of bullet is\",round(deltax2*10**31,1),\"*10**-31 m\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 5, Page number 6.24" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "probability of finding the particle is 0.2\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "deltax=10**-10; #uncertainity in position(m)\n", - "L=10*10**-10; #width(m)\n", - "\n", - "#Calculation\n", - "p=2*deltax/L; #probability of finding the particle\n", - "\n", - "#Result\n", - "print \"probability of finding the particle is\",p" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 6, Page number 6.24" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "deBroglie wavelength is 2.73 *10**-11 m\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "e=1.6*10**-19; #charge(coulomb)\n", - "m=9.1*10**-31; #mass(kg)\n", - "E=2*10**3*e; #kinetic energy(J)\n", - "h=6.6*10**-34; #planks constant(Js)\n", - "\n", - "#Calculation\n", - "p=math.sqrt(2*E*m); #momentum(kg m/s)\n", - "lamda=h/p; #deBroglie wavelength(m)\n", - "\n", - "#Result\n", - "print \"deBroglie wavelength is\",round(lamda*10**11,2),\"*10**-11 m\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 7, Page number 6.24" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "deBroglie wavelength is 1.807 angstrom\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "e=1.602*10**-19; #charge(coulomb)\n", - "m=1.676*10**-27; #mass(kg)\n", - "h=6.62*10**-34; #planks constant(Js)\n", - "E=0.025*e; #kinetic energy(J)\n", - "\n", - "#Calculation\n", - "mv=math.sqrt(2*E*m); #velocity(m/s)\n", - "lamda=h*10**10/mv; #deBroglie wavelength(angstrom)\n", - "\n", - "#Result\n", - "print \"deBroglie wavelength is\",round(lamda,3),\"angstrom\"" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 2", - "language": "python", - "name": "python2" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.11" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/Solid_State_Physics_by_Dr._M._Arumugam/Chapter8_B0hDPyA.ipynb b/Solid_State_Physics_by_Dr._M._Arumugam/Chapter8_B0hDPyA.ipynb deleted file mode 100644 index 8d27e900..00000000 --- a/Solid_State_Physics_by_Dr._M._Arumugam/Chapter8_B0hDPyA.ipynb +++ /dev/null @@ -1,280 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 8: Semiconductor Physics" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 1, Page number 8.19" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "number of electron hole pairs is 2.32 *10**16 per cubic metre\n", - "answer varies due to rounding off errors\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "ni1=2.5*10**19; #number of electron hole pairs\n", - "T1=300; #temperature(K)\n", - "Eg1=0.72*1.6*10**-19; #energy gap(J)\n", - "k=1.38*10**-23; #boltzmann constant\n", - "T2=310; #temperature(K)\n", - "Eg2=1.12*1.6*10**-19; #energy gap(J)\n", - "\n", - "#Calculation\n", - "x1=-Eg1/(2*k*T1);\n", - "y1=(T1**(3/2))*math.exp(x1);\n", - "x2=-Eg2/(2*k*T2);\n", - "y2=(T2**(3/2))*math.exp(x2);\n", - "ni=ni1*(y2/y1); #number of electron hole pairs\n", - "\n", - "#Result\n", - "print \"number of electron hole pairs is\",round(ni/10**16,2),\"*10**16 per cubic metre\"\n", - "print \"answer varies due to rounding off errors\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 2, Page number 8.20" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "intrinsic conductivity is 2.016 ohm-1 metre-1\n", - "intrinsic resistivity is 0.496 ohm metre\n", - "number of germanium atoms per m**3 is 4.5 *10**28\n", - "new value of conductivity is 1.434 *10**4 ohm-1 metre-1\n", - "new value of resistivity is 0.697 *10**-4 ohm metre\n", - "answer for new values given in the book varies due to rounding off errors\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "w=72.6; #atomic weight\n", - "d=5400; #density(kg/m**3)\n", - "Na=6.025*10**26; #avagadro number\n", - "mew_e=0.4; #mobility of electron(m**2/Vs)\n", - "mew_h=0.2; #mobility of holes(m**2/Vs)\n", - "e=1.6*10**-19;\n", - "m=9.108*10**-31; #mass(kg)\n", - "ni=2.1*10**19; #number of electron hole pairs\n", - "Eg=0.7; #band gap(eV)\n", - "k=1.38*10**-23; #boltzmann constant\n", - "h=6.625*10**-34; #plancks constant\n", - "T=300; #temperature(K)\n", - "\n", - "#Calculation\n", - "sigma=ni*e*(mew_e+mew_h); #intrinsic conductivity(ohm-1 m-1)\n", - "rho=1/sigma; #resistivity(ohm m)\n", - "n=Na*d/w; #number of germanium atoms per m**3\n", - "p=n/10**5; #boron density\n", - "sigman=p*e*mew_h; #new value of conductivity(ohm-1 metre-1)\n", - "rhon=1/sigman; #new value of resistivity(ohm metre)\n", - "\n", - "#Result\n", - "print \"intrinsic conductivity is\",sigma,\"ohm-1 metre-1\"\n", - "print \"intrinsic resistivity is\",round(rho,3),\"ohm metre\"\n", - "print \"number of germanium atoms per m**3 is\",round(n/10**28,1),\"*10**28\"\n", - "print \"new value of conductivity is\",round(sigman/10**4,3),\"*10**4 ohm-1 metre-1\"\n", - "print \"new value of resistivity is\",round(rhon*10**4,3),\"*10**-4 ohm metre\"\n", - "print \"answer for new values given in the book varies due to rounding off errors\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 3, Page number 8.21" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "charge carrier density is 2 *10**22 per m**3\n", - "electron mobility is 0.035 m**2/Vs\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "e=1.6*10**-19;\n", - "RH=3.66*10**-4; #hall coefficient(m**3/coulomb)\n", - "sigma=112; #conductivity(ohm-1 m-1)\n", - "\n", - "#Calculation\n", - "ne=3*math.pi/(8*RH*e); #charge carrier density(per m**3)\n", - "mew_e=sigma/(e*ne); #electron mobility(m**2/Vs)\n", - "\n", - "#Result\n", - "print \"charge carrier density is\",int(ne/10**22),\"*10**22 per m**3\"\n", - "print \"electron mobility is\",round(mew_e,3),\"m**2/Vs\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 4, Page number 8.21" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "intrinsic conductivity is 0.432 *10**-3 ohm-1 m-1\n", - "conductivity during donor impurity is 10.4 ohm-1 m-1\n", - "conductivity during acceptor impurity is 4 ohm-1 m-1\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "mew_e=0.13; #mobility of electron(m**2/Vs)\n", - "mew_h=0.05; #mobility of holes(m**2/Vs)\n", - "e=1.6*10**-19;\n", - "ni=1.5*10**16; #number of electron hole pairs\n", - "N=5*10**28;\n", - "\n", - "#Calculation\n", - "sigma1=ni*e*(mew_e+mew_h); #intrinsic conductivity(ohm-1 m-1)\n", - "ND=N/10**8;\n", - "n=ni**2/ND;\n", - "sigma2=ND*e*mew_e; #conductivity(ohm-1 m-1)\n", - "sigma3=ND*e*mew_h; #conductivity(ohm-1 m-1)\n", - "\n", - "#Result\n", - "print \"intrinsic conductivity is\",round(sigma1*10**3,3),\"*10**-3 ohm-1 m-1\"\n", - "print \"conductivity during donor impurity is\",sigma2,\"ohm-1 m-1\"\n", - "print \"conductivity during acceptor impurity is\",int(sigma3),\"ohm-1 m-1\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 5, Page number 8.22" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "conductivity is 4.97 mho m-1\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "e=1.6*10**-19;\n", - "Eg=0.72; #band gap(eV)\n", - "k=1.38*10**-23; #boltzmann constant\n", - "T1=293; #temperature(K)\n", - "T2=313; #temperature(K)\n", - "sigma1=2; #conductivity(mho m-1)\n", - "\n", - "#Calculation\n", - "x=(Eg*e/(2*k))*((1/T1)-(1/T2));\n", - "y=round(x/2.303,3);\n", - "z=round(math.log10(sigma1),3);\n", - "log_sigma2=y+z;\n", - "sigma2=10**log_sigma2; #conductivity(mho m-1)\n", - "\n", - "#Result\n", - "print \"conductivity is\",round(sigma2,2),\"mho m-1\"" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 2", - "language": "python", - "name": "python2" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.11" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/Solid_State_Physics_by_Dr._M._Arumugam/Chapter8_D7glvQg.ipynb b/Solid_State_Physics_by_Dr._M._Arumugam/Chapter8_D7glvQg.ipynb deleted file mode 100644 index 8d27e900..00000000 --- a/Solid_State_Physics_by_Dr._M._Arumugam/Chapter8_D7glvQg.ipynb +++ /dev/null @@ -1,280 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 8: Semiconductor Physics" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 1, Page number 8.19" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "number of electron hole pairs is 2.32 *10**16 per cubic metre\n", - "answer varies due to rounding off errors\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "ni1=2.5*10**19; #number of electron hole pairs\n", - "T1=300; #temperature(K)\n", - "Eg1=0.72*1.6*10**-19; #energy gap(J)\n", - "k=1.38*10**-23; #boltzmann constant\n", - "T2=310; #temperature(K)\n", - "Eg2=1.12*1.6*10**-19; #energy gap(J)\n", - "\n", - "#Calculation\n", - "x1=-Eg1/(2*k*T1);\n", - "y1=(T1**(3/2))*math.exp(x1);\n", - "x2=-Eg2/(2*k*T2);\n", - "y2=(T2**(3/2))*math.exp(x2);\n", - "ni=ni1*(y2/y1); #number of electron hole pairs\n", - "\n", - "#Result\n", - "print \"number of electron hole pairs is\",round(ni/10**16,2),\"*10**16 per cubic metre\"\n", - "print \"answer varies due to rounding off errors\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 2, Page number 8.20" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "intrinsic conductivity is 2.016 ohm-1 metre-1\n", - "intrinsic resistivity is 0.496 ohm metre\n", - "number of germanium atoms per m**3 is 4.5 *10**28\n", - "new value of conductivity is 1.434 *10**4 ohm-1 metre-1\n", - "new value of resistivity is 0.697 *10**-4 ohm metre\n", - "answer for new values given in the book varies due to rounding off errors\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "w=72.6; #atomic weight\n", - "d=5400; #density(kg/m**3)\n", - "Na=6.025*10**26; #avagadro number\n", - "mew_e=0.4; #mobility of electron(m**2/Vs)\n", - "mew_h=0.2; #mobility of holes(m**2/Vs)\n", - "e=1.6*10**-19;\n", - "m=9.108*10**-31; #mass(kg)\n", - "ni=2.1*10**19; #number of electron hole pairs\n", - "Eg=0.7; #band gap(eV)\n", - "k=1.38*10**-23; #boltzmann constant\n", - "h=6.625*10**-34; #plancks constant\n", - "T=300; #temperature(K)\n", - "\n", - "#Calculation\n", - "sigma=ni*e*(mew_e+mew_h); #intrinsic conductivity(ohm-1 m-1)\n", - "rho=1/sigma; #resistivity(ohm m)\n", - "n=Na*d/w; #number of germanium atoms per m**3\n", - "p=n/10**5; #boron density\n", - "sigman=p*e*mew_h; #new value of conductivity(ohm-1 metre-1)\n", - "rhon=1/sigman; #new value of resistivity(ohm metre)\n", - "\n", - "#Result\n", - "print \"intrinsic conductivity is\",sigma,\"ohm-1 metre-1\"\n", - "print \"intrinsic resistivity is\",round(rho,3),\"ohm metre\"\n", - "print \"number of germanium atoms per m**3 is\",round(n/10**28,1),\"*10**28\"\n", - "print \"new value of conductivity is\",round(sigman/10**4,3),\"*10**4 ohm-1 metre-1\"\n", - "print \"new value of resistivity is\",round(rhon*10**4,3),\"*10**-4 ohm metre\"\n", - "print \"answer for new values given in the book varies due to rounding off errors\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 3, Page number 8.21" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "charge carrier density is 2 *10**22 per m**3\n", - "electron mobility is 0.035 m**2/Vs\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "e=1.6*10**-19;\n", - "RH=3.66*10**-4; #hall coefficient(m**3/coulomb)\n", - "sigma=112; #conductivity(ohm-1 m-1)\n", - "\n", - "#Calculation\n", - "ne=3*math.pi/(8*RH*e); #charge carrier density(per m**3)\n", - "mew_e=sigma/(e*ne); #electron mobility(m**2/Vs)\n", - "\n", - "#Result\n", - "print \"charge carrier density is\",int(ne/10**22),\"*10**22 per m**3\"\n", - "print \"electron mobility is\",round(mew_e,3),\"m**2/Vs\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 4, Page number 8.21" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "intrinsic conductivity is 0.432 *10**-3 ohm-1 m-1\n", - "conductivity during donor impurity is 10.4 ohm-1 m-1\n", - "conductivity during acceptor impurity is 4 ohm-1 m-1\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "mew_e=0.13; #mobility of electron(m**2/Vs)\n", - "mew_h=0.05; #mobility of holes(m**2/Vs)\n", - "e=1.6*10**-19;\n", - "ni=1.5*10**16; #number of electron hole pairs\n", - "N=5*10**28;\n", - "\n", - "#Calculation\n", - "sigma1=ni*e*(mew_e+mew_h); #intrinsic conductivity(ohm-1 m-1)\n", - "ND=N/10**8;\n", - "n=ni**2/ND;\n", - "sigma2=ND*e*mew_e; #conductivity(ohm-1 m-1)\n", - "sigma3=ND*e*mew_h; #conductivity(ohm-1 m-1)\n", - "\n", - "#Result\n", - "print \"intrinsic conductivity is\",round(sigma1*10**3,3),\"*10**-3 ohm-1 m-1\"\n", - "print \"conductivity during donor impurity is\",sigma2,\"ohm-1 m-1\"\n", - "print \"conductivity during acceptor impurity is\",int(sigma3),\"ohm-1 m-1\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 5, Page number 8.22" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "conductivity is 4.97 mho m-1\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "e=1.6*10**-19;\n", - "Eg=0.72; #band gap(eV)\n", - "k=1.38*10**-23; #boltzmann constant\n", - "T1=293; #temperature(K)\n", - "T2=313; #temperature(K)\n", - "sigma1=2; #conductivity(mho m-1)\n", - "\n", - "#Calculation\n", - "x=(Eg*e/(2*k))*((1/T1)-(1/T2));\n", - "y=round(x/2.303,3);\n", - "z=round(math.log10(sigma1),3);\n", - "log_sigma2=y+z;\n", - "sigma2=10**log_sigma2; #conductivity(mho m-1)\n", - "\n", - "#Result\n", - "print \"conductivity is\",round(sigma2,2),\"mho m-1\"" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 2", - "language": "python", - "name": "python2" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.11" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} |