summaryrefslogtreecommitdiff
path: root/Quantum_mechanics_by_M.C.Jain/chapter4_1.ipynb
diff options
context:
space:
mode:
authorThomas Stephen Lee2015-08-28 16:53:23 +0530
committerThomas Stephen Lee2015-08-28 16:53:23 +0530
commitdb0855dbeb41ecb8a51dde8587d43e5d7e83620f (patch)
treeb95975d958cba9af36cb1680e3f77205354f6512 /Quantum_mechanics_by_M.C.Jain/chapter4_1.ipynb
parent5a86a20b9de487553d4ef88719fb0fd76a5dd6a7 (diff)
downloadPython-Textbook-Companions-db0855dbeb41ecb8a51dde8587d43e5d7e83620f.tar.gz
Python-Textbook-Companions-db0855dbeb41ecb8a51dde8587d43e5d7e83620f.tar.bz2
Python-Textbook-Companions-db0855dbeb41ecb8a51dde8587d43e5d7e83620f.zip
add books
Diffstat (limited to 'Quantum_mechanics_by_M.C.Jain/chapter4_1.ipynb')
-rw-r--r--Quantum_mechanics_by_M.C.Jain/chapter4_1.ipynb329
1 files changed, 329 insertions, 0 deletions
diff --git a/Quantum_mechanics_by_M.C.Jain/chapter4_1.ipynb b/Quantum_mechanics_by_M.C.Jain/chapter4_1.ipynb
new file mode 100644
index 00000000..214047e7
--- /dev/null
+++ b/Quantum_mechanics_by_M.C.Jain/chapter4_1.ipynb
@@ -0,0 +1,329 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:b24ac6268abeb9e8ceafeb2b8fcac357229b810faa15684921ddb633803d3d99"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 4 Wave nature of matter and the need for a wave function"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.1 Page no 58"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Given \n",
+ "V=100 #volts\n",
+ "\n",
+ "#Calculation \n",
+ "import math\n",
+ "wavelength=12.3/(math.sqrt(V))\n",
+ "\n",
+ "#Result\n",
+ "print\"de Broglie wavelength of electrons \", wavelength,\"A\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "de Broglie wavelength of electrons 1.23 A\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.2 Page no 58"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Given\n",
+ "K=100 #ev\n",
+ "h=6.63*10**-34\n",
+ "m=9.1*10**-31\n",
+ "e=1.6*10**-19\n",
+ "\n",
+ "#Calculation\n",
+ "import math\n",
+ "v=h/(math.sqrt(2*m*K*e))\n",
+ "\n",
+ "#Result\n",
+ "print\"de broglie wavelength of electrons \",round(v*10**10,1),\"A\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "de broglie wavelength of electrons 1.2 A\n"
+ ]
+ }
+ ],
+ "prompt_number": 109
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.3 Page no 58"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Given\n",
+ "m=1.675*10**-27 #mass of neutron in kg\n",
+ "v=1.4*10**-10 #de broglie wavelength in m\n",
+ "h=6.63*10**-34 #Js\n",
+ "\n",
+ "#Calculation \n",
+ "K=(h**2/(2*m*(v**2)))/(1.6*10**-19)\n",
+ "\n",
+ "#Result\n",
+ "print\"Kinetic energy of neutron is \", round(K*10**2,2),\"*10**-2 ev\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Kinetic energy of neutron is 4.18 *10**-2 ev\n"
+ ]
+ }
+ ],
+ "prompt_number": 113
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.4 Page no 58"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Given\n",
+ "E=-3.4 #total energy in ev\n",
+ "h=6.63*10**-34 #Js\n",
+ "m=9.1*10**-31\n",
+ "e=1.6*10**-19 \n",
+ "\n",
+ "#Calculation\n",
+ "import math\n",
+ "K=-E\n",
+ "v=h/(math.sqrt(2*m*K*e))\n",
+ "\n",
+ "#Result \n",
+ "print\"(a) Kinetic energy \",K,\"ev\"\n",
+ "print\"(b) de broglie wavelength of the electron is \",round(v*10**10,3),\"A\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(a) Kinetic energy 3.4 ev\n",
+ "(b) de broglie wavelength of the electron is 6.663 A\n"
+ ]
+ }
+ ],
+ "prompt_number": 64
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.5 Page no 59"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Given\n",
+ "m=1.672*10**-27 #mass of neutron in kg\n",
+ "h=6.60*10**-34 #Js\n",
+ "v=1.0*10**-10 #de broglie wavelength in m\n",
+ "\n",
+ "#Calculation\n",
+ "K=(h**2/(2.0*m*v**2))/(1.6*10**-19)\n",
+ "\n",
+ "#Result\n",
+ "print\"Kinetic energy of a neutron is \", round(K*10**2,2),\"*10**-2 ev\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Kinetic energy of a neutron is 8.14 *10**-2 ev\n"
+ ]
+ }
+ ],
+ "prompt_number": 116
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.6 Page no 59"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Given\n",
+ "m=10*10**-3 #mass of a ball in kg \n",
+ "v=1 #Speed in m/s\n",
+ "h=6.63*10**-34 #Js\n",
+ "\n",
+ "#Calculation\n",
+ "V=h/(m*v) #Wavelength\n",
+ "\n",
+ "#Result\n",
+ "print \"de broglie wavelength is \",V,\"m\"\n",
+ "print\"This wavelength is negligible compared to the dimensions of the ball. therefore its effect can not be observed.\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "de broglie wavelength is 6.63e-32 m\n",
+ "This wavelength is negligible compared to the dimensions of the ball. therefore its effect can not be observed.\n"
+ ]
+ }
+ ],
+ "prompt_number": 87
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.7 Page no 59"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Given\n",
+ "T=27 #temperature in degree c\n",
+ "K=1.38*10**-23 #boltzmann constant in J/K\n",
+ "h=6.63*10**-34 #Js\n",
+ "m=1.67*10**-27\n",
+ "\n",
+ "#Calculation\n",
+ "import math\n",
+ "T1=T+273\n",
+ "v=h/(math.sqrt(2*m*K*T1))\n",
+ "\n",
+ "#Result\n",
+ "print\"de broglie wavelength is \",round(v*10**10,2),\"A\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "de broglie wavelength is 1.78 A\n"
+ ]
+ }
+ ],
+ "prompt_number": 94
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.10 Page no 64"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Given\n",
+ "V=100 #ev\n",
+ "a=10 #degree\n",
+ "n=1\n",
+ "\n",
+ "#Calculation\n",
+ "import math\n",
+ "v=12.3/(math.sqrt(V)) #De broglie wavelength\n",
+ "d=v/(2*math.sin(a*3.14/180.0))\n",
+ "n=(2*d)/v\n",
+ "\n",
+ "#Result\n",
+ "print\"(a) Spacing between the crystal plane is \", round(d,2),\"A\"\n",
+ "print\"(b) Peaks in the interference pattern is \",round(n,2)\n",
+ "print\"the largest possible value of n is 5\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(a) Spacing between the crystal plane is 3.54 A\n",
+ "(b) Peaks in the interference pattern is 5.76\n",
+ "the largest possible value of n is 5\n"
+ ]
+ }
+ ],
+ "prompt_number": 117
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file