diff options
author | hardythe1 | 2015-06-11 17:31:11 +0530 |
---|---|---|
committer | hardythe1 | 2015-06-11 17:31:11 +0530 |
commit | 251a07c4cbed1a5a960f5ed416ce6ac13c8152b7 (patch) | |
tree | cb7f084fad6d7ee6ae89e586fad0e909b5408319 /Principles_Of_Geotechnical_Engineering_by_B._M._Das/Chapter15.ipynb | |
parent | 47d7279a724246ef7aa0f5359cf417992ed04449 (diff) | |
download | Python-Textbook-Companions-251a07c4cbed1a5a960f5ed416ce6ac13c8152b7.tar.gz Python-Textbook-Companions-251a07c4cbed1a5a960f5ed416ce6ac13c8152b7.tar.bz2 Python-Textbook-Companions-251a07c4cbed1a5a960f5ed416ce6ac13c8152b7.zip |
add books
Diffstat (limited to 'Principles_Of_Geotechnical_Engineering_by_B._M._Das/Chapter15.ipynb')
-rwxr-xr-x | Principles_Of_Geotechnical_Engineering_by_B._M._Das/Chapter15.ipynb | 499 |
1 files changed, 499 insertions, 0 deletions
diff --git a/Principles_Of_Geotechnical_Engineering_by_B._M._Das/Chapter15.ipynb b/Principles_Of_Geotechnical_Engineering_by_B._M._Das/Chapter15.ipynb new file mode 100755 index 00000000..04d58e71 --- /dev/null +++ b/Principles_Of_Geotechnical_Engineering_by_B._M._Das/Chapter15.ipynb @@ -0,0 +1,499 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:4c2cef1cd7673363b2ef6cb15cb908c88921a9f728253dd7a799bca223f736c1"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter15-Slope Stability"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg518"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#a.The factor of safety against sliding along the soil-rock interface.\n",
+ "#b.The height,H, that will give a factor of safety (Fs) of 2 against sliding alongthe soil-rock interface.\n",
+ "Gs=17.8\n",
+ "Gw=9.81\n",
+ "C=10.\n",
+ "c=20.\n",
+ "b=15.\n",
+ "H=6.\n",
+ "G=Gs-Gw\n",
+ "Fs= C/(Gs*H*math.cos(b/57.3)*math.cos(b/57.3)*math.tan(b/57.3))+G*math.tan(c/57.3)/(Gs*math.tan(b/57.3))\n",
+ "print'%s %.2f %s'%('a)The factor of safety = ',Fs,' ')\n",
+ "Fs=2.\n",
+ "H=2.247/(Fs-0.61)\n",
+ "print'%s %.2f %s'%(' b)H= ',H,' m')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "a)The factor of safety = 0.98 \n",
+ " b)H= 1.62 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg529"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#a.Determine the maximum depth up to which the excavation can be carried out.\n",
+ "#b.Find the radius,r, of the critical circle when the factor of safety is equal to 1(Part a).\n",
+ "#c. Find the distance . BC\n",
+ "Cu=40.\n",
+ "G=17.5\n",
+ "b=60.\n",
+ "a=35.\n",
+ "c=72.5\n",
+ "m=0.195\n",
+ "Hc=Cu/(G*m)\n",
+ "r=Hc/(2.*math.sin(a/57.3)*math.sin((c/2)/57.3))\n",
+ "BC=Hc*((1./math.tan(a/57.3))-(1./math.tan(b/57.3)))\n",
+ "print'%s %.1f %s'%('a)The maximum depth Hc = ',Hc,' m')\n",
+ "print'%s %.2f %s'%(' b)The radius, r = ',r,' m')\n",
+ "print'%s %.3f %s'%(' c)The distance BC.= ',BC,' m')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "a)The maximum depth Hc = 11.7 m\n",
+ " b)The radius, r = 17.28 m\n",
+ " c)The distance BC.= 9.973 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg531"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#a.Determine the undrained cohesion of the clay (Figure 15.13).\n",
+ "#b.What was the nature of the critical circle?\n",
+ "#c. With reference to the toe of the slope, at what distance did the surface of sliding intersect the bottom of the excavation?\n",
+ "Gs=17.29\n",
+ "d=9.15\n",
+ "d1=6.1\n",
+ "D=d/d1\n",
+ "a=40.\n",
+ "m=0.175\n",
+ "b=40.\n",
+ "H=6.1\n",
+ "Cu=H*Gs*m\n",
+ "print'%s %.1f %s'%('a)The undrained cohesion of the clay Cu = ',Cu,' kN/m^2')\n",
+ "print(' b)The nature of the critical circle is midpointcircle')\n",
+ "d=1.5\n",
+ "b=40.\n",
+ "n=0.9\n",
+ "D1=n*H\n",
+ "print'%s %.1f %s'%(' c)Distance = ',D1,' m')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "a)The undrained cohesion of the clay Cu = 18.5 kN/m^2\n",
+ " b)The nature of the critical circle is midpointcircle\n",
+ " c)Distance = 5.5 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5-pg534"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#a.Determine the maximum depth up to which the cut could be made.\n",
+ "#b.How deep should the cut be made if a factor of safety of 2 against sliding is required\n",
+ "Fs=1.\n",
+ "b=56.\n",
+ "Kh=0.25\n",
+ "M=3.66\n",
+ "Cu=500.\n",
+ "G=100.\n",
+ "Hc=Cu*M/G\n",
+ "print'%s %.1f %s'%('a)The maximum depth =',Hc,' ft')\n",
+ "Fs=2.\n",
+ "H=Cu*M/(G*Fs)\n",
+ "print'%s %.1f %s'%(' b)H= ',H,' ft')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "a)The maximum depth = 18.3 ft\n",
+ " b)H= 9.2 ft\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6-pg541"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#a.Find the critical height of the slope.\n",
+ "#b.If the height of the slope is 10 m, determine the factor of safety with respect to strength.\n",
+ "b=45.\n",
+ "c=20.\n",
+ "C=24.\n",
+ "G=18.9\n",
+ "m=0.06\n",
+ "Hc=C/(G*m)\n",
+ "Cd=G*Hc*m\n",
+ "Fc=C/Cd\n",
+ "print'%s %.1f %s'%('a)Critical height of slope = ',Hc,'')\n",
+ "#calculate the factor of safety using spencers solution\n",
+ "import math\n",
+ "%matplotlib inline\n",
+ "import warnings\n",
+ "warnings.filterwarnings('ignore')\n",
+ "import numpy\n",
+ "from math import tan\n",
+ "import matplotlib\n",
+ "from matplotlib import pyplot\n",
+ "phid=numpy.array([20,15,10,5])*math.pi/180.\n",
+ "mx=numpy.array([.06,.083,.105,.136])\n",
+ "cdx=numpy.array([11.34,15.69,19.85,25.7])\n",
+ "m=.06\n",
+ "g=18.9\n",
+ "cd=24.\n",
+ "#calculations\n",
+ "Hcr=cd/g/m\n",
+ "leng=len(phid)\n",
+ "Fcd=numpy.zeros(leng)\n",
+ "Fphi=numpy.zeros(leng)\n",
+ "tanphid=numpy.zeros(leng)\n",
+ "for i in range(0,leng):\n",
+ "\ttanphid[i]=math.tan(phid[i])\n",
+ "\tFphi[i]= tan(phid[0])/tan(phid[i])\n",
+ "\tFcd[i]=cd/cdx[i]\n",
+ "\n",
+ "\n",
+ "#results\n",
+ "print'%s %.2f %s'%('The value of Hcr (in m) = ',Hcr,'')\n",
+ "print 'from graph, Fss=1.4'\n",
+ "pyplot.plot(Fcd,Fphi)\n",
+ "pyplot.xlabel('Fc assumed')\n",
+ "pyplot.ylabel('Fc calculated')\n",
+ "pyplot.title('Graph of Fc assumed vs Fc calculated')\n",
+ "pyplot.show()\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "a)Critical height of slope = 21.2 \n",
+ "The value of Hcr (in m) = 21.16 \n",
+ "from graph, Fss=1.4\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEZCAYAAACTsIJzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm8lHXd//HXm01AXHBJU3EFBVwQTVSSm6O2SUrdmWlp\n6l2pueeSJWmipubPSlNLzSW1O7VS71wyM6tjlkaZgOwKLmApauCC4AJ8fn98rwNzhjnnzFnmXDPn\nvJ+PxzzOtc11feY6M/OZ73J9L0UEZmZmDXrkHYCZmVUXJwYzM2vEicHMzBpxYjAzs0acGMzMrBEn\nBjMza8SJoRuSNFHSzzpoX5tI+rOkNyVd1hH77Mok1UlakHccldJR7y1JKyVt2xExlXGseklf7oxj\n1Qonhiog6TBJkyQtkbRQ0t8kHV/BQ3bkxSvHAq9ExLoR8fXilZJulvSupLcKHod04PGtSM7nvFMv\njJK0dZZE2vNdFnRy3NXOiSFnks4ArgAuBTaJiE2ArwIfltSniee09/+mdj6/0FbArGbWB3BpRKxT\n8PhVBx7f1pTnOe/I91YtHLdLcmLIkaT1gPOB4yPi7oh4GyAipkTEERHxXrbdzZKukfSApCVAnaRP\nSpos6Q1J8yWdV7Dfhl9Rx0j6l6R/ZwmoQQB9JN2SVQFNl7R7M3GOlvQPSa9L+rukvRviAo4Ezsp+\nle7Xytc/SNLdkl6R9Jqkq5rYbpSkxyUtzl7LVZJ6F6y/PCtpvSHpKUk7ZsvHSZqRvcYXG86BpKMl\nPVp0jFVVF9n5/nF2vt+S9KikTSX9MIthlqRdC567maS7stfxrKSTC9b1y/a3SNIMYI9mzsc1xdVx\nku6R9LVs+hvZ63hT0uzWnu9sH+We8x6SJkiamx3vCUmbZ+t+mL3n3siW79PM8faR9Fh23uZLOjJb\n3qj6ptT/pGBdk+914M/Z39ez/9We2XO+JGlmdt4flLRlwf4+mp2/17PXL5xYGosIP3J6AJ8A3gd6\ntLDdzcDrwN7Z/FrAWGDHbH5n4GXgU9n81sBK4OdAP2An4BVg/2z9RGBZdnwBFwOPN3HsDYDFwOGk\nHxKHAYuAgdn6nwIXNBP7T4ELSyzvCUwFvp/FuBbw4Sb2sRswKjv+VsBM4NRs3ceBJ4B1s/kdgE2z\n6Zca9gmsB4zMpo8GHi06xkpg24Lz/SowMovrD8DzwBHZ+boQ+GO2bQ/gn8A5QC9gG2Ae8LFs/XeB\nR4D1gS2A6cD8Jl7nmMJ1wEBgKbBp9rrmF7y2LRvirdA5/zrwFDCk4D22QTZ9eBZbD+D07Dz3KXhv\n/Syb3gp4Ezg0O/YGwIhs3Z+ALxUcr9H/pOj/0dx7fats2x4Fz/0U8Ex2znoA3wL+mq3bKIvpM1lM\nXyN9Br9U6jx010fuAXTnR/ZF81LRssdIX8RLgX2yZTcDN7ewryuAH2TTW2cflu0L1l8K3JBNTwQe\nKlg3HFjaxH6/CPytRIxHZdMlv4QKtr2ZlIQWZ49XsuV7k5JVs0mxiX1+Dbg7m94PmAPsWbwv4AVS\nG8i6RcsbfQllywq/iH4KXFew7iRgRsH8zsDibHpP4IWifZ0N3JRNr0oS2fwxwIImXpeymMcUbPtw\nNj0YWAjsD/Ru4fy0+5wDs4GDyvx/LAJ2LnhvNSSGs4G7mnhO2YmhzPd6YWL4bdG+ewBvk5LpkcBj\nRftbgBNDo4erkvL1H2CjwjaDiBgdEQOzdQ3Lg/TmXUXSnpL+lFUJvA4cB2xYtP/C58wHNiuYX1gw\nvRToq9JtF5tlzy30QtG+mhPAZRExMHt8IFs+iPSFurKlHUjaXtL9kl6S9AZwEdlrjYg/AlcDPwIW\nSrpO0jrZUw8GxgHPZ1UXe5UZM6Qv0AbvFM0vAwZk01sBm2VVJYslLSZ9ITa8zs1Y8/9QUqRvqTuA\nz2eLvkAq9RERc0kJcWL2Om+X9MGmdkU7z3m27bxSKySdmVXTvJ693vVIv8RL7ePZMo7VrDLf64W2\nAn5Y8P/4T7Z8c+CDwItF23fZXmJt5cSQr8eBd4FPt+G5twG/BraIiPWBa1nz/7ll0fS/2nCcf5E+\naIW2auW+StXfLgC2lNSzjOdfQ6o+GhwR65GqBgqT6VUR8SFSyWd7UjUIEfFERHwa2Jh0rn6ZPeVt\noP+q4KRNW/FaSr2O5wq+hAdG6qF1YLb+Jdb8PzTnduCzkrYiVZ/d1bAiIm6PiDGk8x+kUmBT2nvO\nF5BKKY13Ko0hnd9DImL97EfMG00cbz6wXRP7fxtYu2C+uf9Bc+/1Ur2J5gPHFv1P1o6Ix0n/j0EF\nr0eF85Y4MeQoIl4nNT7/WNLBktbJGv12pfGHptSHbgCpOuM9SaNIvy6LPyTnZI2fO5KK6r9oQ5gP\nANtL+rykXpIOBYYC9zcTW6Gm1k8ifUi/K6m/pL6SRjex7QDgLWCppKHA8WSvVdKHsl+UvUkln3eA\nFZJ6Szpc0noRsSJ7/opsf1OBHSWNkNSX9Cu8nJhL+TvwlqSzsnPdU9JOkj6Urf8lcLak9SVtAZzc\n9K5SxwPgNeAG4MGIeDN7ndtL2k/SWqQfE+8UvJ5iHXHObwAulDRYyS6SNiD9L5YDr0nqI+nbwLpN\n7OM24COSDsneOxtKGpGtmwJ8Jjtng4HmriNo7r3+KqkqqTABXQtMkDQcUicPre6u+wDpf//fknoB\np9B8UuqWnBhyFhGXkRrwziI1qr1MemOfRSpRQOl+1icAF0h6EziX0l/6jwBzgYdJVQsPN7O/kv24\nI2IRcCBwBukL60zgwGx5U/sq3u8a67PqjINIv0rnk36hfq6JfZxJ+jJ4E/gJqbqlwbrZskWkBuLX\ngIaePUcAz2XVT8eSGk2JiKeBC0jnZQ7waFGMxTE3eb6ypHMgsCup2uTVLJ6GL8vzSVVvzwEPAreW\nOh9FbiO1ndxWsGwt4JJs/y+Rqm7ObuL5HXHOf0BKag+RSgTXA32B32Wv42nS+V5G4+qxVceOiPmk\nqrwzSNU5k4Fdsu0uB94jVWn+FPhf1jznDZp8r0fEUlLV4l+zqqNREfFrUmnqjux/P43USYGIeA04\nhNQp4LXsXPyliXPQbSlrfKncAVKx9QngxYg4qGhdHXAPq+sh74qI71Q0oG5A0takc9qrzPpkM7NV\nenXCMU4l1Q+v08T6RyJifCfEYWZmZahoVVJWpzqOVF/ZVL2nLyypjMoWBc2sy6p0G8PlpB4MTVVn\nBDBa0lSlq0yHVziebiEino+Inq5GMrO2qFhikHQg6cKayTRdKngSGBQRI4CrSF3SzMwsRxVrfJZ0\nMemq2eWk3gzrkhqXj2zmOc8Buxf0eGlY7moRM7M2iIhWV9dXrMQQERMiYlBEbEMaX+ePxUlBaSx/\nZdOjSIlqUYnd5X6JeHse5513Xu4xdNf4azl2x5//o9bjb6vO6JXUoOGCpOMAIuI64LPA8ZKWky5O\nOqwT4zEzsxI6JTFExCOki60aEkLD8h+RxrgxM7Mq4SufO0FdXV3eIbRLLcdfy7GD489brcffVhW/\n8rkjSIpaiNPMrJpIIqqp8dnMzGqTE4OZmTXixGBmZo04MZiZWSNODGZm1ogTg5mZNeLEYGZmjTgx\nmJlZI04MZmbWiBODmZk14sRgZmaNODGYmVkjTgxmZtaIE4OZmTXixNCC116D55/POwozs87jxNCC\n22+HU0/NOwozs87jG/W0YNky2G47+M1vYOTIXEIwM2sT36inQvr1g69/Hb7znbwjMTPrHC4xlGHp\nUth2W/j972HnnXMLw8ysVVxiqKD+/eGMM1xqMLPuwSWGMi1ZkkoN9fUwfHiuoZiZlaVqSwySekqa\nLOm+JtZfKekZSVMlVW3z7oABcNppcNFFeUdiZlZZnVGVdCowE1jjJ7+kccDgiBgCHAtc0wnxtNmJ\nJ8JDD8GcOXlHYmZWORVNDJK2AMYBNwClijPjgVsAImISsL6kTSoZU3usu266puHii/OOxMyscipd\nYrgc+Dqwson1mwMLCuZfBLaocEztcvLJ6ZqGuXPzjsTMrDJ6VWrHkg4EXomIyZLqmtu0aL5kK/PE\niRNXTdfV1VFX19wuK2e99eCkk+CSS+DGG3MJwcyspPr6eurr69u9n4r1SpJ0MfBFYDnQF1gXuCsi\njizY5lqgPiLuyOZnA2MjYmHRvnLvlVRo8WIYPBieeAK22SbvaMzMSqu6XkkRMSEiBkXENsBhwB8L\nk0LmXuBIAEl7Aa8XJ4VqNHAgHH88fPe7eUdiZtbxOvMCtwCQdJyk4wAi4gHgWUlzgeuAEzoxnnY5\n7TS4806YPz/vSMzMOpYvcGuHb34T3noLfvSjvCMxM1tTW6uSnBja4ZVXYOhQmDYNNt8872jMzBqr\nujaG7uADH4AvfQkuvTTvSMzMOo5LDO308stp7KQZM+CDH8w7GjOz1VxiyMmmm8KRR8Jll+UdiZlZ\nx3CJoQP8+9+w004waxZsUrUDephZd+MSQ4422wy+8AX4/vfzjsTMrP1cYuggCxbAiBFp5NWNN847\nGjMzlxhyN2gQfO5zcPnleUdiZtY+LjF0oOefh913h2eegQ02yDsaM+vuXGKoAltvDf/933DFFXlH\nYmbWdi4xdLBnn4VRo9L9GtZfP+9ozKw7c4mhSmy7LRx0EFx5Zd6RmJm1jUsMFfDMMzB6NMybl24H\namaWB5cYqsiQIfCJT8DVV+cdiZlZ67nEUCGzZ8N//VcqNayzTt7RmFl35BJDlRk6FPbfH665Ju9I\nzMxaxyWGCpoxIyWHefNg7bXzjsbMuhuXGKrQjjvCmDFw3XV5R2JmVj6XGCps6tTUEP3ss9CvX97R\nmFl34hJDlRoxAvbaC66/Pu9IzMzK4xJDJ3jySRg/Pl0N3bdv3tGYWXfhEkMV2203GDkSbrwx70jM\nzFrmEkMn+fvf4eCDU6lhrbXyjsbMuoOqLDFI6itpkqQpkmZKuqTENnWS3pA0OXucU8mY8jJqVLr9\n58035x2JmVnzKl5ikNQ/IpZK6gX8BTgzIv5SsL4OOD0ixjezj5ovMQA8/jh8/vPw9NPQp0/e0ZhZ\nV1eVJQaAiFiaTfYBegKLSmzW6sBr0d57p3GUfvazvCMxM2taxRODpB6SpgALgT9FxMyiTQIYLWmq\npAckDa90THn69rfhoovg/ffzjsTMrLRelT5ARKwEdpW0HvA7SXURUV+wyZPAoKy66QDg18D2xfuZ\nOHHiqum6ujrq6uoqGXbFjBmT7vR2221w1FF5R2NmXUl9fT319fXt3k+n9kqSdC6wLCK+18w2zwG7\nR8SigmVdoo2hQX09HHsszJwJvSqems2su6rKNgZJG0laP5vuB3wUmFy0zSaSlE2PIiWrUu0QXcbY\nsbDppvCLX+QdiZnZmipaYpC0M3ALKQH1AH4WEZdJOg4gIq6TdCJwPLAcWErqofS3ov10qRIDwMMP\nw8knw/Tp0LNn3tGYWVfU1hKDL3DLSQR8+MNw6qlw6KF5R2NmXZETQw168EE480x46ino4cFJzKyD\nVWUbgzXv4x+H/v3h//4v70jMzFZzYsiRlK5ruOACWLky72jMzBInhpx98pOp8fm++/KOxMwscWLI\nWWGpoQs2o5hZDXJiqALjx8Py5fDAA3lHYmbmxFAVevSAc891qcHMqoMTQ5X4zGdgyRJ46KG8IzGz\n7s6JoUo0lBrOP9+lBjPLlxNDFTnkEFi0CP74x7wjMbPuzImhivTsCeec41KDmeWrySExJO1OuomO\nsr+NRMSTlQ2tUSxdckiMUpYvh2HD4PrroUZvOWFmVaLDx0qSVE9KCP2A3YGnslW7AE9ExN5tC7X1\nulNiALj5Zrj1VlcpmVn7dPhYSRFRFxH7Av8GdouI3SNid2Bktswq5PDD4YUX4NFH847EzLqjctoY\nhkbEtIaZiJgODKtcSNa7N0yYABdemHckZtYdtTjstqQ7gCXA/5LaG74ADIiIz1c+vFUxdKuqJID3\n3oPtt4fbb4e9O63Szsy6kordjyG7JefxwJhs0Z+BayLinVZH2UbdMTEAXHcd3HOPh8ows7ap6I16\nJPUHtoyI2W0Jrr26a2J4910YPBjuvhv22CPvaMys1lTsRj2SxgOTgQez+ZGS7m19iNZaa60F3/ym\n2xrMrHOVU5X0JLAf8KeIGJktmx4RO3VCfA0xdMsSA8A778B228H998PIkXlHY2a1pJK39nw/Il4v\nWub7jXWSvn3hrLNcajCzzlNOYpgh6XCgl6Qhkq4CHqtwXFbgmGPg8cfhqada3tbMrL3KSQwnAzsC\n7wK3A28CX6tkUNZY//5w5pnwne/kHYmZdQfltDEcEhG/amlZief1BR4B1gL6APdExNkltrsSOABY\nChwdEZNLbNNt2xgavP02bLttGiZjxx3zjsbMakEl2xgmlLmskew6h30jYlfS+Er7StqncBtJ44DB\nETEEOBa4pox4uqW114bTT4eLLso7EjPr6no1tULSAcA4YPPsV31D1lkHeL+cnUfE0myyD9ATWFS0\nyXjglmzbSZLWl7RJRCws/yV0HyeckHoozZ4NQ4fmHY2ZdVXNlRj+DfwTeCf72/C4F/h4OTuX1EPS\nFGAhqbvrzKJNNgcWFMy/CGxRXujdzzrrwKmnwsUX5x2JmXVlTZYYImIqMFXSbRHxXlt2HhErgV0l\nrQf8TlJdRNQXbVZc/1WyMWHixImrpuvq6qjrpjcrOOmkdDX03Lnpr5lZg/r6eurr69u9n3Ian7cH\nLgaGk+7NABARsW2rDiSdCyyLiO8VLLsWqI+IO7L52cDY4qokNz43dv75aVjum27KOxIzq2aVbHz+\nKXAtsByoI7UJ/LyMgDaStH423Q/4KGlojUL3Akdm2+wFvO72hZadcgrcey8891zekZhZV1ROYugX\nEQ+TShcvRMRE4JNlPO+DwB+zNoZJwH0R8QdJx0k6DiAiHgCelTQXuA44oU2vopsZODA1RF9ySd6R\nmFlXVE5V0mOkIbfvBP5AapS+JCJ2qHx4q2JwVVKRRYtgyBB48knYaqu8ozGzalTJ+zGMAmYB6wMX\nAusC/y8i/taWQNvCiaG0CRNg8WK4xld/mFkJFb0fQ96cGEp77TXYYQeYMgUGDco7GjOrNh2eGCTd\n18zzIiLGt/ZgbeXE0LSzzoJly+Cqq/KOxMyqTSUSQ11zTyxxPULFODE0beFCGDYMpk+HzTbLOxoz\nqyauSurGTj8dIuDyy/OOxMyqSSUbn0v1lm/1BW7t4cTQvJdeSiOuzpwJm26adzRmVi0qmRg2Kpjt\nC3wW2DAizm3twdrKiaFlp5yS7hF92WV5R2Jm1aJTq5IkPRkRu7X6iW3kxNCyF1+EXXaBOXNg443z\njsbMqkElSwy7s3pgux7Ah4DjI2JEq6NsIyeG8pxwAqy3nq+INrOkkomhntWJYTnwPPC9iJjT2oO1\nlRNDeebPh5Ej4emnYcMN847GzPLmXkkGwLHHwiabwIUX5h2JmeWtYqOrSrq4YZTUbH6gJN+Wvkqd\nfXYaImPx4rwjMbNaVc7oquMi4vWGmYhYTHmjq1oOttkGxo+HK6/MOxIzq1XlJIYekvo2zGT3VuhT\nuZCsvSZMgKuvhjfeyDsSM6tF5SSGnwN/kPRlSV8BHgZurWxY1h6DB8MBB6TkYGbWWmU1Pks6APgI\nqXfS7yPid5UOrOj4bnxupTlzYMwYmDcP1lkn72jMLA/ulWRrOPzwdNHbN76RdyRmlodKjK66hNXX\nLxSLiFi3tQdrKyeGtpk5E/bdF559FtZeO+9ozKyzucRgJR16KIwaBWeckXckZtbZKp4YJH2ANIge\nABExv7UHaysnhrabNg0+9rHU1tC/f97RmFlnquQFbuMlPQM8BzxCGhLjt62O0HKx884wejT85Cd5\nR2JmtaKcsZKeAvYj9UYaKWlf4IsR8aXOCDCLwSWGdpgyBcaNS6WGfv3yjsbMOkvFSgzA+xHxGulC\nt54R8SfSCKtWI3bdFfbYA268Me9IzKwWlJMYFktaB3gU+LmkK4El5exc0iBJf5I0Q9J0SaeU2KZO\n0huSJmePc1r3Eqwc554Ll14K776bdyRmVu3KqUpaG3iHlEQOB9YFfh4R/2lx59KmwKYRMUXSAOCf\nwKcjYlbBNnXA6RExvpn9uCqpA3zyk3DQQfDVr+YdiZl1hkpWJX0A6BMR70fEzcD1QFnX0kbEyxEx\nJZteAswCNiuxaasDt9Y799x0E5/33ss7EjOrZuUkhjuBFQXzK7NlrSJpa2AkMKloVQCjJU2V9ICk\n4a3dt5Vnr71g6FC41SNdmVkzepWxTc+IWPUbMyLeldS7NQfJqpHuBE7NSg6FngQGRcTSbEymXwPb\nF+9j4sSJq6br6uqoq6trTQiW+fa34YtfhKOOgt6t+i+aWbWrr6+nvr6+3fspp43hYeCqiLgnm/8U\ncEpE7F/WAVISuR/4bURcUcb2zwG7R8SigmVuY+hA+++fksPRR+cdiZlVUiXv+TyYNPR2Q9vAi6Tr\nGOaWEZSAW4D/RMRpTWyzCfBKRISkUcAvI2Lrom2cGDrQI4/AV74Cs2ZBr3LKjGZWkzpjSIx1ACLi\nrVYEtQ/wZ+ApVg/INwHYMtvXdZJOBI4HlgNLST2U/la0HyeGDjZ2LBxzDBxxRN6RmFmleBA9a5U/\n/AFOPBFmzICePfOOxswqoZLdVa0L2m8/2HBD+NWv8o7EzKqNSwzd2EMPwWmnpRFYe/gnglmXU8nR\nVU+SNLBgfqCkE1p7IKs+H/1ouu3n3XfnHYmZVZNyeiVNjYgRRcumRMSuFY2s8fFcYqiQBx6As8+G\nyZNdajDrairZxtBD0qrtJPUEfGlUF3HAAelCt3vvzTsSM6sW5SSG3wF3SNpf0keAO4AHKxuWdRYp\nXQ19wQXgQpmZQXlVST2BY4GGK51/D9wQESuaflbHclVSZUXAyJHwne/AgQfmHY2ZdZQOv45B0pad\neV/n5jgxVN7dd8N3vwuTJqVShJnVvkq0MdxTsPO72hSV1YxPfxqWLYMHXUlo1u2V2w9l24pGYbnr\n0SPdr+H8893WYNbduYOirXLwwfDmm/Dww3lHYmZ5aq6NYQVpUDuAfsCygtUREetWOLbCWNzG0Elu\nuw1+/GN49FG3NZjVOg+iZx1ixQoYPhyuvRb23TfvaMysPTyInnWInj3hW99K1zWYWffkxGBr+MIX\nYMEC+POf847EzPLgxGBr6NULJkyACy/MOxIzy4MTg5X0xS/C3Lnw2GN5R2Jmnc2JwUrq3TuNuupS\ng1n3415J1qT33oMhQ9Jd3kaNyjsaM2st90qyDtenD3zzmy41mHU3LjFYs959F7bbLt2vYbfd8o7G\nzFrDJQariLXWgm98w6UGs+7EJQZr0bJlqdRwww0wblze0ZhZuaqyxCBpkKQ/SZohabqkU5rY7kpJ\nz0iaKmlkJWOy1uvXD372MzjxRDjkEHjhhbwjMrNKqnRV0vvAaRGxI7AXcKKkYYUbSBoHDI6IIaQ7\nxV1T4ZisDfbfH2bOhJ13ht13T0NmLFvW8vPMrPZUNDFExMsRMSWbXgLMAjYr2mw8cEu2zSRgfUmb\nVDIua5t+/dL9of/5T5g2LQ22d/fdvn+DWVfTaY3PkrYGRgKTilZtDiwomH8R2KJzorK22GqrdG3D\njTemRPGxj6XShJl1Db064yCSBgB3AqdmJYc1NimaX+M36MSJE1dN19XVUVdX14ERWlvstx9MmQLX\nXANjx8IRR8DEibDeenlHZtY91dfXU19f3+79VLxXkqTewP3AbyPiihLrrwXqI+KObH42MDYiFhZs\n415JVe7VV9Nw3ffdBxddBEcfnW4Xamb5qdZeSQJuBGaWSgqZe4Ejs+33Al4vTApWGzbeGH7yE7j/\n/tStda+9YFJxpaGZ1YSKlhgk7QP8GXiK1dVDE4AtASLiumy7q4FPAG8D/xMRTxbtxyWGGrJyJfz8\n52k4jY99DC65BDbdNO+ozLof39rTqs5bb6Urpm+6KY3UevLJafwlM+scTgxWtebMga99DZ5/Hn74\nw1SKMLPKc2KwqhaR2h9OOw122gl+8APYdtu8ozLr2qqy8dmsgQQHHQTTp8Oee6b7O5x7Lrz9dt6R\nmVkxJwbrVH37pvaGKVNg3jwYNgx++UtfPW1WTVyVZLl69NHUKL3++nDllbDLLnlHZNZ1uCrJatKY\nMWnspUMPhY9+NCWJRYvyjsqse3NisNz17AnHH5/GW1q5MlUvXXcdrFiRd2Rm3ZOrkqzqTJkCp5wC\nS5bAVVfBhz+cd0RmtcndVa1LiYBf/AK+/vU0QN+ll8Lmm+cdlVltcRuDdSkSHHYYzJqVhvkeMSIl\nh3ffzTsys67PicGq2oABabTWSZPgr39NF8f95jd5R2XWtbkqyWrKb3+bhtcYMgQuvzz9NbPSXJVk\n3cIBB6Tbio4dC3vvnUZwXVLq1k9m1mZODFZz+vRJjdLTpsFLL8HQoWmYbxcqzTqGq5Ks5j3+eLow\nrm/f1L115Mi8IzKrDq5Ksm5r771T4/TRR6eqpq9+FV57Le+ozGqXE4N1CT17wle+krq3rrUWDB8O\nV18Ny5fnHZlZ7XFVknVJ06enq6dfey0NzldXl3dEZp3PVz6bFYmAu+6CM86AvfaCyy6DLbfMOyqz\nzuM2BrMiEnz2s6l6adiw1Ch94YXwzjt5R2ZW3ZwYrMvr3x8mTkzDe0+Zktoffv1rd281a4qrkqzb\nefjh1P4waBBccUUqTZh1Ra5KMivTRz4CU6emrq3/9V+pDeKNN/KOyqx6VDQxSLpJ0kJJ05pYXyfp\nDUmTs8c5lYzHrEHv3mnMpRkzUlIYNgxuvjndKMisu6toVZKkMcAS4NaI2LnE+jrg9IgY38J+XJVk\nFfWPf6SrpyPS1dOjRuUdkVn7VWVVUkQ8CixuYbNWB23W0fbYAx57DE44AT79afjyl2HhwryjMstH\n3m0MAYyWNFXSA5KG5xyPdWM9esBRR6XurQMHpns/XH45vP9+3pGZda6K90qStDVwXxNVSesAKyJi\nqaQDgB9GxPYltovzzjtv1XxdXR11vpTVKmz2bDj1VFiwIF09/ZGP5B2RWfPq6+upr69fNX/++edX\n55XPzSV2Dkk/AAAK90lEQVSGEts+B+weEYuKlruNwXIRAffeC6edBrvuCt//PmyzTd5RmZWnKtsY\nWiJpE0nKpkeREtWiFp5m1mkk+NSnYOZM2G03+NCH4LzzYOnSvCMzq5xKd1e9HXgM2EHSAklfknSc\npOOyTT4LTJM0BbgCOKyS8Zi1Vd++cM456crpOXNS99Zf/cpXT1vX5CufzdrgkUdS99aNNkrtDzvt\nlHdEZmuqyaoks1o1diw8+SQcfDDst18aYmNxSx2zzWqEE4NZG/XqBSeemNof3nsvVS9dfz2sWJF3\nZGbt46oksw4yeXKqXnrnnVS9NHp03hFZd+cb9ZhVgQi47Tb4xjdgn31SNdPw4ak0seGGeUdn3Y0T\ng1kVeestuOmmNIrrrFmpuqlv39VJYvjw1Y9NNkndYs06mhODWRWLgH//OyWIhkTR8FixYnWSKEwa\ngwY5YVj7ODGY1ahXXy2dMN56C4YOXTNhbLMN9OyZd9RWC5wYzLqY119fnSwKk8Yrr8CQIWuWMgYP\nhj598o7aqokTg1k3sWRJuvq6OGHMn59KE8UJY4cdoF+/vKO2PDgxmHVz77wDzzyzOlE0JI1582Cz\nzRo3eA8blh7rrJN31FZJTgxmVtL778Ozz66ZMGbPTkN6FLZfNExvsEHeUVtHcGIws1ZZsQJeeKFx\ndVTDdP/+a3arHTbMXWtrjRODmXWICPjXv9ZMGDNmpHXFvaSGDXPX2mrlxGBmFRWRutYWd6udNSt1\nrW1otyhMGO5amy8nBjPLzeLFKUEUlzJeeQW2337NUsbgwdC7d95Rd31ODGZWdZYsSY3cxaWMBQtg\n223XTBjbb++utR3JicHMasY778DTT695Lca8ebDFFmv2kho61F1r28KJwcxq3vvvp+RQnDDmzEld\na4t7SQ0fDgMH5h119XJiMLMuq6FrbXG32lmzYO21S1+L8YEPuKeUE4OZdTsNXWuLE8bMmWl9qYSx\nxRbdJ2E4MZiZZRq61hZ3q505E95+u3TX2q237npda50YzMzK0NC1tjhhvPpqGnCwOGHUctfaqkwM\nkm4CPgm8EhE7N7HNlcABwFLg6IiYXGIbJwYzq6iGrrXFCWPBAthuu9Jda/v2zTvq5lVrYhgDLAFu\nLZUYJI0DToqIcZL2BH4YEXuV2K6mE0N9fT11dXV5h9FmtRx/LccOjj9v9fX17LlnHU8/vWYpY968\nNBRIccIYOhQGDMg78qStiaFHJYJpEBGPAoub2WQ8cEu27SRgfUmbVDKmPNTX1+cdQrvUcvy1HDs4\n/rzV19fTrx+MGAGHHQYXXAB33pnGjXrrLbj3XjjqqJQIHnwQjjkm9Ybaais44AA4/XS44QZ47LFU\nhVUreuV8/M2BBQXzLwJbAAvzCcfMrDy9e69uxP7MZ1YvX7ECnn9+dcniL3+Bn/wkTQ8YUPr+3htv\nXF09pfJODADFp6N264zMrNvr2TO1SWy3HRx00OrlEfDii6sTxpQpcNttaV5KCeLSS2H06Pxib1Dx\nXkmStgbua6KN4VqgPiLuyOZnA2MjYmHRdk4WZmZt0JY2hrxLDPcCJwF3SNoLeL04KUDbXpiZmbVN\nRRODpNuBscBGkhYA5wG9ASLiuoh4QNI4SXOBt4H/qWQ8ZmbWspq4wM3MzDpPRburtpakT0iaLekZ\nSd8osX4jSQ9KmiJpuqSjcwizJEk3SVooaVoz21yZvbapkkZ2ZnwtaSl+SYdncT8l6a+SdunsGJtS\nzrnPtttD0nJJn2luu85W5nunTtLk7H1f34nhtaiM907Vfm4BJA2S9CdJM7L4Tmliu6r8/JYTf6s/\nvxFRFQ+gJzAX2JpU3TQFGFa0zUTgkmx6I+A/QK+8Y8/iGQOMBKY1sX4c8EA2vSfwt7xjbmX8ewPr\nZdOfqKb4W4q94P31R+B+4OC8Y27luV8fmAFskc1vlHfMrYy/aj+3WUybArtm0wOAOSW+e6r281tm\n/K36/FZTiWEUMDcino+I94E7gE8VbfMSsG42vS7wn4hY3okxNilq/GK+luKPiMcj4o1sdhLpepOq\nUMa5BzgZuBN4tfIRtU4Z8X8BuCsiXsy2f61TAitTGfFX7ecWICJejogp2fQSYBawWdFmVfv5LSf+\n1n5+qykxlLrYbfOiba4HdpT0b2AqcGonxdYRmrqYrxZ9GXgg7yDKJWlz0o+Ma7JFtdawNgTYIKsu\neELSF/MOqJVq5nObda8fSfryLFQTn99m4i/U4uc37+6qhcr5sE4ApkREnaTtgN9LGhERb1U4to5S\n8xfzSdoX+BLw4bxjaYUrgG9GREgSa/4fql1vYDdgf6A/8Likv0XEM/mGVbaa+NxKGkAqVZ6a/fJe\nY5Oi+ar6/JYRf9mf32oqMfwLGFQwP4iUlQuNBn4FEBHzgOeAHToluvYrfn1bZMtqRtZgdT0wPiJq\naOQXdiddK/MccDDwY0njc46pNRYAD0XEsoj4D/BnYETOMbVG1X9uJfUG7gL+NyJ+XWKTqv78lhF/\nqz6/1ZQYngCGSNpaUh/gUNIFcIVmAx8ByOr3dgCe7dQo2+5e4EiA5i7mq1aStgTuBo6IiLl5x9Ma\nEbFtRGwTEduQflEdHxHF761qdg+wj6SekvqTGj9n5hxTa1T15zYrRd4IzIyIK5rYrGo/v+XE39rP\nb9VUJUXEckknAb8j9SC5MSJmSTouW38dcDHwU0lTSUntrIhYlFvQBWr9Yr6W4ge+DQwErknvQ96P\niFE5hdtIGbFXtTLeO7MlPQg8BawEro+IqkkMZZz/qv3cZj4MHAE8JanhfjATgC2hJj6/LcZPKz+/\nvsDNzMwaqaaqJDMzqwJODGZm1ogTg5mZNeLEYGZmjTgxmJlZI04MZmbWiBODdSmSVmTDUzc8tsw7\npo4k6WhJV+Udh3VtVXOBm1kHWRoRVTNWvlktconBurxsKInvSZqW3azkpBLbHCPp79nNZO6U1C9b\nfkj2vCmSHsmW7ShpUlYimSppu2wol2kF+ztT0nnZdL2kH0j6h6RZSjcM+j9JT0u6sOA5RxTs91pJ\nPbLl/yNpjqRJpHGHzCrKicG6mn4F1Uh3ZcuOJQ0PMCIiRgA/L/G8uyJiVETsShrP/svZ8nOBj2XL\nD8qWHQf8MCuZ7E7pwdSC1aNvBvBuROxBGvr7HuCrwE7A0ZIGShoGfA4Yne13JXC4pA+SbnQzGtgH\nGE6VjeppXY+rkqyrWVaiKml/4JqIWAnQxMiSO0v6DrAe6S5YD2bL/wrcIumXpEHIAB4HviVpC+Du\niJibjT9TrHBhw6B904HpDQOwSXqWlLTGkJLME9m++gIvk25gVZ+NqoqkXwDbt3gWzNrBJQbrLlq6\nB8PNwAkRsQtwPtAPICKOB84hDbn8T0kbRMTtpNLDMuCBbIz75TT+PPWj8S/7d7O/KwumG+YbfqDd\nEhEjs8ewiLigDa/DrN2cGKw7+D1wnKSeAJIGlthmAPByNq79EQ0LJW0XEX+PiPNItwXdQtI2wPMR\ncRWpWmhn0q/7D0jaQNJawIGtiC+APwCflbRxdtwNsh5Vk4Cx2Xxv4JDWvXSz1nNisK6mVP37DcB8\n0rDEU4DPl9jmXNKX8F9IbQwN+/l/kp7KGpb/GhFPkdoCpmVDHO8I3Jrdw/gC4O/AQzR9v4TCtofV\nCyNmkUomD2XDUz8EbBoRL5PaGB7PYpvRxGs06zAedtvMzBpxicHMzBpxYjAzs0acGMzMrBEnBjMz\na8SJwczMGnFiMDOzRpwYzMysEScGMzNr5P8DAZc/1V8RUsUAAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x2d2ff30>"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7-pg544"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# using Michalowski\u2019s solution.\n",
+ "import math\n",
+ "FSs=1.\n",
+ "c=20.\n",
+ "G=18.9\n",
+ "C=24.\n",
+ "Hcr=C/(G*math.tan(c/57.3)*0.17)\n",
+ "print'%s %.1f %s'%('a)Critical height Hc = ',Hcr,' m')\n",
+ "H=10.\n",
+ "k=C/(G*H*math.tan(c/57.3))\n",
+ "Fs=4.*math.tan(c/57.3)\n",
+ "print'%s %.1f %s'%(' b)Fs = ',Fs,'')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "a)Critical height Hc = 20.5 m\n",
+ " b)Fs = 1.5 \n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8-pg560"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "# Determine the factor ofsafety,Fs . Use Table 15.3.\n",
+ "W=22.4\n",
+ "C=20.\n",
+ "a=70.\n",
+ "s=math.sin(a/57.3)\n",
+ "c=math.cos(a/57.3)\n",
+ "l=2.924\n",
+ "Wn=W*s\n",
+ "Wn1=W*c\n",
+ "##doing this to all values\n",
+ "F1=30.501\n",
+ "F2=776.75\n",
+ "F3=1638.\n",
+ "Fs=(F1*C+F3*math.tan(C/57.3))/F2\n",
+ "print'%s %.2f %s'%('Fs = ',Fs,'')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Fs = 1.55 \n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9-pg560"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#using Michalowski\u2019s solution\n",
+ "C=20.\n",
+ "G=18.5\n",
+ "r=0.25\n",
+ "H=21.62\n",
+ "C=25.\n",
+ "b= math.atan(0.5)\n",
+ "##from table 15.3 \n",
+ "m=1.624\n",
+ "n=1.338\n",
+ "Fs=m-n*r\n",
+ "print'%s %.1f %s'%(' The value of Fs for D= 1 is',Fs,'')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The value of Fs for D= 1 is 1.3 \n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10-pg561"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate the factor of safety using spencers solution\n",
+ "import math\n",
+ "%matplotlib inline\n",
+ "import warnings\n",
+ "warnings.filterwarnings('ignore')\n",
+ "import numpy\n",
+ "from math import tan\n",
+ "import matplotlib\n",
+ "from matplotlib import pyplot\n",
+ "beta=numpy.array([26.57,26.57,26.57,26.57])\n",
+ "Fs=numpy.array([1.1,1.2,1.3,1.4])\n",
+ "phid=25*math.pi/180. #degrees\n",
+ "#calculations\n",
+ "print 'From spencers graphs,'\n",
+ "cd=numpy.array([0.0455,0.0417,0.0385,0.0357])\n",
+ "phia=numpy.array([18.,19.,20.,21.])*math.pi/180.\n",
+ "leng=len(phia)\n",
+ "Fss=numpy.zeros(leng)\n",
+ "for i in range(0,leng):\n",
+ "\tFss[i]= tan(phid)/tan(phia[i])\n",
+ "\n",
+ "#results\n",
+ "print 'From graph, a footing of dimensions Fs=1.3'\n",
+ "pyplot.plot(Fs,Fss)\n",
+ "pyplot.xlabel('Fs assumed')\n",
+ "pyplot.ylabel('Fs calculated')\n",
+ "pyplot.title('Graph of Fs assumed vs Fs calculated')\n",
+ "pyplot.show()"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "From spencers graphs,\n",
+ "From graph, a footing of dimensions Fs=1.3\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEZCAYAAACAZ8KHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm8lHX5//HXG1BQBMQltzQUBREB0cQt8aSFlJp+3c2y\nvhohP7dvmWamQq65W5aWqGQumGu5K2ZHSRQ3ZBEw19y3RBSXVLh+f3zuo+PhLDPnzJxZzvv5eMyD\nmfueue/rnvtwrvPZFRGYmZnlq0u5AzAzs+rixGFmZgVx4jAzs4I4cZiZWUGcOMzMrCBOHGZmVhAn\nDvuMpAmSLi/SsVaTdJ+kdyWdWYxj1jJJP5Q0tdxxlIqkekkHtfMYdZJeLFZMeZxviaT1Oup81cSJ\no4JJ2lfSdEmLJL0u6UFJ40p4ymIO6vkx8EZE9I6IoxrvlPQnSf+V9F7OY68int8ayX55f9joO9+i\ng04fFPfnq0W1nojLzYmjQkk6EjgPOB1YLSJWAw4GtpG0bDOfae/9VDs/n+srwLwW9gdwekT0ynlc\nW8Tz29ICOKTRdz693EFZ9XHiqECS+gC/AsZFxA0R8T5ARDweEd+LiI+z9/1J0oWSbpO0CKiTtJOk\nGZIWSnpB0vic4/bLit9jJL0s6ZUsQTUIYFlJl2VVTHMkbdZCnFtLeljSO5IekrRVQ1zAAcDR2V+1\n2xd4/T+X9FIWw/zmPt/KtfaQdIWktyQtyOL7Urbvh5KeyY7/rKTvZtu/UFWX8311yV7XSzpJ0v3Z\ndd0kaRVJV2YxPCTpKzmf31DSFEn/ya5jr5x9K2efXyhpOtC/he/jdkmHNNo2U9Ju2fNzsxLpQkmz\nJA0u5Psu5BiSVpI0Kfv5eVvSjdn2vpJukfRGtv1mSWu1cL4xkuZm9+AJSZtk279QPZT9jJ/UzDGO\nkfR0zjEavo9BwIXAVtl9ejvb3l3SWZL+Lem17P9Oj5zjHZX9n3hJ0oGFfoedSkT4UWEPYDTwCdCl\nlff9CXgH2Cp73R3YDhicvR4CvAbsmr3uBywBrgSWAzYG3gB2yPZPAD7Mzi/gVOCBZs69ErAA2J/0\nB8i+wNtA32z/JODEFmKfBJzUxPaBwAvA6tnrdYD1mjlGS9c6FrgJ6JFdy3CgF9ATWAhskL1vNWCj\n7Pl44PKc4zd8X12y1/XAv4B1gd7AE8BTwPZAV+Ay4NLsvT2BF4EfZN/PJsCbwKBs/9XZYzlgMPAS\ncF8z1/l94J85rzfKvvtlgB2BR4DeOd/f6s0c5x/AQU1sL+QYtwKTgT5AN2DbnJ+H/8m+7xWAa4Ab\nG537wOz5Xtn1bpa97g+skz1fknu/c3+OgDrgxZx9e+b8nOwNLCKVzsm+96mNYj8X+CuwYhbjTcCp\nOf/nXsu+2+WBqxrH4sfnD5c4KtMqwFsRsaRhg6Rp2V/OH0j6Ws57/xoRDwBExH8j4t6IeCJ7PZv0\ny2m7Rsf/VUR8GBFzSP8x98vZNzUi7oj0v+kKYFgzMe4EPBkRV0bEkoi4GpgPfCfnPS1VfQn4WXZN\nCyS9kW1fTEqAgyUtExEvRMSzTR2glWv9GFiZlCAiImZExHvZviXAEEnLRcTrETE3j3ghlcgmRcRz\nEfEucDvwr4i4JyIWA9eSEhTAzsBzEXFZ9v08DtwA7CWpK7A7cEJ2H54gJZ3mzv9XYBNJa2ev9weu\nj4hPSH9g9AIGSeoSEU9GxGvNHEfAb3O+80ey7XkdQ9IapF+wB0fEwoj4NCKmAkTE2xFxY0R8FBGL\nSH90NP65a/AjUjXlo9lnn4mIF5p5b0PcS4mI6xrijIhrSEl8i6Y+I0nAGOCnEfFOFuNppD94ICWe\nSyNibkR8QPojwprhxFGZ/gOsopw2i4jYOiL6Zvsatgfpr9rPSNpC0j+yKoN3SH95r9zo+LmfeQFY\nM+f16znPPwB6qOm2kzWzz+b6d6NjtSSAMyOib/b4EkBEPA38H6n087qkydkvrKW0cq2XA3cCV2fV\nKqdL6hap2m8fUnvRK1n1ysA8Y4Yvfj8fkUpsua9XyJ5/Bdgi55f0AuC7pBLOKqS/1hvfhyZlCe9W\nPk/w+5JKjUTEPcDvgN+Tvq8/SurV3KGAw3K+868WeIy1gbcjYmHjHZKWzz73vKSFwL1An+wXdmNf\nBp5p7nrzJekAparKhu93Y5b+WW+wKqkk8WjO+28n3QuANcjzfpgTR6V6APgvsFsbPnsV6S/UL0fE\nisAfWPo+r9Po+cttOM/LpF+Oub5S4LGa+0tyckRsmx0vSB0EmtLstWZ/DZ8YEYOBrUklgAOyfXdF\nxChgdVIpaWJ2vPdJv1warN5K/C31EnoBuDfnl3TfSI3RhwBvAZ+y9H1oyWRgP6V2pB4R8Y/Pgog4\nP0sCGwEDgKV6sbUmz2O8CKyk1AbX2JHZ50ZERB9SaUM0fY9fBNZvJpQP+OI9WIMmvuesLeki4BBg\npeyPqjk552v8mbdI1bAb5dyPFSOid7b/VQq7H52aE0cFioh3SI3jF0jaQ1IvSV2yBsSeOW9t6j/l\nCsCCiPhY0gjSX7mN/xMdJ2m5rAH0h8Bf2hDmbcAASftJ6iZpH2BD4JYWYsvV5H5JAyRtL6k7KXl+\nRKq+akqz16rU539IVi30Hqk6ZrGkL0naVVLPbNv7Ocd/HBgpae3sl+MvWom7pWu8lfT9fE/SMtlj\nc0kbZtVaNwATsvuwEalOvqVEdBspkf6KVCVHdp1fzUpey5B+6bb0fTUZc77HiIhXSX+lXyBpxeya\nts12r0D6xbxQ0kq0XNVzMamaclMl60tq+EX9OLC/pK6SRgMjmzlGT9L39RbQRdL/kkocDV4Hvpxd\nE1m170TgPEmrZte9lqRR2fuvAX4oaZCk5VuJv9Nz4qhQEXEm8FPgaFKj3Wukv6iPJpVIoOm+8f8P\nOFHSu8DxNJ0U7gWeBu4mVRfd3cLxmvxlFhFvk/6KP5L0n/dnwM7Z9uaO1fi4Te3vTqp7fpP0V+Aq\nNP0LHFq+1tVJbQ4Lgbmkhu3LST/zPyGVjP4DbAuMy65pSnaMWcDDwM1NxBiNnje5P6teGkWqVno5\nu5bTgIau1IeSftm+BlyaPZoVqSfdDcAOpJJWg96kv7zfBp4n3YuWBlw29Z0XcozvkxLufNIv5yOy\n7eeRGvrfAqaREkxzPzvXAadk1/Fudl19s91HALuQGv+/C9zYVPxZu9TZpP8Lr5GSxj9z3vd3UueF\n13Laz35O+rl/MKtOm0IqJRERd2TXcA+pA8Tfm4vfQKkNtAQHli4lNaC+ERFDWnjf5qSbv09EXJ9t\ne570A7UY+CQiRpQkyE5GUj/gWaBbbsO7mVkhSlnimETqgdGsrBrhdOCORrsCqIuI4U4aZmaVpWSJ\nI+umt6CVtx0GXEeqlmismKOY7XMufptZu5StjUNpVOmupBGesHTd8d2SHpE0psODq1ER8XxEdHU1\nlZm1R7cynvs84JiIiKyvd24JY5uIeDXr/TBF0vyGgUZmZlZe5Uwcm5EGZ0HqOfMtSZ9ExE1Ztz8i\n4k2luXBGAEslDkmudjEza4OIaHNzQNmqqiJivYhYNyLWJbVzjIuIm7IRqL0Asr72o4DZLRynZh/j\nx48vewy+Nl+fr6/2Hu1VshKHpMmk0aOrKC2+Mp40KRsR8ccWPro6cENWEukGXBkRd5UqTjMzK0zJ\nEkdE7Nf6uz577//mPH+WNJOomZlVII8cr2B1dXXlDqFkavnawNdX7Wr9+tqrZCPHO4KkqOb4zczK\nQRJRjY3jZmZWnZw4zMysIE4cZmZWECcOMzMriBOHmZkVxInDzMwK4sRhZmYFqfrEcdhh8N575Y7C\nzKzzqPrE8f77MGQI3NF4DUEzMyuJmhg5ftddMHYsbLstnHsurLxyuSMzM6tcHjkOjBoFs2enhLHx\nxvCXv0AV50Mzs4pWEyWOXA88AD/6Eay/PlxwAay1VpmCMzOrUC5xNLLVVvDYY7DJJulx0UWwxCts\nm5kVTc2VOHLNng0HHQQ9e8LEiakUYmbW2bnE0YIhQ1LV1S67wJZbwllnwaefljsqM7PqVtMljlzP\nPgtjxsDChXDJJTBsWImDMzOrUC5x5Gm99eDuu2HcOPjmN+H44+G//y13VGZm1afTJA4AKbV5PP44\nzJmTGs/vv7/cUZmZVZdOU1XVWARcfz0cfjjsuSeceiqssEKRAzQzq0CuqmojKSWMOXPSXFcbb+xp\nS8zM8tFpSxyNNUxbMnIknHOOpy0xs9rlEkeRNExb0rdvKn1cc42nLTEza4pLHE1omLZkgw3StCVr\nrln0U5iZlY1LHCXQMG3JsGHpMXGiSx9mZg1c4mhFw7QlK6yQ5r3ytCVmVu1c4iixhmlLdt7Z05aY\nmYFLHAV55hn48Y/h3XfTtCVDh3bYqc3MisYljg7Uv3+atuTgg2GHHTxtiZl1Tk4cBWqYtmTmzDR4\ncPhwmDat3FGZmXUcV1W1g6ctMbNq5KqqMmpq2pI77yx3VGZmpeUSRxHddVdqPN9uO09bYmaVyyWO\nCjJqVCp9rLhiKn1ce60HDppZ7XGJo0QeeCA1og8Y4GlLzKyyVGyJQ9Klkl6XNLuV920u6VNJe+Rs\nGy1pvqSnJP28VDGW0lZbwYwZn09bcvHFLn2YWW0oWYlD0rbAIuDPETGkmfd0BaYAHwCTIuL6bNuT\nwDeAl4GHgf0iYl4Tn6/YEkeuWbPSpImetsTMKkHFljgiYiqwoJW3HQZcB7yZs20E8HREPB8RnwBX\nA7uWJsqOMXToF6ctOftsT1tiZtWrbI3jktYiJYQLs00NRYe1gBdz3vpStq2qde0KP/0pTJ8Ot96a\nqrJmzSp3VGZmhetWxnOfBxwTESFJQEOxqaC6pwkTJnz2vK6ujrq6umLFVxL9+8Pf/w6XXpqmLTn4\nYDjuOOjevdyRmVmtqq+vp76+vmjHK2mvKkn9gJubauOQ9CyfJ4tVSO0cY4A3gAkRMTp73y+AJRFx\nehPHqIo2jua88goccgg8+WRqPN9663JHZGadQcW2cbQmItaLiHUjYl1SO8e4iLgJeATYQFI/ScsC\n+wA3lSvOUlpzTbjhBjjxxDQC/fDDYdGickdlZtayUnbHnQxMAwZKelHSgZLGShrb0uci4lPgUOBO\nYC7wl6Z6VNWK3GlL3n3X05aYWeXzAMAKc+edqd2jYdqSlVYqd0RmVmuqtqrKmrbjjmm52j59YPBg\nT1tiZpXHJY4K1jBtycCB8Pvfe9oSMysOlzhqWMO0JUOGwCabeNoSM6sMLnFUiVmzUumjVy+YODGN\nBzEzawuXODqJhmlLdtoJttjC05aYWfm4xFGFnnkGxoxJYz4uuSRVZZmZ5csljk6oYdqSH/84TVty\nwgnw3/+WOyoz6yycOKqUlKZqf/zx1P4xfHiqyjIzKzVXVdWACLjuujRlyd57wymnpLU/zMya4qoq\nQ4K99krTlixcmNo87rqr3FGZWa1yiaMG3XknjB0LdXWetsTMluYShy1lxx1T6aNPnzRpoqctMbNi\ncomjxk2blgYObrihpy0xs8QlDmvR1lunnleetsTMisUljk6kYdqS3r3hoos8bYlZZ+USh+WtYdqS\nb3/782lLFi8ud1RmVm1c4uikPG2JWeflEoe1Se60Jdtv72lLzCx/ThydmKctMbO2cFWVAV+ctmSf\nfeDkkz1tiVmtclWVFUXutCULFnjaEjNrnksc1qSGaUu+/vXU+8rTlpjVDpc4rCQapi3p3TtNW3Ld\ndR44aGaJSxzWKk9bYlZbXOKwkms8bckll7j0YdaZucRhBfG0JWbVzyUO61AN05Z861tp2pJzzvG0\nJWadjUsc1mZPP52mLfnggzTrrqctMasOLnFY2ay/PtxzTxp9vv32MH68py0x6wycOKxdpFTqePzx\n9Nh0U3jwwXJHZWal5KoqK5qItEztEUd42hKzSlayqipJiyS918zj3bae0GqXBHvv7WlLzGpdqyUO\nSScDrwBXZJv2B9aMiONLHFurXOKobHfcAQcf7GlLzCpNRzSOfyciLoiId7PHhcCubT2hdR6jR8Ps\n2dCrV5q25Prryx2RmRVDPonjfUnfk9Q1e+wPLCp1YFYbevWC3/42zXV13HGw++7w6qvljsrM2iOf\nxPFdYG/g9eyxd7atRZIulfS6pNnN7N9V0kxJMyQ9Kmn7nH3PS5qV7Xsov0uxSrb11jBjBgweDMOG\nwcSJsGRJuaMys7YoWa8qSduSSiZ/joilhoZJ6hkR72fPhwA3RsT62evngM0i4u1WzuE2jio0a1aa\nsn3x4lQa2XLLckdk1rmUvI1D0kBJf5f0RPZ6qKTjWvtcREwFFrSw//2clysAbzU+dWvnsOo0dCjc\nfz8cdhjssQf84AeuvjKrJvlUVU0EjgU+zl7PBvYrxskl7SZpHnA7cHjOrgDulvSIpDHFOJdVli5d\n4Pvfh/nzYY01UtfdM87wyHOzapBP4lg+IqY3vMjqhj4pxskj4q8RMQjYBbg8Z9c2ETEc+BZwSFbt\nZTWoVy/49a/TxIlTp6YEcttt5Y7KzFrSLY/3vClp/YYXkvYEilqxEBFTJXWTtHJE/CciXs22vynp\nRmAEMLWpz06YMOGz53V1ddTV1RUzNOsgG2wAN9+cksb//R9ccAGce27abmbtU19fT319fdGOl88A\nwP7ARcBWwDvAc8D+EfF8qweX+gE3N9M43h94NiJC0qbAtRHRX9LyQNeIeE9ST+Au4FcRsdQYZDeO\n16aPP4bf/AZOPz2t/XHccalkYmbF0REDAJdExA7Al4ANI2Ib8mi4ljQZmAYMlPSipAMljZU0NnvL\nHsBsSTOA3wD7ZttXB6ZKehyYDtzSVNKw2rXssnDUUWnw4OuvpyVr//xnd981qxT5lDhmZO0Nudse\njYjNShpZHlzi6BymT089sLp2Td13N9+83BGZVbf2ljiabeOQNAjYCOgjaXdSKSOA3kCPtp7QrFBb\nbJGmar/sMth117T64KmnwmqrlTsys86ppaqqAaTeTn2yf3fO/t0UcBdZ61BdusD//i/Mmwd9+6a5\nr849Fz4pSv8+MytEPlVVW0fEtA6KpyCuquq85s9Pva/+/e/UkD5qVLkjMqse7a2qyidxLAccRKq2\nWo5UXUVEHNjWkxaLE0fnFgG33AI/+UkqgZxzDqy3XrmjMqt8HdGr6nJgNWA0UA+sjWfHtQogwS67\npIWjttgCRoyAX/4SFvmn06yk8kkc62eLNi2KiMuAbwNblDYss/z16AG/+AXMnJmqrgYNgquuSiUS\nMyu+fBJHwxxVC7NZbFcEVi1dSGZts9ZacMUVcPXVacXBkSPTVO5mVlx5TXIoaSXgOOAmYC5wRkmj\nMmuHbbaBhx6CAw5IXXfHjoU33yx3VGa1o2TrcXQEN45baxYsgF/9Cq68Ek44AcaNg275zNBmVsNK\n1qtK0pFNbA6ygYARcU5bT1osThyWryeegCOOgNdeS6PPt9++9c+Y1aqSjRwHepF1vW18zma2m1Ws\nwYNhyhS48cY0ceJmm8FZZ0G/fuWOzKz6uKrKOp0PP0xJ4ze/gUMOgZ//HJZfvtxRmXWcjhgAOKmJ\nzeEBgFbtXngBjj46LSJ11lmw555pbIhZreuIxLEnn1dNLQf8D/BKRBzW1pMWixOHFcO998Lhh6c5\nsH7727QmulktK3niaOKEXYD7I2Krtp60WJw4rFg+/RQmToTx42GvveDEE2HllcsdlVlpdMSUI40N\nwAMArcZ065a66s6bl14PGgQXXgiLF5c3LrNKlE9V1SI+r6oK4HXgmIi4vsSxtcolDiuVWbNS9dU7\n76Tqq5Ejyx2RWfF0eFVVJXHisFKKgGuvTcvYbrUVnHkmrL12uaMya7+SV1VJ+h9JK+a8XlHSbm09\noVm1kGDvvVP11cCBMHw4nHRS6s5r1pnlU1U1MyKGNdr2eERsUtLI8uASh3Wk55+Hn/0MHn00rf2x\n227uvmvVqSMax5s6eNe2ntCsWvXrB9ddBxdfDMcfD9/8ZprKxKyzySdxPCrpHEn9Ja0v6Vzg0VIH\nZlapdtghTdf+ne9AXV1awvadd8odlVnHySdxHAZ8AvwFuBr4CDiklEGZVbpllkm9rubOTW0eG26Y\nxoG4+651Bu5VZVYEjz2WEsmHH6buu9tsU+6IzJpXymnVb27hcxER32nrSYvFicMqSQRMnpwmTdxu\nOzj99LQqoVmlKWXiqGvpgxFR39aTFosTh1WiRYvgtNPgj3+EI4+En/4Uuncvd1Rmn/MAwCqO32rb\nM8+kxDFnDpx7Luy8s7vvWmXoiNlxBwCnAoOBHtnmiIj12nrSYnHisGpw551p9cF+/eC881JDulk5\ndcQ4jknAH0g9q+qAy4Ar23pCs85mxx3T3FejRsHXvpYGES5cWO6ozNoun8SxXETcTSqd/DsiJgA7\nlTYss9qy7LKpreOJJ2DBglTqmDQJliwpd2RmhcsncXwkqSvwtKRDJe0O9CxxXGY1abXV4JJL4Kab\n4KKLYMstYfr0ckdlVph82jhGAPOAFYGTgN7AGRHxYOnDa5nbOKyaLVkCV1wBv/hFmr7k17+G1Vcv\nd1TWGbhXVRXHbwbw3ntw8smpJHLMMWkg4bLLljsqq2UdMa36lEbTqveVdGdbT2hmX9SrVxosOG0a\n/OMfMGQI3H57uaMya14+VVVLTaHuadXNSufWW+EnP4EBA9L4jw02KHdEVms6ojvuYklfyTlhP8B9\nQcxKZKedYPbstFztVlul6qv33it3VGafyydx/BKYKulySVcA9wHHtvYhSZdKel3S7Gb27ypppqQZ\nkh6VtH3OvtGS5kt6StLP870Ys1rRvTscfXRKIK++mrrvXn65u+9aZcircVzSqsCWQADTI+LNPD6z\nLbAI+HNEDGlif8+IeD97PgS4MSLWz7r+Pgl8A3gZeBjYLyLmNXEMV1VZp/Dgg3DYYWk699/+Fr76\n1XJHZNWsI6qqiIg3I+LmiLgln6SRfWYqsKCF/e/nvFwBeCt7PgJ4OiKej4hPSGuA7JrPOc1qVcN4\njx/9CHbZJf37xhvljso6q7wSR6lI2k3SPOB24PBs81rAizlveynbZtapdekCBx4I8+dDnz4weHCa\n++qTT8odmXU2ZU0cEfHXiBgE7AJcLnnuULPW9OkDZ58N992Xuu0OGwZTppQ7KutMurX2BknrAy9F\nxEeSvg4MIbVbFG2V5YiYKqkbsBKphLF2zu61s21NmjBhwmfP6+rqqKurK1ZYZhVt0CC44440fcnB\nB8PQoSmhrFf2eaut0tTX11NfX1+04+UzjmMmsBnQD7gN+BswOCK+3erBU9fdm5tpHO8PPBsRIWlT\n4NqI6J8lkCeBHYBXgIdw47hZiz76CM45JyWOcePSNCY9PaOcNaMjGseXRMSnwO7A+RFxFLBGHoFN\nBqYBAyW9KOlASWMljc3esgcwW9IM4DfAvgDZuQ4F7gTmAn9pKmmY2ed69IBjj4WZM+G551L33cmT\n03K2ZsWWT4ljOukX+7HALhHxnKQ5EbFxRwTYEpc4zJr2z3+mOa969oTzz4dNyj7Pg1WSjihxHAhs\nBZySJY11gcvbekIzK72vfQ0efhi+//20kNS4cfDWW61/ziwfzZY4JK0TES90cDwFcYnDrHULFsD4\n8XD11XDCCakhvVur3WKslpWyxPG3nJNc39YTmFl59e2bRpvfcw/ceCMMH56em7VVvuM43MHPrMpt\nvDHcfTdMmJAGEu61F/z73+WOyqpRWQcAmlnHkmCPPWDevLTux6abpkTywQfljsyqSUttHIuBhh+n\n5YAPc3ZHRPQucWytchuHWfu88AIcdVSaRPGss2DPPVNysdrmpWOrOH6zSlFfn7rvrrxyag8ZstSQ\nXaslHTI7rpnVtro6eOyxVOLYYYc0hfvbb5c7KqtUThxmBqQuuocckto/Fi9Oc2H94Q/puVkuV1WZ\nWZNmzkzVVwsXpuqrkSPLHZEVi9s4qjh+s0oXAddckxrQt9kGzjgD1l679c9ZZXMbh5mVjAT77JOq\nrzbYIM15dfLJ8OGHrX/WapcTh5m1qmdPOPFEeOQRmDEDBgyASy6BTz8td2RWDq6qMrOCPfggHHMM\nvPYanHIK7L67x39UE7dxVHH8ZtUsAu66Ky0a1a0bnHZa6sprlc+Jo4rjN6sFS5bAtdfCccdBv34p\ngXz1q+WOylrixnEzK6suXVID+ty5aQDhrrumCRSffLLckVmpOHGYWVEsswyMHQtPPQWbbZYWkxoz\nBl56qdyRWbE5cZhZUS2/fGo4/9e/YJVVYNiwNA7kP/8pd2RWLE4cZlYSffum9o7Zs2HRIhg4MPXA\nWrSo3JFZezlxmFlJrbkmXHghPPAAzJmTBhL+/vfw8cfljszayonDzDrEBhvA5Mlw221wyy2w4YZw\n5ZWpV5ZVF3fHNbOyqK9PY0A++ABOPRW+/W0PIuwoHsdRxfGbdXYRcNNNcOyxsNJKqU3ka18rd1S1\nz+M4zKxqSWncx6xZ8KMfwf77w847p9dWuZw4zKzsunaFH/wgdeH95jfT43vfg2efLXdk1hQnDjOr\nGN27wxFHwNNPp8b0zTeHQw9Nkyla5XDiMLOK06sXjB8P8+enEemDB6e5sBYuLHdkBk4cZlbBVl0V\nzj0XHnsMXn45lULOOssLSZWbE4eZVbyvfAUmTYJ//APuvz8tJHXxxV5IqlzcHdfMqk7uQlInnwx7\n7OExIIXwOI4qjt/M2i53IamuXdMYkG98o9xRVQcnjiqO38zar/FCUqeemnpjWfM8ANDMOrXGC0nt\ntlv6d/78ckdWu5w4zKwm5C4kNWIEbLttGo3+4ovljqz2OHGYWU1Zfnk4+ug0Cv1LX4JNNoGf/cwL\nSRVTyRKHpEslvS5pdjP795c0U9IsSfdLGpqz7/ls+wxJD5UqRjOrXX37pvaOOXPSDLwDB6YeWF5I\nqv1KWeKYBIxuYf+zwMiIGAqcBFyUsy+AuogYHhEjShijmdW4NdaACy5IXXjnzk2DCH/3Oy8k1R4l\nSxwRMRVY0ML+ByKiYQKB6cCXG73FvbLNrGjWXx+uuiotJHXbbWkhqSuugMWLyx1Z9amUNo6DgNty\nXgdwt6QaRKkyAAAKgUlEQVRHJI0pU0xmVoOGD0+JY9KkVBIZPjytSOie/fnrVu4AJH0dOBDYJmfz\nNhHxqqRVgSmS5mclmKVMmDDhs+d1dXXU1dWVMFozqxXbbZemL7n55jQK/de/To9aXEiqvr6e+vr6\noh2vpAMAJfUDbo6IIc3sHwrcAIyOiKebec94YFFEnN3EPg8ANLN2W7w4rX9+wgmw8capUX3o0NY/\nV62qdgCgpHVISeN7uUlD0vKSemXPewKjgCZ7ZpmZFUPXrnDAAfDkkzBqVHp4IanmlbI77mRgGjBQ\n0ouSDpQ0VtLY7C0nAH2BCxt1u10dmCrpcVKj+S0RcVep4jQza9C9Oxx+eBpEOGCAF5JqjueqMjNr\nxptvpskTL7sMxo2Do46CPn3KHVX7VW1VlZlZpVt1VTjnHJgxA155xQtJNXDiMDNrxTrrwKWXQn09\nTJvmhaRcVWVmVqDp01MX3ldegVNOqb6FpLweRxXHb2bVKwKmTEkLSUlpDEi1LCTlxFHF8ZtZ9Vuy\nBK67Li0ktfbaqTF9RIXPsOfGcTOzMurSBfbeG554AvbdF3bfPVVdzZtX7shKx4nDzKwIllkGxoxJ\nY0C23BJGjoSDDqrNhaScOMzMimi55dJ4j6eegtVXTwtJHXkkvPVWuSMrHicOM7MSWHHF1ONqzhz4\n6KM0jftJJ9XGQlJOHGZmJbTGGvD736cuvPPmpXVBzj+/uheScuIwM+sA/funhaTuuANuv726F5Jy\nd1wzszK49940BmTRojSN+047ddwgQo/jqOL4zaxzi0gLSR17bGoTOe002Hbb0p/XiaOK4zczg88X\nkho/HjbaKJVAhg0r3fk8ANDMrMo1LCQ1fz6MHg077gj77w/PPFPuyJrmxGFmViG6d4fDDktjQDbc\nELbYAg45pPIWknLiMDOrML16wfHHpxJIjx4weDD88pfwzjvljixx4jAzq1CrrAJnn50WknrttbQO\nyJlnln8hKScOM7MKt846cMklqQvvgw+mlQgnTizfQlLuVWVmVmWmT09jQF5+GU4+Oc3G26WAYoC7\n41Zx/GZmbRUBd9+dViKU0hiQb3wjv0GEThxVHL+ZWXstWQLXX58az/NdSMrjOMzMOrEuXWCvvTp2\nISknDjOzGtB4IanttksLSb3wQvHP5cRhZlZDGhaS+te/0kJSw4cXfyEpJw4zsxpUyoWk3DhuZtYJ\nPPMMnHAC3HcfvPSSe1WVOwwzs6rxyiuw1lpOHOUOw8ysqrg7rpmZdSgnDjMzK4gTh5mZFcSJw8zM\nCuLEYWZmBXHiMDOzgpQscUi6VNLrkmY3s39/STMlzZJ0v6ShOftGS5ov6SlJPy9VjGZmVrhSljgm\nAaNb2P8sMDIihgInARcBSOoK/C777EbAfpIGlTDOilVfX1/uEEqmlq8NfH3Vrtavr71KljgiYiqw\noIX9D0TEwuzldODL2fMRwNMR8XxEfAJcDexaqjgrWS3/8NbytYGvr9rV+vW1V6W0cRwE3JY9Xwt4\nMWffS9k2MzOrAN3KHYCkrwMHAttkmzyHiJlZBSvpXFWS+gE3R8SQZvYPBW4ARkfE09m2LYEJETE6\ne/0LYElEnN7E551kzMzaoD1zVZWtxCFpHVLS+F5D0sg8AmyQJZ1XgH2A/Zo6Rnsu3MzM2qZkiUPS\nZGA7YBVJLwLjgWUAIuKPwAlAX+BCSQCfRMSIiPhU0qHAnUBX4JKIKOHquWZmVoiqnlbdzMw6XqX0\nqvpMHgMHN5T0gKSPJB3ZaF/FDxxs5/U9nw2YnCHpoY6JuDC1PvCznddXC/dv1+z6Zkh6VNL2Oftq\n4f61dH0Vff9au7ac920u6VNJe+RsK+zeRURFPYBtgeHA7Gb2rwp8FTgZODJne1fgaaAfqUrscWBQ\nua+nWNeX7XsOWKnc19DO69sK6JM9Hw08WGP3r8nrq6H71zPn+RDSmKtaun9NXl813L/Wri3nPt0D\n3ALs0dZ7V3Eljmh94OCbEfEI8EmjXVUxcLAd19egojsE5HF9VT3wsx3X16Da79/7OS9XAN7KntfK\n/Wvu+hpU7P1r7doyhwHXAW/mbCv43lVc4miHzjBwMIC7JT0iaUy5gymCWh/4mXt9UCP3T9JukuYB\ntwOHZ5tr5v41c31Q5fdP0lqkhHBhtqmhgbvge1f2AYBF1Bla+beJiFclrQpMkTQ/+yuj6tT6wM8m\nrg9q5P5FxF+Bv0raFrhc0obljqmYGl8fMDDbVe337zzgmIgIpa6sDaWngv/v1VKJ42Vg7ZzXa5My\nZ82IiFezf98EbiQVMatO1mA8EfhORDQUrWvm/jVzfTVz/xpkvzS7ASuR7lVN3L8GDdcnaeXsdbXf\nv82AqyU9B+wBXCDpO7Th/141J47GdY2fDRyUtCxp4OBNHR9W0Xzh+iQtL6lX9rwnMAposfdEJcpn\n4Gc137/mrq+G7l//7K9VJG0KEBH/oXbuX5PXVwv3LyLWi4h1I2JdUjvHuIi4iTbcu4qrqlIrAwcl\nrQ48DPQGlkg6AtgoIhapCgYOtvX6gC8BN2Q/092AKyPirjJcQotauz6qfOBnW68PWJ3auH97AAdI\n+gRYBOyb7auV+9fk9VEF9y+Pa2tSW+6dBwCamVlBqrmqyszMysCJw8zMCuLEYWZmBXHiMDOzgjhx\nmJlZQZw4zMysIE4c1ilIWpxNh93wWKfcMRWTpD/lTpNtVkoVNwDQrEQ+iIjh5Q6ihIIam+/LKpdL\nHNZpSRosaXpWApkpaf0m3nOBpIclzZE0IWf7ryU9kX3ujGzbXpJmS3pcUn227YeSzs/53C2SRmbP\nF0k6Izv2FElbSrpX0jOSdsne01XSmZIeys7142y7JP1OafGdKaSZBSp2ym+rLS5xWGexnKQZ2fNn\nI2IP4GDgNxFxlaRuNP3/4ZcRsUBSV9KU2kOAV4DdImJDAEm9s/ceD4zKZlBt2Na4FJD7enng7xFx\ntKQbgBOB7YHBwGXAzaSp2d+JiBGSugP/lHQXsCkwABhEmg5jLnBJW74Ys0I5cVhn8WETVVXTgF9K\n+jJwQ6NJFxvso7T2QjdgDdIv6rnAR5IuIa2kdkv23vuByyRdQ5rosDUfR8Sd2fPZwEcRsVjSHNJq\nbJAm0xsiac/sdW9gA9Jqb1dFmjPoVUn35HE+s6JwVZV1WhExGdgF+BC4TWkNjc9IWhc4Etg+IoYB\ntwLLRcRi0pTa1wE7A3dkxxsHHEealvpRSSsBn/LF/2c9cp7nrvK4BPg4O84SvvhH3aERMTx79I+I\nKQ0htvnizdrBicM6LUnrRsRzEXE+8DfSGtO5egPvA+9KWg34FhDZtNorRsTtwE+BYdnx+kfEQxEx\nnrQ055eB54FNsjaJtSl8DYc7gf+XVaUhaYCk5YH7SKWhLpLWAL7e0kHMislVVdZZNNXjaG9J3yf9\n5f8qcMoXPhAxM2sXmU9aWvOf2a5ewN8k9SD91f+TbPsZkjbItt0dEbMAlBbOmQvMAx5tIaZo4vnF\npGqrx7J1It4gta/cKGn77LgvkKrdzDqEp1U3M7OCuKrKzMwK4sRhZmYFceIwM7OCOHGYmVlBnDjM\nzKwgThxmZlYQJw4zMyuIE4eZmRXk/wN5SXo27nRWHQAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x5567810>"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11-pg561"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#using Michalowski\u2019s solution\n",
+ "C=20.\n",
+ "G=18.5\n",
+ "H=21.62\n",
+ "c=25.\n",
+ "r=0.25\n",
+ "Fs=3.1*math.tan(c/57.3)\n",
+ "print'%s %.1f %s'%('Fs = ',Fs,'')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Fs = 1.4 \n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file |