summaryrefslogtreecommitdiff
path: root/Principles_Of_Geotechnical_Engineering_by_B._M._Das/Chapter13.ipynb
diff options
context:
space:
mode:
authorhardythe12015-06-11 17:31:11 +0530
committerhardythe12015-06-11 17:31:11 +0530
commit79c59acc7af08ede23167b8455de4b716f77601f (patch)
tree2d6ff34b6f131d2671e4c6b798f210b3cb1d4ac7 /Principles_Of_Geotechnical_Engineering_by_B._M._Das/Chapter13.ipynb
parentdf60071cf1d1c18822d34f943ab8f412a8946b69 (diff)
downloadPython-Textbook-Companions-79c59acc7af08ede23167b8455de4b716f77601f.tar.gz
Python-Textbook-Companions-79c59acc7af08ede23167b8455de4b716f77601f.tar.bz2
Python-Textbook-Companions-79c59acc7af08ede23167b8455de4b716f77601f.zip
add books
Diffstat (limited to 'Principles_Of_Geotechnical_Engineering_by_B._M._Das/Chapter13.ipynb')
-rwxr-xr-xPrinciples_Of_Geotechnical_Engineering_by_B._M._Das/Chapter13.ipynb434
1 files changed, 434 insertions, 0 deletions
diff --git a/Principles_Of_Geotechnical_Engineering_by_B._M._Das/Chapter13.ipynb b/Principles_Of_Geotechnical_Engineering_by_B._M._Das/Chapter13.ipynb
new file mode 100755
index 00000000..20c28288
--- /dev/null
+++ b/Principles_Of_Geotechnical_Engineering_by_B._M._Das/Chapter13.ipynb
@@ -0,0 +1,434 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:0e1b8f59fb3a5d8de0f3a9b8d0a65d58dfc4a0a36944d60860dc12f3ce3b3032"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter13-Lateral Earth Pressure: At-Rest, Rankine, and Coulomb"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-430"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#Calculate the lateral force Poper unit length of the wall. Also, determine the location ofthe resultant force. Assume that for sand OCR\u00012\n",
+ "OCR=2.\n",
+ "a=30.\n",
+ "Ko=(1.-math.sin(a/57.3))*(OCR)**math.sin(a/57.3)\n",
+ "##at z=0\n",
+ "To1=0.\n",
+ "Th1=0.\n",
+ "u1=0.\n",
+ "##at z=10\n",
+ "To2=10.*100.\n",
+ "Th2=Ko*To2\n",
+ "u2=0.\n",
+ "##at z=15\n",
+ "To3= 10.*100.+5.*(122.4-62.4)\n",
+ "Th3=Ko*To3\n",
+ "u3=5.*62.4\n",
+ "##Lateral force Po =Area 1 +\u0007 Area 2+\u0007 Area3+\u0007 Area 4\n",
+ "Po =(1./2.)*10.*707.+5.*707.+(1./2.)*5.*212.1+(1/2.)*5.*312.\n",
+ "z=((3535.)*(5.+10./3.)+3535.*(5./2.)+530.3*(5./3.)+780.*(5./3.))/Po\n",
+ "print'%s %.1f %s'%('z = ',z,' ft')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "z = 4.8 ft\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg449"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#a.Rankine active force per unit length of the wall and the location of theresultant\n",
+ "#b.Rankine passive force per unit length of the wall and the location of the resultant\n",
+ "##c=0\n",
+ "a=36.\n",
+ "G=16.\n",
+ "Ka=(1.-math.sin(a/57.3))/(1.+math.sin(a/57.3))\n",
+ "##at z=0 Tp=0\n",
+ "z=6.\n",
+ "To=G*z\n",
+ "Ta=Ka*To\n",
+ "Pa=z*Ta/2.\n",
+ "\n",
+ "print'%s %.1f %s'%('a)Rankine active force per unit length of the wall = ',Pa,' kN/m')\n",
+ "print(' and the location of the resultant is z = 2m')\n",
+ "\n",
+ "\n",
+ "p=36.\n",
+ "G=16.\n",
+ "Kp=(1+math.sin(a/57.3))/(1-math.sin(a/57.3))\n",
+ "##at z=0 Tp=0\n",
+ "z=6.\n",
+ "To=G*z\n",
+ "Tp=Kp*To\n",
+ "Pp=z*Tp/2.\n",
+ "\n",
+ "print'%s %.1f %s'%(' b)Rankine passive force per unit length of the wall = ',Pp,' kN/m')\n",
+ "print (' and the location of the resultant is z = 2m')\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "a)Rankine active force per unit length of the wall = 74.8 kN/m\n",
+ " and the location of the resultant is z = 2m\n",
+ " b)Rankine passive force per unit length of the wall = 1109.2 kN/m\n",
+ " and the location of the resultant is z = 2m\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg450"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#Determine the active force Paperunit length of the wall as well as the location and direction of the resultant.\n",
+ "H=12.\n",
+ "a=20.\n",
+ "b=20.\n",
+ "G=115.\n",
+ "c=30.\n",
+ "Oa= math.asin(math.sin(a/57.3)/math.sin(c/57.3))*57.3-a+2.*b\n",
+ "Ka= (math.cos((a-b)/57.3)*math.sqrt(1.+(math.sin(c/57.3))**2.-2.*math.sin(c/57.3)*math.cos(Oa/57.3)))/((math.cos(b/57.3))**2.*(math.cos(a/57.3)+math.sqrt((math.sin(c/57.3))**2.-(math.sin(a/57.3))**2)))\n",
+ "Pa=G*H**2.*Ka/2.\n",
+ "B= math.atan((math.sin(c/57.3)*math.sin(Oa/57.3))/(1.-(math.sin(c/57.3)*math.cos(Oa/57.3))))*57.3\n",
+ "print'%s %.1f %s'%('The active force Pa per unit length of the wall = ',Pa,' lb/ft')\n",
+ "print'%s %.1f %s'%( ' The resultant will act a distance of 12/3 = 4 ft above the bottom of the wall with B = ',B,' degree')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The active force Pa per unit length of the wall = 6423.5 lb/ft\n",
+ " The resultant will act a distance of 12/3 = 4 ft above the bottom of the wall with B = 30.0 degree\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg451"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#determine the force per unit length of the wall for Rankine\u2019s active state. Also find the location of the resultant.\n",
+ "a=30.\n",
+ "Ka1=(1.-math.sin(a/57.3))/(1.+math.sin(a/57.3))\n",
+ "a=35.\n",
+ "Ka2=(1-math.sin(a/57.3))/(1+math.sin(a/57.3))\n",
+ "##at z=0 so T0=0\n",
+ "##atz=3\n",
+ "To=3.*16.\n",
+ "Ta1=Ka1*To\n",
+ "Ta2=Ka2*To\n",
+ "\n",
+ "## At z=6\n",
+ "To=3.*16.+3.*(18.-9.81)\n",
+ "Ta2=Ka2*To\n",
+ "\n",
+ "Pa =(1/2.)*3.*16.+3.*13.0+ (1/2.)*3.*36.1\n",
+ "z= (24 *(3.+3./3.)+39.0*(3/2.)+54.15*(3/3.))/Pa\n",
+ "print'%s %.1f %s'%('The force per unit length of the wall = ',Pa,' kN/m')\n",
+ "print'%s %.1f %s'% (' The location of the resultant = ',z,'m ')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The force per unit length of the wall = 117.2 kN/m\n",
+ " The location of the resultant = 1.8 m \n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5-pg453"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#a.Maximum depth of the tensile crack\n",
+ "#b.Pabefore the tensile crack occurs\n",
+ "#c. Pa after the tensile crack occurs\n",
+ "Ka= (math.tan(1./57.3))**2.\n",
+ "G=16.5\n",
+ "cu=10.\n",
+ "H=6.\n",
+ "##at z=0\n",
+ "z=0.\n",
+ "Ta=G*z-2.*cu\n",
+ "##zt z=6\n",
+ "z=6.\n",
+ "Ta=G*z-2.*cu\n",
+ "\n",
+ "zo=2.*cu/G\n",
+ "## Before the tensile crack occurs\n",
+ "Pa= G*H**2./2. - 2.*cu*H\n",
+ "print'%s %.1f %s'%('Pa before the tensile crack occurs = ',Pa,' kN/m')\n",
+ "##After the tensile crack occurs\n",
+ "Pa=(H-zo)*Ta/2.\n",
+ "print'%s %.1f %s'%(' Pa after the tensile crack occurs = ',Pa,' kN/m')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Pa before the tensile crack occurs = 177.0 kN/m\n",
+ " Pa after the tensile crack occurs = 189.1 kN/m\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6-pg457"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#Determine the Rankine active force Paon the retaining wall after the tensile crack occurs.\n",
+ "H=15.\n",
+ "a=10.\n",
+ "G=118.\n",
+ "b=20.\n",
+ "C=250\n",
+ "Zo=2.*C*math.sqrt((1+math.sin(b/57.3))/(1.-math.sin(b/57.3)))/G\n",
+ "##at z=0 Ta=0\n",
+ "##at z=15 \n",
+ "z=15.\n",
+ "K=0.3\n",
+ "Ta=G*z*K*math.cos(a/57.3)\n",
+ "Pa=(H -Zo)*Ta/2.\n",
+ "print'%s %.1f %s'%('The Rankine active force Pa on the retaining wall after the tensile crack occurs = ',Pa,' lb/ft')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The Rankine active force Pa on the retaining wall after the tensile crack occurs = 2339.8 lb/ft\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7-pg459"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Estimate the active force,Pa , per unit length of the wall. Also, state the direction and location of the resultant force,Pa.\n",
+ "import math\n",
+ "c=30.\n",
+ "b=15.\n",
+ "a=10.\n",
+ "Ka=0.3872 ## from table 13.8\n",
+ "H=4.\n",
+ "G=15.\n",
+ "Pa=G*H**2.*Ka/2.\n",
+ "print'%s %.1f %s'%('The active force per unit length Pa = ',Pa,' kN/m')\n",
+ "print(' The resultant will act at a vertical distance equal to H/3 = 4/3 = 1.33 m above ' ' the bottom of the wall and will be inclined at an angle of 15\u0005to the back face of the wall.')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The active force per unit length Pa = 46.5 kN/m\n",
+ " The resultant will act at a vertical distance equal to H/3 = 4/3 = 1.33 m above the bottom of the wall and will be inclined at an angle of 15\u0005to the back face of the wall.\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9-pg478"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#Determine Pae.Also determine the location of the resultant line of action of Pae\u2014that is, .\n",
+ "kh=0.2\n",
+ "kv=0.\n",
+ "H=4.\n",
+ "a=0.\n",
+ "b=0.\n",
+ "c=15.\n",
+ "d=30.\n",
+ "G=15.5\n",
+ "B= math.atan(kh/(1-kv)/57.3)\n",
+ "b1=b+B\n",
+ "a1=a+B\n",
+ "Ka=0.452\n",
+ "Pa=G*H**2.*Ka/2.\n",
+ "Pae=Pa*(1.-kv)*((math.cos(b1/57.3))**2./((math.cos(b/57.3))**2.*(math.cos(B/57.3))**2.))\n",
+ "Ka=0.3014\n",
+ "Pa=G*H**2*Ka/2.\n",
+ "P1=Pae-Pa\n",
+ "z= ((Pa*H/3)+P1*0.6*H)/Pae\n",
+ "print'%s %.1f %s'%('Pae = ',Pae,' kN/m')\n",
+ "print'%s %.1f %s'%(' Z = ',z,' m')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Pae = 56.0 kN/m\n",
+ " Z = 1.7 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10-pg479"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#Determine the magnitude of the active force,Pae.\n",
+ "H=28.\n",
+ "C=210.\n",
+ "b=10.\n",
+ "G=118.\n",
+ "c=20.\n",
+ "kh=0.1\n",
+ "Ka=math.tan(35./57.3)\n",
+ "zo=2.*C/(G*(Ka))\n",
+ "n=zo/(H-zo)\n",
+ "Nac=1.60\n",
+ "Nav=0.375\n",
+ "L=1.17\n",
+ "Pae= G*(H-zo)**2*(L*Nav)-C*(H-zo)*Nac\n",
+ "print'%s %.1f %s'%('The magnitude of the active force, Pae = ',Pae,' lb/ft')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The magnitude of the active force, Pae = 19488.8 lb/ft\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file