diff options
author | Trupti Kini | 2016-09-09 23:30:25 +0600 |
---|---|---|
committer | Trupti Kini | 2016-09-09 23:30:25 +0600 |
commit | 881c3e39d046002e9910d5c518c20fe000e63b37 (patch) | |
tree | c6f84e1956eb501ff64b872dafaa2184443e14c2 /Power_Electronics_Principles_and_Applications_by_Jacob/Chapter1.ipynb | |
parent | 28bb57cacd0c8bd76a5c86d7e99e3583f02f0b6c (diff) | |
download | Python-Textbook-Companions-881c3e39d046002e9910d5c518c20fe000e63b37.tar.gz Python-Textbook-Companions-881c3e39d046002e9910d5c518c20fe000e63b37.tar.bz2 Python-Textbook-Companions-881c3e39d046002e9910d5c518c20fe000e63b37.zip |
Added(A)/Deleted(D) following books
A Heat_Transfer_Principles_And_Applications_by_Dutta/README.txt
A Heat_Transfer_Principles_And_Applications_by_Dutta/ch10.ipynb
A Heat_Transfer_Principles_And_Applications_by_Dutta/ch11.ipynb
A Heat_Transfer_Principles_And_Applications_by_Dutta/ch2.ipynb
A Heat_Transfer_Principles_And_Applications_by_Dutta/ch3.ipynb
A Heat_Transfer_Principles_And_Applications_by_Dutta/ch4.ipynb
A Heat_Transfer_Principles_And_Applications_by_Dutta/ch5.ipynb
A Heat_Transfer_Principles_And_Applications_by_Dutta/ch6.ipynb
A Heat_Transfer_Principles_And_Applications_by_Dutta/ch7.ipynb
A Heat_Transfer_Principles_And_Applications_by_Dutta/ch8.ipynb
A Heat_Transfer_Principles_And_Applications_by_Dutta/ch9.ipynb
A Heat_Transfer_Principles_And_Applications_by_Dutta/screenshots/10.png
A Heat_Transfer_Principles_And_Applications_by_Dutta/screenshots/5.png
A Heat_Transfer_Principles_And_Applications_by_Dutta/screenshots/51.png
A Heat_Transfer_in_SI_units_by_Holman/Chapter1.ipynb
A Heat_Transfer_in_SI_units_by_Holman/Chapter10.ipynb
A Heat_Transfer_in_SI_units_by_Holman/Chapter11.ipynb
A Heat_Transfer_in_SI_units_by_Holman/Chapter2.ipynb
A Heat_Transfer_in_SI_units_by_Holman/Chapter3.ipynb
A Heat_Transfer_in_SI_units_by_Holman/Chapter4.ipynb
A Heat_Transfer_in_SI_units_by_Holman/Chapter5.ipynb
A Heat_Transfer_in_SI_units_by_Holman/Chapter6.ipynb
A Heat_Transfer_in_SI_units_by_Holman/Chapter7.ipynb
A Heat_Transfer_in_SI_units_by_Holman/Chapter8.ipynb
A Heat_Transfer_in_SI_units_by_Holman/Chapter9.ipynb
A Heat_Transfer_in_SI_units_by_Holman/README.txt
A Heat_Transfer_in_SI_units_by_Holman/screenshots/9.1.png
A Heat_Transfer_in_SI_units_by_Holman/screenshots/9.2.png
A Heat_Transfer_in_SI_units_by_Holman/screenshots/9.4.png
A Power_Electronics_Principles_and_Applications_by_Jacob/Chapter1.ipynb
A Power_Electronics_Principles_and_Applications_by_Jacob/Chapter2.ipynb
A Power_Electronics_Principles_and_Applications_by_Jacob/Chapter3.ipynb
A Power_Electronics_Principles_and_Applications_by_Jacob/Chapter4.ipynb
A Power_Electronics_Principles_and_Applications_by_Jacob/Chapter5.ipynb
A Power_Electronics_Principles_and_Applications_by_Jacob/Chapter6.ipynb
A Power_Electronics_Principles_and_Applications_by_Jacob/Chapter7.ipynb
A Power_Electronics_Principles_and_Applications_by_Jacob/Chapter8.ipynb
A Power_Electronics_Principles_and_Applications_by_Jacob/Chapter9.ipynb
A Power_Electronics_Principles_and_Applications_by_Jacob/README.txt
A Power_Electronics_Principles_and_Applications_by_Jacob/screenshots/4.png
A Power_Electronics_Principles_and_Applications_by_Jacob/screenshots/5.png
A Power_Electronics_Principles_and_Applications_by_Jacob/screenshots/6.png
A sample_notebooks/AviralYadav/Chapter5.ipynb
Diffstat (limited to 'Power_Electronics_Principles_and_Applications_by_Jacob/Chapter1.ipynb')
-rw-r--r-- | Power_Electronics_Principles_and_Applications_by_Jacob/Chapter1.ipynb | 558 |
1 files changed, 558 insertions, 0 deletions
diff --git a/Power_Electronics_Principles_and_Applications_by_Jacob/Chapter1.ipynb b/Power_Electronics_Principles_and_Applications_by_Jacob/Chapter1.ipynb new file mode 100644 index 00000000..662bf254 --- /dev/null +++ b/Power_Electronics_Principles_and_Applications_by_Jacob/Chapter1.ipynb @@ -0,0 +1,558 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 1: Advanced Operational Amplifier Principles" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example 1.1,Page 6" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "open output voltage is 0.5 V\n", + "resistance lower loaded is 333.333 ohm\n", + "loaded output voltage is 0.25 V\n" + ] + } + ], + "source": [ + "#finding voltage current resistance\n", + "\n", + "#initialisation of variable\n", + "from math import pi,tan,sqrt,sin,cos,acos,atan\n", + "R1=1000.0;\n", + "R2=1000.0;\n", + "Rl=500.0#load resistance\n", + "V=1.0#input voltage\n", + "\n", + "#calculation\n", + "Vo=(R2/(R1+R2))*V;\n", + "Rll=1/((1/R2)+(1/Rl))#lower loaded resistance\n", + "Vol=(Rll/(R2+Rll))*V;\n", + "\n", + "#result\n", + "print \"open output voltage is\",round(Vo,3),\"V\"\n", + "print \"resistance lower loaded is\",round(Rll,3),\"ohm\"\n", + "print \"loaded output voltage is\",round(Vol,3),\"V\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example 1.2,Page 11" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "input resistance is 1.01 Kohm\n" + ] + } + ], + "source": [ + "#finding voltage current resistance\n", + "\n", + "#initialisation of variable\n", + "from math import pi,tan,sqrt,sin,cos,acos,atan\n", + "Rf=100000.0#resistance\n", + "Acl=100.0#amplifier gain\n", + "\n", + "#calculation\n", + "Ri=Rf/(Acl-1);\n", + "\n", + "#result\n", + "print \"input resistance is\",round(Ri/1000,2), \"Kohm\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example 1.3,Page 17" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "current through Ri1 is 178.571 microAmp\n", + "current through Ri2 is 31.915 microAmp\n", + "current through Ri2 is 31.915 microAmp\n", + "current through Rf is 210.486 microAmp\n", + "voltage dropped is 2.105 V\n", + "output voltage 1 is -2.105 V\n", + "output voltage is 2.105 V\n" + ] + } + ], + "source": [ + "#finding voltage current resistance\n", + "\n", + "#initialisation of variable\n", + "from math import pi,tan,sqrt,sin,cos,acos,atan\n", + "Vni=0.0#non inverting voltage\n", + "Vinv=0.0;#inverting voltage\n", + "Vri1=1.0;\n", + "Vri2=15.0;\n", + "Ri1=5600.0#resistance\n", + "Ri2=470000.0;\n", + "Rf=10000.0#load resistance\n", + "\n", + "#calculation\n", + "Ir1=Vri1/Ri1;\n", + "Ir2=Vri2/Ri2;\n", + "Irf=(Vri1/Ri1)+(Vri2/Ri2);\n", + "Vr=Irf*Rf;\n", + "Vo1=-Vr;\n", + "Vo=Irf*Rf;\n", + "\n", + "#result\n", + "print \"current through Ri1 is\",round(Ir1*1e6,3), \"microAmp\"\n", + "print \"current through Ri2 is\",round(Ir2*1e6,3), \"microAmp\"\n", + "print \"current through Ri2 is\",round(Ir2*1e6,3),\"microAmp\"\n", + "print \"current through Rf is\",round(Irf*1e6,3), \"microAmp\"\n", + "print \"voltage dropped is\",round(Vr,3), \"V\"\n", + "print \"output voltage 1 is\",round(Vo1,3), \"V\"\n", + "print \"output voltage is\",round(Vo,3), \"V\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example 1.4,Page 25" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "inverting voltage is 4.955 V\n", + "non inverting voltage is 4.955 V\n", + "current through Rf2 is 42.698 microA\n", + "current through Ri2 is 42.698 microA\n", + "voltage dropped is 4.056 V\n", + "output voltage is 884.897 mV\n" + ] + } + ], + "source": [ + "#finding voltage current resistance\n", + "\n", + "#initialisation of variable\n", + "from math import pi,tan,sqrt,sin,cos,acos,atan\n", + "Ri1=950.00;#ohm\n", + "Ri2=1050.00;\n", + "Rf1=105000.00;#resistance\n", + "Rf2=95000.00;\n", + "Vin=5.00;#voltage\n", + "\n", + "#calculation\n", + "Vinv=(Rf1/(Rf1+Ri1))*Vin;\n", + "Vni=Vinv;\n", + "Irf2=(Vin-Vinv)/Ri2;\n", + "Iri2=Irf2;\n", + "Vrf2=Irf2*Rf2;\n", + "Vo=Vinv-Vrf2-.014;\n", + "\n", + "#result\n", + "print \"inverting voltage is\",round(Vinv,3), \"V\"\n", + "print \"non inverting voltage is\",round (Vni,3), \"V\"\n", + "print \"current through Rf2 is\",round(Irf2*1e6,3), \"microA\"\n", + "print \"current through Ri2 is\",round(Iri2*1e6,3), \"microA\"\n", + "print \"voltage dropped is\",round(Vrf2,3), \"V\"\n", + "print \"output voltage is\",round(Vo*1000,3), \"mV\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example 1.5,Page 27" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "input resistor current is 272.222 microA\n", + "input resistor current is 500.0 microA\n", + "feedback resistor current is 227.778 microAmp\n", + "resistor voltage is 227.778 mV\n", + "1st output voltage is 2.222 V\n", + "input resistor current is 327.778 microA\n", + "input resistor current is 827.778 microA\n", + "feedback resistor voltage is 7.45 V\n", + "2nd output voltage is 10.0 V\n" + ] + } + ], + "source": [ + "#finding voltage current resistance \n", + "\n", + "#initialisation of variable\n", + "from math import pi,tan,sqrt,sin,cos,acos,atan\n", + "Vniu1=2.45;#V\n", + "Vniu2=2.55;#V\n", + "Vinvu1=2.45;\n", + "Vinvu2=2.55;\n", + "Ri1=9000.0;#ohm\n", + "Ri2=1000.0;#ohm\n", + "Rf1=1000.0;\n", + "Rf2=9000.0;\n", + "Rg=200.0;#load resistance\n", + "\n", + "#calculation\n", + "Iri1=Vniu1/Ri1;\n", + "Irg=(Vniu2-Vniu1)/Rg;\n", + "Irf1=Irg-Iri1;\n", + "Vrf1=Irf1*Rf1;\n", + "Vou1=Vniu1-Vrf1;\n", + "Iri2=(Vniu2-Vou1)/Ri2;\n", + "Irf2=Iri2+Irg;\n", + "Vrf2=Irf2*Rf2#feedback resistor voltage\n", + "Vo=Vrf2+Vniu2;\n", + "\n", + "#result\n", + "print \"input resistor current is\",round(Iri1*1e6,3), \"microA\"\n", + "print \"input resistor current is\",round(Irg*1e6,3), \"microA\"\n", + "print \"feedback resistor current is\",round(Irf1*1e6,3), \"microAmp\"\n", + "print \"resistor voltage is\",round(Vrf1*1000,3), \"mV\"\n", + "print \"1st output voltage is\",round(Vou1,3), \"V\"\n", + "print \"input resistor current is\",round(Iri2*1e6,3), \"microA\"\n", + "print \"input resistor current is\",round(Irf2*1e6,3),\"microA\"\n", + "print \"feedback resistor voltage is\",round(Vrf2,3), \"V\"\n", + "print \"2nd output voltage is\",round(Vo,3), \"V\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example 1.6.a,Page 29" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "input resistor current is 128.0 microA\n", + "feedback resistor current is 128.0 microA\n", + "feedback resistor voltage is 5.018 V\n", + "output resistor voltage is 5.018 V\n", + "output voltage is 3.818 V\n", + "load current is 0.5 A\n", + "load power is 2.5 W\n", + "power dissipated in LM317 is 5.0 W\n" + ] + } + ], + "source": [ + "#finding voltage current resistance\n", + "\n", + "#initialisation of variable\n", + "from math import pi,tan,sqrt,sin,cos,acos,atan\n", + "Vniu1=0;#V\n", + "Vinvu2=0;#V\n", + "Vref=2.56;\n", + "Rl=10000.0;#ohm\n", + "Rf=39200.0;#ohm\n", + "Ro=10.0;#resistance\n", + "Vdc1=5.0;\n", + "Vdc2=15.0;\n", + "Idc=0.5;#current\n", + "\n", + "#calculation\n", + "Iu1=(Vref/Rl)*.5;\n", + "Irf=Iu1;\n", + "Vrf=Irf*Rf;\n", + "Vout=Vrf+Vinvu2;\n", + "Eo=Vout-1.2;\n", + "Iload=Vdc1/Ro;\n", + "Pload=Vdc1**2/Ro;\n", + "Plm317=(Vdc2-Vdc1)*Idc;\n", + "\n", + "#result\n", + "print \"input resistor current is\",round(Iu1*1e6,3), \"microA\"\n", + "print \"feedback resistor current is\",round(Irf*1e6,3), \"microA\"\n", + "print \"feedback resistor voltage is\",round(Vrf,3), \"V\"\n", + "print \"output resistor voltage is\",round(Vout,3), \"V\"\n", + "print \"output voltage is\",round(Eo,3), \"V\"\n", + "print \"load current is\",round(Iload,3), \"A\"\n", + "print \"load power is\",round(Pload,3), \"W\"\n", + "print \"power dissipated in LM317 is\",round(Plm317,3), \"W\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example 1.6.b,Page 31" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "input resistor current is 360.36 microamp\n", + "inverting voltage 1 & 2 is 396.396 mV\n", + "current across Rs is 3.964 A\n", + "emitter voltage is 8.324 V\n", + "output voltage is 10.124 V\n" + ] + } + ], + "source": [ + "#finding voltage current resistance\n", + "\n", + "#initialisation of variable\n", + "from math import pi,tan,sqrt,sin,cos,acos,atan\n", + "Vin=4;#V\n", + "Vs=1.8;#V\n", + "Rf=10000.0;#ohm\n", + "Ri=1100.0;#ohm\n", + "Rl=2.0;#ohm\n", + "Rs=0.1;#ohm\n", + "\n", + "#calculation\n", + "Irf=Vin/(Rf+Ri);\n", + "Vni=Irf*Ri;\n", + "Ir=Vni/Rs;\n", + "Ve=Ir*(Rl+Rs);\n", + "Vo=Ve+Vs;\n", + "\n", + "#result\n", + "print \"input resistor current is\",round(Irf*1e6,3),\"microamp\"\n", + "print \"inverting voltage 1 & 2 is\",round(Vni*1000,3), \"mV\"\n", + "print \"current across Rs is\",round(Ir,3), \"A\"\n", + "print \"emitter voltage is\",round(Ve,3), \"V\"\n", + "print \"output voltage is\",round(Vo,3), \"V\"\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example 1.7,Page 36" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "rms voltage is 9.899 V\n", + "power delivered is 12.25 W\n", + "load voltage is 28.284 V\n" + ] + } + ], + "source": [ + "#finding voltage and power\n", + "\n", + "#initialisation of variable\n", + "from math import pi,tan,sqrt,sin,cos,acos,atan\n", + "Vs=18.0;#V\n", + "Rl=8.0;#load resistance\n", + "Pll=100.0;#power\n", + "\n", + "#calculation\n", + "Vlp=Vs-4;\n", + "Vlr=Vlp/(2**(.5));\n", + "Pl=(Vlr**2)/Rl;\n", + "Vl=(Pll*Rl)**(.5);\n", + "\n", + "#result\n", + "print \"rms voltage is\",round(Vlr,3), \"V\"\n", + "print \"power delivered is\",round(Pl,3), \"W\"\n", + "print \"load voltage is\",round(Vl,3), \"V\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example 1.9,Page 44" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "output voltage is 37.34 V\n", + "V+ is 45.34 V ;V- is 29.34 V\n" + ] + } + ], + "source": [ + "#finding output volatage and range \n", + "\n", + "#initialisation of variable\n", + "from math import pi,tan,sqrt,sin,cos,acos,atan\n", + "import numpy as np\n", + "Vp=6.0;#V\n", + "Ra=10.0;#Kohm\n", + "Rb=1800.0;#ohm\n", + "V=8.0;\n", + "#solving for Ir & Vo\n", + "a=np.array([[1.0,-124.6e-6],[7800.0,-1.0]])\n", + "b=np.array([134.6e-6,0.0])\n", + "\n", + "#calculation\n", + "x=np.linalg.solve(a,b);\n", + "Vo=x[1];\n", + "Va=Vo+V;\n", + "Vb=Vo-V;\n", + "\n", + "#result\n", + "print \"output voltage is\",round(Vo,2), \"V\"\n", + "print \"V+ is\",round(Va,2), \"V ;V- is\",round(Vb,2), \"V\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example 1.11,Page 50" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "output current is 4.091 mA\n", + "output voltage is 45.409 V\n", + "gain output voltage 1 is 13.356 V\n", + "gain output voltage 2 is 0.38 V\n" + ] + } + ], + "source": [ + "#finding output voltage and gain output voltage \n", + "\n", + "#initialisation of variable\n", + "from math import pi,tan,sqrt,sin,cos,acos,atan\n", + "Vin=4.5;\n", + "R1=1100.0;\n", + "R2=10000.0;\n", + "\n", + "G1=3.4#gain 1\n", + "G2=120.0#gain 2\n", + "\n", + "#calculation\n", + "Ir=Vin/R1;\n", + "Vo=Ir*(R1+R2);\n", + "Vuo1=Vo/G1;\n", + "Vuo2=Vo/G2;\n", + "\n", + "#result\n", + "print \"output current is\",round(Ir*1000,3),\"mA\"\n", + "print \"output voltage is\",round(Vo,3), \"V\"\n", + "print \"gain output voltage 1 is\",round(Vuo1,3), \"V\"\n", + "print \"gain output voltage 2 is\",round(Vuo2,2),\"V\"" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.6" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |