summaryrefslogtreecommitdiff
path: root/Power_Electronics/Chapter11_2.ipynb
diff options
context:
space:
mode:
authorThomas Stephen Lee2015-08-28 16:53:23 +0530
committerThomas Stephen Lee2015-08-28 16:53:23 +0530
commitdb0855dbeb41ecb8a51dde8587d43e5d7e83620f (patch)
treeb95975d958cba9af36cb1680e3f77205354f6512 /Power_Electronics/Chapter11_2.ipynb
parent5a86a20b9de487553d4ef88719fb0fd76a5dd6a7 (diff)
downloadPython-Textbook-Companions-db0855dbeb41ecb8a51dde8587d43e5d7e83620f.tar.gz
Python-Textbook-Companions-db0855dbeb41ecb8a51dde8587d43e5d7e83620f.tar.bz2
Python-Textbook-Companions-db0855dbeb41ecb8a51dde8587d43e5d7e83620f.zip
add books
Diffstat (limited to 'Power_Electronics/Chapter11_2.ipynb')
-rwxr-xr-xPower_Electronics/Chapter11_2.ipynb299
1 files changed, 0 insertions, 299 deletions
diff --git a/Power_Electronics/Chapter11_2.ipynb b/Power_Electronics/Chapter11_2.ipynb
deleted file mode 100755
index d2317d28..00000000
--- a/Power_Electronics/Chapter11_2.ipynb
+++ /dev/null
@@ -1,299 +0,0 @@
-{
- "metadata": {
- "name": ""
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "Chapter 11 : Some Applications"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 11.1, Page No 622"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#initialisation of variables\n",
- "V_s=11000.0\n",
- "V_ml=math.sqrt(2)*V_s\n",
- "f=50.0\n",
- "\n",
- "#Calculations\n",
- "w=2*math.pi*f\n",
- "I_d=300\n",
- "R_d=1\n",
- "g=20 #g=gamma\n",
- "a=math.degrees(math.acos(math.cos(math.radians(g))+math.pi/(3*V_ml)*I_d*R_d)) \n",
- "L_s=.01\n",
- "V_d=(3/math.pi)*((V_ml*math.cos(math.radians(a)))-w*L_s*I_d) \n",
- "\n",
- "#Results\n",
- "print(\"firing angle=%.3f deg\" %a)\n",
- "print(\"rectifier o/p voltage=%.1f V\" %V_d)\n",
- "print(\"dc link voltage=%.3f V\" %(2*V_d/1000))"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "firing angle=16.283 deg\n",
- "rectifier o/p voltage=13359.3 V\n",
- "dc link voltage=26.719 V\n"
- ]
- }
- ],
- "prompt_number": 1
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 11.2, Page No 623"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#initialisation of variables\n",
- "V_d=(200.0+200)*10**3\n",
- "P=1000.0*10**6\n",
- "\n",
- "#Calculations\n",
- "I_d=P/V_d\n",
- " #each thristor conducts for 120deg for a periodicity of 360deg\n",
- "a=0\n",
- "V_d=200.0*10**3\n",
- "V_ml=V_d*math.pi/(3*math.cos(math.radians(a)))\n",
- "\n",
- "#Results\n",
- "print(\"rms current rating of thyristor=%.2f A\" %(I_d*math.sqrt(120/360)))\n",
- "print(\"peak reverse voltage across each thyristor=%.2f kV\" %(V_ml/2/1000))"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "rms current rating of thyristor=0.00 A\n",
- "peak reverse voltage across each thyristor=104.72 kV\n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 11.3 Page No 627"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#initialisation of variables\n",
- "V_m=230.0\n",
- "V_s=230/math.sqrt(2)\n",
- "pf=0.8\n",
- "P=2000.0\n",
- "\n",
- "#Calculations\n",
- "I_m=P/(V_s*pf)\n",
- "I_Tr=I_m/math.sqrt(2)\n",
- "I_TA=2*I_m/math.pi\n",
- "fos=2 #factor of safety\n",
- "PIV=V_m*math.sqrt(2)\n",
- "I_Tr=I_m/(2)\n",
- "I_TA=I_m/math.pi\n",
- "\n",
- "#Results\n",
- "print(\"rms value of thyristor current=%.2f A\" %(fos*I_Tr))\n",
- "print(\"avg value of thyristor current=%.3f A\" %(fos*I_TA))\n",
- "print(\"voltage rating of thyristor=%.2f V\" %PIV)\n",
- "print(\"rms value of diode current=%.3f A\" %(fos*I_Tr))\n",
- "print(\"avg value of diode current=%.3f A\" %(fos*I_TA))\n",
- "print(\"voltage rating of diode=%.2f V\" %PIV)\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "rms value of thyristor current=15.37 A\n",
- "avg value of thyristor current=9.786 A\n",
- "voltage rating of thyristor=325.27 V\n",
- "rms value of diode current=15.372 A\n",
- "avg value of diode current=9.786 A\n",
- "voltage rating of diode=325.27 V\n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 11.4, Page No 629"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#initialisation of variables\n",
- "V=200.0\n",
- "I=10.0\n",
- "\n",
- "#Calculations\n",
- "R_L=V/I \n",
- "I_h=.005 #holding current\n",
- "R2=V/I_h \n",
- "t_c=20*10**-6\n",
- "fos=2 #factor of safety\n",
- "C=t_c*fos/(R_L*math.log(2)) \n",
- "\n",
- "#Results\n",
- "print(\"value of load resistance=%.0f ohm\" %R_L)\n",
- "print(\"value of R2=%.0f kilo-ohm\" %(R2/1000))\n",
- "print(\"value of C=%.3f uF\" %(C*10**6))"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "value of load resistance=20 ohm\n",
- "value of R2=40 kilo-ohm\n",
- "value of C=2.885 uF\n"
- ]
- }
- ],
- "prompt_number": 4
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 11.5 Page No 646"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#initialisation of variables\n",
- "u_r=10\n",
- "f=10000.0 #Hz\n",
- "p=4.0*10**-8 #ohm-m\n",
- "\n",
- "#Calculations\n",
- "dl=(1/(2*math.pi))*math.sqrt(p*10**7/(u_r*f)) \n",
- "l=0.12 #length of cylinder\n",
- "t=20.0 #no of turns\n",
- "I=100.0\n",
- "H=t*I/l\n",
- "P_s=2*math.pi*H**2*math.sqrt(u_r*f*p*10**-7) \n",
- "d=.02 #diameter\n",
- "P_v=4*H**2*p/(d*dl) \n",
- "\n",
- "#Results\n",
- "print(\"depth of heat of penetration=%.5f mm\" %(dl*1000))\n",
- "print(\"heat generated per unit cylinder surface area=%.3f W/m**2\" %P_s)\n",
- "print(\"heat generated per unit cylinder volume=%.0f W/m**3\" %P_v)\n",
- " #answer of P_v varies as given in book as value of d is not taken as in formulae. "
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "depth of heat of penetration=0.31831 mm\n",
- "heat generated per unit cylinder surface area=34906.585 W/m**2\n",
- "heat generated per unit cylinder volume=6981317 W/m**3\n"
- ]
- }
- ],
- "prompt_number": 5
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 11.6 Page No 646"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#initialisation of variables\n",
- "f=3000.0\n",
- "\n",
- "#Calculations\n",
- "t_qmin=30.0*10**-6\n",
- "f_r=f/(1-2*t_qmin*f)\n",
- "R=0.06\n",
- "L=20.0*10**-6\n",
- "C=1/(L*((2*math.pi*f_r)**2+(R/(2*L))**2)) \n",
- "\n",
- "#Results\n",
- "print(\"required capacitor size=%.4f F\" %(C*10**6))\n",
- " #Answers have small variations from that in the book due to difference in the rounding off of digits."
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "required capacitor size=94.2215 F\n"
- ]
- }
- ],
- "prompt_number": 6
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file