summaryrefslogtreecommitdiff
path: root/Optical_Fiber_Communication/Chapter2.ipynb
diff options
context:
space:
mode:
authorhardythe12015-04-07 15:58:05 +0530
committerhardythe12015-04-07 15:58:05 +0530
commit92cca121f959c6616e3da431c1e2d23c4fa5e886 (patch)
tree205e68d0ce598ac5caca7de839a2934d746cce86 /Optical_Fiber_Communication/Chapter2.ipynb
parentb14c13fcc6bb6d01c468805d612acb353ec168ac (diff)
downloadPython-Textbook-Companions-92cca121f959c6616e3da431c1e2d23c4fa5e886.tar.gz
Python-Textbook-Companions-92cca121f959c6616e3da431c1e2d23c4fa5e886.tar.bz2
Python-Textbook-Companions-92cca121f959c6616e3da431c1e2d23c4fa5e886.zip
added books
Diffstat (limited to 'Optical_Fiber_Communication/Chapter2.ipynb')
-rwxr-xr-xOptical_Fiber_Communication/Chapter2.ipynb721
1 files changed, 721 insertions, 0 deletions
diff --git a/Optical_Fiber_Communication/Chapter2.ipynb b/Optical_Fiber_Communication/Chapter2.ipynb
new file mode 100755
index 00000000..32f1c5a2
--- /dev/null
+++ b/Optical_Fiber_Communication/Chapter2.ipynb
@@ -0,0 +1,721 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:ab3713dc22f25eef68710ebd9039d7fba92418b0de95b0ba48c70d6376545f8e"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 2- Optical Fiber"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1: PgNo- 18"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "n1=1.55 # core refractive index\n",
+ "n2=1.50 #cladding refractive index\n",
+ "\n",
+ "# Calculations\n",
+ "x=math.asin(n2/n1) #Critical angle in radians\n",
+ "x1=x*180/math.pi #Critical angle in degree\n",
+ "n_a=math.sqrt(math.pow(n1,2)-math.pow(n2,2)) # Numerical aperture\n",
+ "x_a=math.asin(n_a)*180/math.pi\n",
+ "x_a1=math.ceil(x_a) # Acceptance angle in Degree\n",
+ "\n",
+ "# Results\n",
+ "print ('%s %.2f %s' %(\" Critical angle in degree= \", x1,\"degree\"))\n",
+ "print ('%s %.2f ' %(\"\\n Numerical aperture= \",n_a))\n",
+ "print ('%s %.1f %s' %(\"\\n Acceptance angle in degree= \",x_a1,\"degree\"))\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Critical angle in degree= 75.41 degree\n",
+ "\n",
+ " Numerical aperture= 0.39 \n",
+ "\n",
+ " Acceptance angle in degree= 23.0 degree\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2:PgNo-21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "# Variable declaration\n",
+ "\n",
+ "c=3*math.pow(10,8) #speed of light in m/s\n",
+ "v=2*math.pow(10,8) # in m/s\n",
+ "# calculations\n",
+ "n1=c/v\n",
+ "x=75 # in degree\n",
+ "n2=n1*math.sin((x*math.pi/180))\n",
+ "n_2=1.44\n",
+ "n_a=math.sqrt(math.pow(n1,2)-math.pow(n_2,2)) # numerical aperture\n",
+ "\n",
+ "# Results\n",
+ "print ('%s %.2f' %(\" Numerical aperture = \",n_a))\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Numerical aperture = 0.42\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 3:PgNo-25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\n",
+ "# Variable declaration\n",
+ "n1=1.50 # core refractive index\n",
+ "n2=1.47 # cladding refractive index\n",
+ "\n",
+ "# Calculations\n",
+ "dl=(n1-n2)/n1\n",
+ "n_a=n1*(math.sqrt(2*dl))# numerical aperture\n",
+ "x_a=(math.asin(n_a))*180/math.pi #acceptance angle in degree\n",
+ "\n",
+ "# Results\n",
+ "print ('%s %.2f' %(\" Numerical aperture = \",n_a))\n",
+ "print ('%s %.2f %s' %(\"\\n Acceptance angle in degree = \",x_a,\"degree\"))\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Numerical aperture = 0.30\n",
+ "\n",
+ " Acceptance angle in degree = 17.46 degree\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4:PgNo-27"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "n1=1.50 # core refractive index\n",
+ "n2=1.45 # cladding refractive index\n",
+ "\n",
+ "# Calculations\n",
+ "dl=(n1-n2)/n1\n",
+ "n_a=n1*(math.sqrt(2*dl)) # numerical aperture\n",
+ "x_a=(math.asin(n_a))*180/math.pi # acceptance angle in degree\n",
+ "x_c=(math.asin(n2/n1))*180/math.pi # critical angle in degree\n",
+ "\n",
+ "# Results\n",
+ "print ('%s %.2f' %(\" Numerical aperture = \",n_a))\n",
+ "print ('%s %.2f %s' %(\"\\n acceptance angle in degree = \",x_a,\"degree\"))\n",
+ "print ('%s %.2f %s' %(\"\\n critical angle in degree = \",x_c,\"degree\"))\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Numerical aperture = 0.39\n",
+ "\n",
+ " acceptance angle in degree = 22.79 degree\n",
+ "\n",
+ " critical angle in degree = 75.16 degree\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5:PgNo- 32"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "dl=0.012\n",
+ "n_a=0.22 # numerical aperture\n",
+ "\n",
+ "# Calculations\n",
+ "n1=n_a/(math.sqrt(2*dl)) # core refractive index\n",
+ "n2=n1-(dl*n1)# cladding refractive index\n",
+ "\n",
+ "# Results\n",
+ "print ('%s %.2f' %(\" core refractive index = \",n1))\n",
+ "print ('%s %.2f' %(\"\\n cladding refractive index = \",n2))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " core refractive index = 1.42\n",
+ "\n",
+ " cladding refractive index = 1.40\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6:PgNo-34"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "dl=0.012\n",
+ "n_a=0.22 # numerical aperture\n",
+ "\n",
+ "# Calculations\n",
+ "n1=n_a/(math.sqrt(2*dl)) # core refractive index\n",
+ "n2=n1-(dl*n1)# cladding refractive index\n",
+ "\n",
+ "# Results\n",
+ "print ('%s %.2f' %(\" core refractive index = \",n1))\n",
+ "print ('%s %.2f' %(\"\\n cladding refractive index = \",n2))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " core refractive index = 1.42\n",
+ "\n",
+ " cladding refractive index = 1.40\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7:PgNo-37"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "n2=1.59 # cladding refractive index\n",
+ "n_a=0.2 # numerical aperture\n",
+ "n_1=1.60 # core refractive index\n",
+ "n_o=1.33\n",
+ "\n",
+ "# Calculations\n",
+ "n1=math.sqrt(math.pow(n2,2)+math.pow(n_a,2)) # core refractive index\n",
+ "A=(math.sqrt(math.pow(n_1,2)-math.pow(n2,2)))/n_o\n",
+ "x_a=(math.asin(A))*180/math.pi # acceptance angle in degree\n",
+ "x_c=(math.asin(n2/n1))*180/math.pi #critical angle in degree\n",
+ "y=1300*math.pow(10,(-9)) # in meter\n",
+ "a=25*math.pow(10,(-6)) # in meter\n",
+ "v=(2*math.pi*a*n_a)/y\n",
+ "V=math.floor(v)\n",
+ "M=math.pow(V,2)/2 # number of modes transmitted\n",
+ "\n",
+ "# Results\n",
+ "print ('%s %.2f %s' %(\" acceptance angle in degree = \",x_a,\"degree\"))\n",
+ "print ('%s %.2f %s' %(\"\\n critical angle in degree = \",x_c,\"degree\"))\n",
+ "print ('%s %d' %(\"\\n number of modes transmitted = \",M))\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " acceptance angle in degree = 7.72 degree\n",
+ "\n",
+ " critical angle in degree = 82.83 degree\n",
+ "\n",
+ " number of modes transmitted = 288\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8:PgNo-42"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "n1=1.50 # core refractive index\n",
+ "n2=1.47 # cladding refractive index\n",
+ "\n",
+ "# Calculations\n",
+ "dl=(n1-n2)/n1\n",
+ "n_a=n1*(math.sqrt(2*dl)) # numerical aperture\n",
+ "x_e=(math.asin(n_a))*180/math.pi # the maximum entrance angle in degree\n",
+ "\n",
+ "# Results\n",
+ "print ('%s %.1f' %(\" Numerical aperture = \",n_a))\n",
+ "print ('%s %.2f %s' %(\"\\n The maximum entrance angle in degree = \",x_e,\"degree\"))\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Numerical aperture = 0.3\n",
+ "\n",
+ " The maximum entrance angle in degree = 17.46 degree\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9:PgNo-47"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "n1=1.44 # core refractive index\n",
+ "dl=0.02\n",
+ "\n",
+ "# Calculations\n",
+ "n_a=n1*math.sqrt(2*dl)\n",
+ "n_a=n1*(math.sqrt(2*dl)) # numerical aperture\n",
+ "x_a=(math.asin(n_a))*180/math.pi # acceptance angle in degree\n",
+ "\n",
+ "# Results\n",
+ "print \" Numerical aperture = \",n_a\n",
+ "print ('%s %.2f %s'%(\"\\n acceptance angle in degree = \",x_a,\"degree\"))\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Numerical aperture = 0.288\n",
+ "\n",
+ " acceptance angle in degree = 16.74 degree\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 10:PgNo-53"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "n1=1.50 # core refractive index\n",
+ "n2=(99.0/100.0)*1.50 # cladding refractive index\n",
+ "\n",
+ "# Calculations\n",
+ "x_c=math.asin(n2/n1)*(180/math.pi) # critical angle in degree\n",
+ "n_m=math.sqrt(math.pow(n1,2)-math.pow(n2,2)) # numerical aperture\n",
+ "\n",
+ "# Results\n",
+ "print ('%s %.2f %s' %(\" critical angle = \",x_c,\"degree\"))\n",
+ "print ('%s %.2f' %(\"\\n numerical aperture = \",n_m))\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " critical angle = 81.89 degree\n",
+ "\n",
+ " numerical aperture = 0.21\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11: PgNo-58"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "n1=1.50 # core refractive index\n",
+ "n2=1.45 # cladding refractive index\n",
+ "\n",
+ "# Calculations\n",
+ "n_m=math.sqrt(math.pow(n1,2)-math.pow(n2,2)) # numerical aperture\n",
+ "dl=(n1-n2)/n1 # fractional difference\n",
+ "\n",
+ "# Results\n",
+ "print ('%s %.2f' %(\" numerical aperture = \",n_m))\n",
+ "print ('%s %.2f' %(\"\\n fractional difference = \",dl))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " numerical aperture = 0.38\n",
+ "\n",
+ " fractional difference = 0.03\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12: PgNo-65"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "n1=1.46 # core refractive index\n",
+ "n2=1.45 # cladding refractive index\n",
+ "\n",
+ "# Calculations\n",
+ "x_c=(math.asin(n2/n1))*180/math.pi # critical angle in degree\n",
+ "n_m=math.sqrt(math.pow(n1,2)-math.pow(n2,2)) # numerical aperture\n",
+ "x_a=(math.asin(n_m))*180/math.pi # acceptance angle in degree\n",
+ "\n",
+ "# Results\n",
+ "print ('%s %.2f %s' %(\" critical angle = \",x_c,\"degree\"))\n",
+ "print ('%s %.2f %s' %(\"\\n acceptance angle = \",x_a,\"degree\"))\n",
+ "print ('%s %.2f' %(\"\\n numerical aperture = \",n_m))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " critical angle = 83.29 degree\n",
+ "\n",
+ " acceptance angle = 9.82 degree\n",
+ "\n",
+ " numerical aperture = 0.17\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 13: PgNo-67"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "# Variable declaration\n",
+ "n_m=0.204 #numerical aperture\n",
+ "dl=0.01 # index difference\n",
+ "\n",
+ "# Calculations\n",
+ "n1=n_m/(math.sqrt(2*dl)) # core refractive index\n",
+ "n2=n1*(1-dl) # cladding refractive index\n",
+ "\n",
+ "# Results\n",
+ "print ('%s %.2f' %(\" core refractive index = \",n1))\n",
+ "print ('%s %.2f' %(\"\\n cladding refractive index = \",n2))\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " core refractive index = 1.44\n",
+ "\n",
+ " cladding refractive index = 1.43\n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 14: PgNo-71"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "# Variable declaration\n",
+ "\n",
+ "n1=1.46 #core refractive index\n",
+ "dl=0.01 # index difference\n",
+ "\n",
+ "# Calculations\n",
+ "n_2=n1-(n1*dl) # cladding refractive index\n",
+ "x_c=(math.asin(n_2/n1))*180/math.pi #critical angle in degree\n",
+ "n_m=math.sqrt(math.pow(n1,2)-math.pow(n_2,2)) # numerical aperture\n",
+ "\n",
+ "# Results\n",
+ "print ('%s %.2f %s' %(\" critical angle = \",x_c,\"degree\"))\n",
+ "print ('%s %.2f' %(\"\\n numerical aperture = \",n_m))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " critical angle = 81.89 degree\n",
+ "\n",
+ " numerical aperture = 0.21\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 15: PgNo-76"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "# Variable declaration\n",
+ "n1=1.50 # core refractive index\n",
+ "n2=1.45 # cladding refractive index\n",
+ "\n",
+ "# Calculations\n",
+ "x_c=(math.asin(n2/n1))*180/math.pi # critical angle in degree\n",
+ "n_m=math.sqrt(math.pow(n1,2)-math.pow(n2,2)) # numerical aperture\n",
+ "x_a=(math.asin(n_m))*180/math.pi # acceptance angle in degree\n",
+ "n_c=math.pow((n_m),2)*100 # percentage of light\n",
+ "\n",
+ "# Results\n",
+ "print ('%s %.2f %s' %(\" critical angle= \",x_c,\"degree\"))\n",
+ "print ('%s %.2f %s' %(\"\\n acceptance angle= \",x_a,\"degree\"))\n",
+ "print ('%s %.2f' %(\"\\n numerical aperture= \",n_m))\n",
+ "print ('%s %.2f %s'%(\"\\n percentage of light= \",n_c,\"%\"))\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " critical angle= 75.16 degree\n",
+ "\n",
+ " acceptance angle= 22.59 degree\n",
+ "\n",
+ " numerical aperture= 0.38\n",
+ "\n",
+ " percentage of light= 14.75 %\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 16: PgNo-81"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "n1=1.50 # core refractive index\n",
+ "dl=0.01 # index difference\n",
+ "\n",
+ "# Calculations\n",
+ "n_m=n1*(math.sqrt(2*dl)) # numerical aperture\n",
+ "x_a=math.pi*math.pow((n_m),2) # acceptance angle in radian\n",
+ "n2_1=(1-dl) # the ratio of n2 to n1\n",
+ "x_c=(math.asin(n2_1))*180/math.pi # critical angle in degree\n",
+ "\n",
+ "# Results\n",
+ "print ('%s %.2f'%(\" numerical aperture= \",n_m))\n",
+ "print ('%s %.2f %s' %(\"\\n acceptance angle= \",x_a,\"radian\"))\n",
+ "print ('%s %.2f %s'%(\"\\n critical angle= \",x_c,\"degree\"))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " numerical aperture= 0.21\n",
+ "\n",
+ " acceptance angle= 0.14 radian\n",
+ "\n",
+ " critical angle= 81.89 degree\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file