summaryrefslogtreecommitdiff
path: root/Modern_Physics_for_Scientists_and_Engineers/ch13.ipynb
diff options
context:
space:
mode:
authorhardythe12015-05-05 14:21:39 +0530
committerhardythe12015-05-05 14:21:39 +0530
commitfba055ce5aa0955e22bac2413c33493b10ae6532 (patch)
treebe70ef4fccd07c9c88de778014219201b4ea971f /Modern_Physics_for_Scientists_and_Engineers/ch13.ipynb
parent67068710030ddd6b6c809518c34af2e04e0bf7ca (diff)
downloadPython-Textbook-Companions-fba055ce5aa0955e22bac2413c33493b10ae6532.tar.gz
Python-Textbook-Companions-fba055ce5aa0955e22bac2413c33493b10ae6532.tar.bz2
Python-Textbook-Companions-fba055ce5aa0955e22bac2413c33493b10ae6532.zip
add books
Diffstat (limited to 'Modern_Physics_for_Scientists_and_Engineers/ch13.ipynb')
-rwxr-xr-xModern_Physics_for_Scientists_and_Engineers/ch13.ipynb432
1 files changed, 432 insertions, 0 deletions
diff --git a/Modern_Physics_for_Scientists_and_Engineers/ch13.ipynb b/Modern_Physics_for_Scientists_and_Engineers/ch13.ipynb
new file mode 100755
index 00000000..07e5a520
--- /dev/null
+++ b/Modern_Physics_for_Scientists_and_Engineers/ch13.ipynb
@@ -0,0 +1,432 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:ca0579d99dcaeb6306ba4006be3368ec17d38cc09b7c654030323e81a030169b"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 13: Nuclear Interactiions and Applications"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 13.1, Page 479"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "N_A = 6.02e+023; # Avogadro's number\n",
+ "e = 1.6e-019; # Charge on an electron, C\n",
+ "q = 2*e; # Charge on the alpha particle, C\n",
+ "rho = 1.9; # Density of carbon target, atoms/cc\n",
+ "N_M = 1; # Number of atoms per molecule\n",
+ "M_g = 12; # Gram atomic mass of C12 isotope, g/mol\n",
+ "sigma = 25e-031; # Total cross section for the reaction, Sq.m\n",
+ "t = 1e-006; # Thickness of carbon target, m\n",
+ "I_beam = 1e-006; # Beam current of akpha particle, ampere\n",
+ "time = 3600; # Time for which the alpha particle beam is incident on the target, s\n",
+ "\n",
+ "#Calculations\n",
+ "n = rho*N_A*N_M/M_g; # Number of nuclei per unit volume, per cc\n",
+ "P = n*t*sigma*1e+006; # Probability of scattering of alpha particles\n",
+ "N_I = I_beam*time/q; # Number of incident alpha particles\n",
+ "N_n = N_I*P; # Number of neutrons produced in the reaction\n",
+ "\n",
+ "#Result\n",
+ "print \"The number of neutrons produced in the reaction = %3.1e neutrons\"%N_n\n",
+ "#answer differs due to rounding errors"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The number of neutrons produced in the reaction = 2.7e+09 neutrons\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 13.2, Page 480"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "sigma_n = 3; # Differential cross setion of production of the neutron, mb/sr\n",
+ "sigma_p = 0.2; # Differential cross setion of production of the proton, mb/sr\n",
+ "\n",
+ "#Calculations\n",
+ "# As P_n = sigma_n and P_p = sigma_p, so\n",
+ "P_ratio = sigma_n/sigma_p; # The likelihood of a neutron production than a proton\n",
+ "\n",
+ "#Result\n",
+ "print \"The likelihood of the neutron production than the proton = %2d\"%P_ratio"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The likelihood of the neutron production than the proton = 15\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 13.3, Page 481"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "u = 931.5; # Energy equivalent of 1 amu, MeV\n",
+ "M_He = 4.002603; # Mass of He-4 nucleus, u\n",
+ "M_N = 14.003074; # Mass of N-14 nucleus, u\n",
+ "M_H = 1.007825; # Mass of hydrogen nucleus, u\n",
+ "M_O = 16.999132; # Mass of O-16 nucleus, u\n",
+ "K_alpha = 7.7; # The kinetic energy of alpha particle, MeV\n",
+ "\n",
+ "#Calculations\n",
+ "Q = (M_He + M_N - M_H - M_O)*u; # The ground state Q-value of the nuclear reaction, MeV\n",
+ "# As Q = K_p + K_O - K_alpha, solving for K_p + K_O\n",
+ "K = Q + K_alpha; # The sum of kinetic energy of the products, MeV\n",
+ "\n",
+ "#Results\n",
+ "print \"The ground state Q-value of the endoergic nuclear reaction = %5.3f MeV\"%Q\n",
+ "print \"The sum of kinetic energy of the products = %3.1f MeV\"%K"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The ground state Q-value of the endoergic nuclear reaction = -1.192 MeV\n",
+ "The sum of kinetic energy of the products = 6.5 MeV\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 13.4, Page 485"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "u = 931.5; # Energy equivalent of 1 amu, MeV\n",
+ "K_lab = 14.6; # Kinetic energy of incident aplha particle, MeV\n",
+ "Mx = 4; # Mass number of projectile nucleus\n",
+ "MX = 12; # Mass number of target nucleus\n",
+ "M_He = 4.002603; # Mass of He nucleus, u\n",
+ "M_C = 12.0 # Mass of carbon nucleus, u\n",
+ "M_O = 15.994915; # Mass of oxygen nucleus, u\n",
+ "\n",
+ "#Calculations\n",
+ "K_cm = MX/(Mx + MX)*K_lab; # Kinetic energy available in the centre of mass, MeV\n",
+ "E_O = (M_He + M_C - M_O)*u; # The ground state excitation energy of O-16, MeV\n",
+ "E_final_O = K_cm + E_O; # The final excitation energy of O-16, MeV\n",
+ "\n",
+ "#Result\n",
+ "print \"The final excitation energy of O-16 = %4.2f MeV\"%E_final_O"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The final excitation energy of O-16 = 7.16 MeV\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 13.5, Page 487"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "u = 931.5; # Energy equivalent of 1 amu, MeV\n",
+ "M_U235 = 235.0439; # Mass of U-235 nucleus, u\n",
+ "m_n = 1.0087; # Mass of a neutron, u\n",
+ "M_Zr99 = 98.9165; # Mass of Zr-99 nucleus, u\n",
+ "M_Te134 = 133.9115; # Mass of Te-134 nucleus, u\n",
+ "\n",
+ "#Calculations\n",
+ "Q = (M_U235 + m_n - M_Zr99 - M_Te134 - 3*m_n)*u; # Q-value of the reaction, MeV\n",
+ "\n",
+ "#Result\n",
+ "print \"The ground state Q-value of the induced fission reaction = %3d MeV\"%math.ceil(Q)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The ground state Q-value of the induced fission reaction = 185 MeV\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 13.6, Page 488"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "u = 931.5; # Energy equivalent of 1 amu, MeV\n",
+ "m_n = 1.0087; # Mass of a neutron, u\n",
+ "M_U235 = 235.0439; # Mass of U-235 nucleus, u\n",
+ "M_U236 = 236.0456; # Mass of U-236 nucleus, u\n",
+ "M_U238 = 238.0508; # Mass of U-238 nucleus, u\n",
+ "M_U239 = 239.0543; # Mass of U-239 nucleus, u\n",
+ "\n",
+ "#Calculations\n",
+ "E_U236 = (m_n + M_U235 - M_U236)*u; # Excitation energy of U-236 nucleus, MeV\n",
+ "E_U239 = (m_n + M_U238 - M_U239)*u; # Excitation energy of U-239 nucleus, MeV\n",
+ "\n",
+ "#Results\n",
+ "print \"The excitation energy of U-236 nucleus = %3.1f MeV\"%E_U236\n",
+ "print \"The excitation energy of U-239 nucleus = %3.1f MeV\"%E_U239"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The excitation energy of U-236 nucleus = 6.5 MeV\n",
+ "The excitation energy of U-239 nucleus = 4.8 MeV\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 13.7, Page 490"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "t = 30e-003; # Time during which the number of fissions is to be calculated, s\n",
+ "E = 185; # Energy produced for each fission, MeV\n",
+ "delta_t = 5e-006; # Average time during which a neutron is captured, s\n",
+ "\n",
+ "#Calculations\n",
+ "fs = t/delta_t; # Number of fission cycles within 30 ms\n",
+ "N = (1.01)**fs; # Number of fissions that occur in 30 ms\n",
+ "E_total = N*E; # Total energy produced in 30 ms, MeV\n",
+ "\n",
+ "#Results\n",
+ "print \"The total number of fissions that occur in %d ms = %3.1e\"%(t/1e-003, N)\n",
+ "print \"The total energy produced = %3.1e MeV\"%E_total\n",
+ "\n",
+ "#Incorrect solution in textbook"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The total number of fissions that occur in 30 ms = 8.5e+25\n",
+ "The total energy produced = 1.6e+28 MeV\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 13.8, Page 500"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "u = 931.5; # Energy equivalent of 1 amu, MeV\n",
+ "M_He = 4.002603; # Mass of He nucleus, u\n",
+ "M_C = 12.0 # Mass of carbon nucleus, u\n",
+ "M_O = 15.994915; # Mass of oxygen nucleus, u\n",
+ "\n",
+ "#Calculations\n",
+ "Q = (M_He + M_C - M_O)*u; # Q-value of the reaction, MeV\n",
+ "\n",
+ "#Result\n",
+ "print \"The energy expended in the fusion reaction inside supergiant star = %3.1f MeV\"%Q"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The energy expended in the fusion reaction inside supergiant star = 7.2 MeV\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 13.9, Page 502"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "k = 1.38e-023; # Boltzmann constant, J/K\n",
+ "r = 3e-015; # Distance at which the nuclear force becomes effective, m\n",
+ "e = 1.6e-019; # Charge on an electron, C\n",
+ "K = 9e+009; # Coulomb's constant, N-Sq.m/C^2\n",
+ "\n",
+ "#Calculations\n",
+ "V = K*e**2/r; # Coulomb potential energy, J\n",
+ "# As V = 3/2*k*T, solving for T\n",
+ "T = 2./3*V/k; # The ignition temperature needed for the fusion reaction between deuterium and a tritium, K\n",
+ "\n",
+ "#Result\n",
+ "print \"The ignition temperature needed for the fusion reaction between a deuterium and a tritium = %3.1e K\"%T"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The ignition temperature needed for the fusion reaction between a deuterium and a tritium = 3.7e+09 K\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 13.10, Page 509"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "k = 1.38e-023; # Boltzmann constant, J/K\n",
+ "e = 1.6e-019; # Energy equivalent of 1 eV, J\n",
+ "h = 6.62e-034; # Planck's oconstant, Js\n",
+ "m = 1.67e-027; # Mass of the neutron, kg\n",
+ "lamda = 0.060e-009; # Wavelength of the neutron beam, m\n",
+ "\n",
+ "#Calculations\n",
+ "p = h/lamda; # Momentum of the neutron from de-Broglie relation, kg-m/s\n",
+ "K = p**2/(2*m*e); # Kinetic energy of the neutron needed to study atomic structure, eV\n",
+ "# As K = 3/2*k*T, solving for T\n",
+ "T = 2./3*K*e/k; # The temperature of the neutron needed to study atomic structure, K\n",
+ "\n",
+ "#Result\n",
+ "print \"The energy and temperature of the neutron needed to study the atomic structure of solids = %4.2f eV and %4d K respectively\"%(K, T)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The energy and temperature of the neutron needed to study the atomic structure of solids = 0.23 eV and 1760 K respectively\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file