diff options
author | hardythe1 | 2015-04-07 15:58:05 +0530 |
---|---|---|
committer | hardythe1 | 2015-04-07 15:58:05 +0530 |
commit | c7fe425ef3c5e8804f2f5de3d8fffedf5e2f1131 (patch) | |
tree | 725a7d43dc1687edf95bc36d39bebc3000f1de8f /Modern_Physics/Chapter9.ipynb | |
parent | 62aa228e2519ac7b7f1aef53001f2f2e988a6eb1 (diff) | |
download | Python-Textbook-Companions-c7fe425ef3c5e8804f2f5de3d8fffedf5e2f1131.tar.gz Python-Textbook-Companions-c7fe425ef3c5e8804f2f5de3d8fffedf5e2f1131.tar.bz2 Python-Textbook-Companions-c7fe425ef3c5e8804f2f5de3d8fffedf5e2f1131.zip |
added books
Diffstat (limited to 'Modern_Physics/Chapter9.ipynb')
-rwxr-xr-x | Modern_Physics/Chapter9.ipynb | 213 |
1 files changed, 173 insertions, 40 deletions
diff --git a/Modern_Physics/Chapter9.ipynb b/Modern_Physics/Chapter9.ipynb index 52c8dc08..34acce85 100755 --- a/Modern_Physics/Chapter9.ipynb +++ b/Modern_Physics/Chapter9.ipynb @@ -1,7 +1,6 @@ { "metadata": { - "name": "", - "signature": "sha256:a22a4cd44988289c63c9da64c71766c244fd20324a2c5a80b53d48938212c4cc" + "name": "Chapter9" }, "nbformat": 3, "nbformat_minor": 0, @@ -13,7 +12,7 @@ "level": 1, "metadata": {}, "source": [ - "Chapter 9: Atomic Structure" + "Chapter 9:Molecular Structure" ] }, { @@ -21,30 +20,71 @@ "level": 2, "metadata": {}, "source": [ - "Example 9.1, page no. 300" + "Example 9.1 Page 270" ] }, { "cell_type": "code", "collapsed": false, "input": [ + "#initiation of variable\n", + "E=-2.7;\n", + "K=9.0*(10**9)*((1.6*(10**-19))**2)/(0.106*10**-9);# taking all the values in meters. 1/(4*pi*e0)= 9*10^9 F/m\n", "\n", + "#calculation\n", + "q=((K-E*10**-9)/(4*K))*10**-9; #balancing by multiplying 10^-9 on numerator. to eV.vm terms\n", "\n", - "#Variable declaration\n", + "#result\n", + "print\"Charge on the sphere required is\",round(q,4),\" times the charge of electron.\";" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Charge on the sphere required is 0.3105 times the charge of electron.\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 9.2 Page 273" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#initiation of variable\n", + "K=1.44; Req=0.236; # K=e^2/(4*pi*e0)=1.44 eV.nm\n", + "\n", + "#calculation\n", + "Uc=-K/(Req); #coulomb energy\n", "\n", - "Ub = 9.27 * 10 ** -24 #(J/T)\n", - "B = 1.00 #magnetic field strength (T)\n", - "h = 6.58 * 10 ** -16 #Planck's constant (eV.s)\n", - "e = 1.6 * 10 ** -19 #electron charge (C)\n", + "#result\n", + "print\"The coulomb energy at an equilibrium separation distance in eV is\",round(Uc,3);\n", "\n", - "#Calculation\n", + "E=-4.26; delE=1.53; #various standards values of NaCl\n", + "Ur=E-Uc-delE; \n", "\n", - "hwl = Ub * B / e\n", - "wl = hwl / h\n", + "#result\n", + "print\"The pauli''s repulsion energy in eV is\",round(Ur,3);\n", "\n", - "#results\n", + "#partb\n", + "Req=0.1; #pauli repulsion energy\n", + "Uc=-K/(Req);\n", + "E=4; delE=1.53;\n", + "Ur=E-Uc-delE;\n", "\n", - "print \"The magnetic energy is\",round(hwl/10**-5,2),\"x 10^-5 eV and the Larmor frequency is\",round(wl/10**10,2),\"x 10^10 rad/s.\"\n" + "#result\n", + "print\"The pauli''s repulsion energy in eV is\",round(Ur,3);\n" ], "language": "python", "metadata": {}, @@ -53,38 +93,121 @@ "output_type": "stream", "stream": "stdout", "text": [ - "The magnetic energy is 5.79 x 10^-5 eV and the Larmor frequency is 8.81 x 10^10 rad/s.\n" + "The coulomb energy at an equilirium separation distance in eV is -6.102\n", + "The pauli''s repulsion energy in eV is 0.312\n", + "The pauli''s repulsion energy in eV is 16.87\n" ] } ], - "prompt_number": 2 + "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ - "Example 9.4, page no. 311" + "Example 9.3 Page 276" ] }, { "cell_type": "code", "collapsed": false, "input": [ + "#initiation of variable\n", + "from math import pi, sqrt\n", + "delE=0.50; delR=0.017*10**-9; #delE= E-Emin; delR=R-Rmin;\n", + "k=2*(delE)/(delR**2);c=3*10**8; #force constant\n", + "m=(1.008)*(931.5*10**6)*0.5; #mass of molecular hydrogen\n", + "v= sqrt(k*c**2/m)/(2*pi); #vibrational frequency\n", + "h=4.14*(10**-15);\n", "\n", - "#Variable declaration\n", + "#calculation\n", + "E=h*v;\n", "\n", - "l2 = 589.592 #sodium doublet wavelength (nm)\n", - "l1 = 588.995 #sodium doublet wavelength (nm)\n", - "hc = 1240 #planck's constant X speed of light (eV.nm)\n", - "\n", - "#Calculation\n", + "#result\n", + "print\"The value of corresponding photon energy in eV is\",round(E,3);\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The value of corresponding photon energy in eV is 0.537\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 9.4 Page 280" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#initiation of variable\n", + "from math import pi, sqrt\n", + "hc=1240.0; #in eV.nm\n", + "m=0.5*1.008*931.5*10**6; #mass of hydrogen atom\n", + "Req=0.074; #equivalent radius\n", "\n", - "dE = hc * (l2-l1)/(l2*l1)\n", + "#calculation\n", + "a=((hc)**2)/(4*(pi**2)*m*(Req**2)); #reduced mass of hydrogen atom\n", + "for L in range(1,4):\n", + " delE= L*a; \n", + " print\"The value of energy in eV is\",round(delE,4); \n", + " w=(hc)/delE;\n", + " print\"The respective wavelength in um is\",round(w*10**-3,3); \n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The value of energy in eV is 0.0151\n", + "The respective wavelength in um is 81.849\n", + "The value of energy in eV is 0.0303\n", + "The respective wavelength in um is 40.925\n", + "The value of energy in eV is 0.0454\n", + "The respective wavelength in um is 27.283\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 9.5 Page 283" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#initiation of variable\n", + "from math import pi\n", + "delv=6.2*(10**11); #change in frequency\n", + "h=1.05*(10**-34); #value of h in J.sec\n", "\n", - "#Results\n", + "#calculation\n", + "I= h/(2*pi*delv); #rotational inertia\n", + "I1=I/(1.684604*10**-45); #to change units\n", "\n", - "print \"dE =\",round(dE/10**-3,2),\"X 10^-3 eV represents the spin orbit splitting of the initial levels.\"" + "#result\n", + "print\"The value of rotational inertia in kg m2 is %.1e\" %I;\n", + "print\"which in terms of amu in u.nm2 is\",round(I1,3);" ], "language": "python", "metadata": {}, @@ -93,40 +216,48 @@ "output_type": "stream", "stream": "stdout", "text": [ - "dE = 2.13 X 10^-3 eV represents the spin orbit splitting of the initial levels.\n" + "The value of rotational inertia in kg m2 is 2.69536597172e-47\n", + "which in terms of amu in u.nm2 is 0.016\n" ] } ], - "prompt_number": 6 + "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ - "Example 9.6, page no. 317" + "Example 9.6 Page 286" ] }, { "cell_type": "code", "collapsed": false, "input": [ + "#initiation of variable\n", + "from math import pi\n", + "delE=0.358;hc=4.14*10**-15; #hc in eV.nm and delE=1.44eV(given values)\n", "\n", - "import math\n", - "\n", - "#Variable declaration\n", + "#calculation\n", + "f=(delE)/hc; #frequency \n", "\n", - "E = -5.14 #Energy of the 3s electron in sodium (eV)\n", - "Eh = 13.6 #energy of the 3s electron in hydrogen (eV)\n", + "#result\n", + "print\"The frequency of the radiation is \",f;\n", "\n", "\n", - "#Calculation\n", + "m=0.98; #mass in terms of u\n", + "k=4*pi**2*m*f**2; #value of k in eV/m^2\n", "\n", - "Zeff = 3 * math.sqrt(-E/Eh)\n", + "#result\n", + "print\"The force constant is\",k; \n", "\n", - "#Results\n", + "#partb\n", + "hc=1240.0; m=0.98*1.008*931.5*10**6; Req=0.127; #various constants in terms of \n", + "s=((hc)**2)/(4*(pi**2)*m*(Req**2)); # expected spacing \n", "\n", - "print \"Zeff for the 3s electron in sodium is\",round(Zeff,2)" + "#result\n", + "print\"The spacing was found out to be\",round(s,3),\"which is very close to the graphical value of 0.0026 eV.\"" ], "language": "python", "metadata": {}, @@ -135,11 +266,13 @@ "output_type": "stream", "stream": "stdout", "text": [ - "Zeff for the 3s electron in sodium is 1.84\n" + "The frequency of the radiation is 8.64734299517e+13\n", + "The force constant is 2.89301831756e+29\n", + "The spacing was found out to be 0.003 which is very close to the graphical value of 0.0026 eV.\n" ] } ], - "prompt_number": 10 + "prompt_number": 19 } ], "metadata": {} |