summaryrefslogtreecommitdiff
path: root/Modern_Physics/Chapter9.ipynb
diff options
context:
space:
mode:
authorhardythe12015-04-07 15:58:05 +0530
committerhardythe12015-04-07 15:58:05 +0530
commitc7fe425ef3c5e8804f2f5de3d8fffedf5e2f1131 (patch)
tree725a7d43dc1687edf95bc36d39bebc3000f1de8f /Modern_Physics/Chapter9.ipynb
parent62aa228e2519ac7b7f1aef53001f2f2e988a6eb1 (diff)
downloadPython-Textbook-Companions-c7fe425ef3c5e8804f2f5de3d8fffedf5e2f1131.tar.gz
Python-Textbook-Companions-c7fe425ef3c5e8804f2f5de3d8fffedf5e2f1131.tar.bz2
Python-Textbook-Companions-c7fe425ef3c5e8804f2f5de3d8fffedf5e2f1131.zip
added books
Diffstat (limited to 'Modern_Physics/Chapter9.ipynb')
-rwxr-xr-xModern_Physics/Chapter9.ipynb213
1 files changed, 173 insertions, 40 deletions
diff --git a/Modern_Physics/Chapter9.ipynb b/Modern_Physics/Chapter9.ipynb
index 52c8dc08..34acce85 100755
--- a/Modern_Physics/Chapter9.ipynb
+++ b/Modern_Physics/Chapter9.ipynb
@@ -1,7 +1,6 @@
{
"metadata": {
- "name": "",
- "signature": "sha256:a22a4cd44988289c63c9da64c71766c244fd20324a2c5a80b53d48938212c4cc"
+ "name": "Chapter9"
},
"nbformat": 3,
"nbformat_minor": 0,
@@ -13,7 +12,7 @@
"level": 1,
"metadata": {},
"source": [
- "Chapter 9: Atomic Structure"
+ "Chapter 9:Molecular Structure"
]
},
{
@@ -21,30 +20,71 @@
"level": 2,
"metadata": {},
"source": [
- "Example 9.1, page no. 300"
+ "Example 9.1 Page 270"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
+ "#initiation of variable\n",
+ "E=-2.7;\n",
+ "K=9.0*(10**9)*((1.6*(10**-19))**2)/(0.106*10**-9);# taking all the values in meters. 1/(4*pi*e0)= 9*10^9 F/m\n",
"\n",
+ "#calculation\n",
+ "q=((K-E*10**-9)/(4*K))*10**-9; #balancing by multiplying 10^-9 on numerator. to eV.vm terms\n",
"\n",
- "#Variable declaration\n",
+ "#result\n",
+ "print\"Charge on the sphere required is\",round(q,4),\" times the charge of electron.\";"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Charge on the sphere required is 0.3105 times the charge of electron.\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.2 Page 273"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#initiation of variable\n",
+ "K=1.44; Req=0.236; # K=e^2/(4*pi*e0)=1.44 eV.nm\n",
+ "\n",
+ "#calculation\n",
+ "Uc=-K/(Req); #coulomb energy\n",
"\n",
- "Ub = 9.27 * 10 ** -24 #(J/T)\n",
- "B = 1.00 #magnetic field strength (T)\n",
- "h = 6.58 * 10 ** -16 #Planck's constant (eV.s)\n",
- "e = 1.6 * 10 ** -19 #electron charge (C)\n",
+ "#result\n",
+ "print\"The coulomb energy at an equilibrium separation distance in eV is\",round(Uc,3);\n",
"\n",
- "#Calculation\n",
+ "E=-4.26; delE=1.53; #various standards values of NaCl\n",
+ "Ur=E-Uc-delE; \n",
"\n",
- "hwl = Ub * B / e\n",
- "wl = hwl / h\n",
+ "#result\n",
+ "print\"The pauli''s repulsion energy in eV is\",round(Ur,3);\n",
"\n",
- "#results\n",
+ "#partb\n",
+ "Req=0.1; #pauli repulsion energy\n",
+ "Uc=-K/(Req);\n",
+ "E=4; delE=1.53;\n",
+ "Ur=E-Uc-delE;\n",
"\n",
- "print \"The magnetic energy is\",round(hwl/10**-5,2),\"x 10^-5 eV and the Larmor frequency is\",round(wl/10**10,2),\"x 10^10 rad/s.\"\n"
+ "#result\n",
+ "print\"The pauli''s repulsion energy in eV is\",round(Ur,3);\n"
],
"language": "python",
"metadata": {},
@@ -53,38 +93,121 @@
"output_type": "stream",
"stream": "stdout",
"text": [
- "The magnetic energy is 5.79 x 10^-5 eV and the Larmor frequency is 8.81 x 10^10 rad/s.\n"
+ "The coulomb energy at an equilirium separation distance in eV is -6.102\n",
+ "The pauli''s repulsion energy in eV is 0.312\n",
+ "The pauli''s repulsion energy in eV is 16.87\n"
]
}
],
- "prompt_number": 2
+ "prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
- "Example 9.4, page no. 311"
+ "Example 9.3 Page 276"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
+ "#initiation of variable\n",
+ "from math import pi, sqrt\n",
+ "delE=0.50; delR=0.017*10**-9; #delE= E-Emin; delR=R-Rmin;\n",
+ "k=2*(delE)/(delR**2);c=3*10**8; #force constant\n",
+ "m=(1.008)*(931.5*10**6)*0.5; #mass of molecular hydrogen\n",
+ "v= sqrt(k*c**2/m)/(2*pi); #vibrational frequency\n",
+ "h=4.14*(10**-15);\n",
"\n",
- "#Variable declaration\n",
+ "#calculation\n",
+ "E=h*v;\n",
"\n",
- "l2 = 589.592 #sodium doublet wavelength (nm)\n",
- "l1 = 588.995 #sodium doublet wavelength (nm)\n",
- "hc = 1240 #planck's constant X speed of light (eV.nm)\n",
- "\n",
- "#Calculation\n",
+ "#result\n",
+ "print\"The value of corresponding photon energy in eV is\",round(E,3);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The value of corresponding photon energy in eV is 0.537\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.4 Page 280"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#initiation of variable\n",
+ "from math import pi, sqrt\n",
+ "hc=1240.0; #in eV.nm\n",
+ "m=0.5*1.008*931.5*10**6; #mass of hydrogen atom\n",
+ "Req=0.074; #equivalent radius\n",
"\n",
- "dE = hc * (l2-l1)/(l2*l1)\n",
+ "#calculation\n",
+ "a=((hc)**2)/(4*(pi**2)*m*(Req**2)); #reduced mass of hydrogen atom\n",
+ "for L in range(1,4):\n",
+ " delE= L*a; \n",
+ " print\"The value of energy in eV is\",round(delE,4); \n",
+ " w=(hc)/delE;\n",
+ " print\"The respective wavelength in um is\",round(w*10**-3,3); \n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The value of energy in eV is 0.0151\n",
+ "The respective wavelength in um is 81.849\n",
+ "The value of energy in eV is 0.0303\n",
+ "The respective wavelength in um is 40.925\n",
+ "The value of energy in eV is 0.0454\n",
+ "The respective wavelength in um is 27.283\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.5 Page 283"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#initiation of variable\n",
+ "from math import pi\n",
+ "delv=6.2*(10**11); #change in frequency\n",
+ "h=1.05*(10**-34); #value of h in J.sec\n",
"\n",
- "#Results\n",
+ "#calculation\n",
+ "I= h/(2*pi*delv); #rotational inertia\n",
+ "I1=I/(1.684604*10**-45); #to change units\n",
"\n",
- "print \"dE =\",round(dE/10**-3,2),\"X 10^-3 eV represents the spin orbit splitting of the initial levels.\""
+ "#result\n",
+ "print\"The value of rotational inertia in kg m2 is %.1e\" %I;\n",
+ "print\"which in terms of amu in u.nm2 is\",round(I1,3);"
],
"language": "python",
"metadata": {},
@@ -93,40 +216,48 @@
"output_type": "stream",
"stream": "stdout",
"text": [
- "dE = 2.13 X 10^-3 eV represents the spin orbit splitting of the initial levels.\n"
+ "The value of rotational inertia in kg m2 is 2.69536597172e-47\n",
+ "which in terms of amu in u.nm2 is 0.016\n"
]
}
],
- "prompt_number": 6
+ "prompt_number": 16
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
- "Example 9.6, page no. 317"
+ "Example 9.6 Page 286"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
+ "#initiation of variable\n",
+ "from math import pi\n",
+ "delE=0.358;hc=4.14*10**-15; #hc in eV.nm and delE=1.44eV(given values)\n",
"\n",
- "import math\n",
- "\n",
- "#Variable declaration\n",
+ "#calculation\n",
+ "f=(delE)/hc; #frequency \n",
"\n",
- "E = -5.14 #Energy of the 3s electron in sodium (eV)\n",
- "Eh = 13.6 #energy of the 3s electron in hydrogen (eV)\n",
+ "#result\n",
+ "print\"The frequency of the radiation is \",f;\n",
"\n",
"\n",
- "#Calculation\n",
+ "m=0.98; #mass in terms of u\n",
+ "k=4*pi**2*m*f**2; #value of k in eV/m^2\n",
"\n",
- "Zeff = 3 * math.sqrt(-E/Eh)\n",
+ "#result\n",
+ "print\"The force constant is\",k; \n",
"\n",
- "#Results\n",
+ "#partb\n",
+ "hc=1240.0; m=0.98*1.008*931.5*10**6; Req=0.127; #various constants in terms of \n",
+ "s=((hc)**2)/(4*(pi**2)*m*(Req**2)); # expected spacing \n",
"\n",
- "print \"Zeff for the 3s electron in sodium is\",round(Zeff,2)"
+ "#result\n",
+ "print\"The spacing was found out to be\",round(s,3),\"which is very close to the graphical value of 0.0026 eV.\""
],
"language": "python",
"metadata": {},
@@ -135,11 +266,13 @@
"output_type": "stream",
"stream": "stdout",
"text": [
- "Zeff for the 3s electron in sodium is 1.84\n"
+ "The frequency of the radiation is 8.64734299517e+13\n",
+ "The force constant is 2.89301831756e+29\n",
+ "The spacing was found out to be 0.003 which is very close to the graphical value of 0.0026 eV.\n"
]
}
],
- "prompt_number": 10
+ "prompt_number": 19
}
],
"metadata": {}