diff options
author | hardythe1 | 2015-04-07 15:58:05 +0530 |
---|---|---|
committer | hardythe1 | 2015-04-07 15:58:05 +0530 |
commit | c7fe425ef3c5e8804f2f5de3d8fffedf5e2f1131 (patch) | |
tree | 725a7d43dc1687edf95bc36d39bebc3000f1de8f /Modern_Physics/Chapter7.ipynb | |
parent | 62aa228e2519ac7b7f1aef53001f2f2e988a6eb1 (diff) | |
download | Python-Textbook-Companions-c7fe425ef3c5e8804f2f5de3d8fffedf5e2f1131.tar.gz Python-Textbook-Companions-c7fe425ef3c5e8804f2f5de3d8fffedf5e2f1131.tar.bz2 Python-Textbook-Companions-c7fe425ef3c5e8804f2f5de3d8fffedf5e2f1131.zip |
added books
Diffstat (limited to 'Modern_Physics/Chapter7.ipynb')
-rwxr-xr-x | Modern_Physics/Chapter7.ipynb | 231 |
1 files changed, 126 insertions, 105 deletions
diff --git a/Modern_Physics/Chapter7.ipynb b/Modern_Physics/Chapter7.ipynb index 5f1ccec9..b8966938 100755 --- a/Modern_Physics/Chapter7.ipynb +++ b/Modern_Physics/Chapter7.ipynb @@ -1,7 +1,6 @@ { "metadata": { - "name": "", - "signature": "sha256:75c249ea2e8c0a6e5f6f1e7aa12f02f35c3e7e62df28f6611e18b53d1b7e6dcd" + "name": "Chapter7" }, "nbformat": 3, "nbformat_minor": 0, @@ -13,54 +12,34 @@ "level": 1, "metadata": {}, "source": [ - "Chapter 7: Tunneling Phenomena" + "Chapter 7:The Hydrogen Atom in Wave Mechanics" ] }, { "cell_type": "heading", - "level": 2, + "level": 1, "metadata": {}, "source": [ - "Example 7.1, page no. 235" + "Example 7.2 Page 213" ] }, { "cell_type": "code", "collapsed": false, "input": [ - "\n", - "\n", + "#initiation of variable\n", + "from math import exp\n", "import math\n", + "from scipy import integrate\n", + "# calculating radial probability P= (4/ao^3)*integral(r^2 * e^(-2r/ao)) between the limits 0 and ao for r\n", "\n", - "#Variable declaration\n", - "h = 1.973 * 10**3 #planck's constant (eV.A'/c)\n", - "me = 511 * 10**3 #mass of electron (eV/c^2)\n", - "U = 10.0\n", - "E = 7.0\n", - "L = 50.00 #thickness of layer (A')\n", - "\n", - "#Calculation\n", - "\n", - "a = math.sqrt(2*me*(U-E))/h\n", - "T=(1.0+(1.0/4.0)*(U**2/(E*(U-E)))*(math.sinh(a*L))**2)**-1\n", - "\n", - "#Result\n", - "\n", - "print \"The transmission coefficient for L=\",L,\"A' is\",round(T/10**-38,3),\"X 10^-38\"\n", - "\n", - "#(b)if the layer thickness is 1.00nm.\n", - "\n", - "#Variable Declaration\n", - "\n", - "L = 10 #thickness of layer (A')\n", + "#calculation\n", + "def integrand(x):\n", + " return ((x**2)*exp(-x))/2.0\n", + "Pr=integrate.quad(integrand,0,2,args=());#simplifying where as x=2*r/a0; hence the limits change between 0 to 2\n", "\n", - "#Calculation\n", - "\n", - "T=(1.0+(1.0/4.0)*(U**2/(E*(U-E)))*(math.sinh(a*L))**2)**-1\n", - "\n", - "#Result\n", - "\n", - "print \"The transmission coefficient for L=\",L,\"A' is\",round(T/10**-7,3),\"X 10^-7\"" + "#result\n", + "print \"Hence the probability of finding the electron nearer to nucleus is\",round(Pr[0],3);\n" ], "language": "python", "metadata": {}, @@ -69,41 +48,44 @@ "output_type": "stream", "stream": "stdout", "text": [ - "The transmission coefficient for L= 50.0 A' is 0.963 X 10^-38\n", - "The transmission coefficient for L= 10 A' is 0.657 X 10^-7\n" + "Hence the probability of finding the electron nearer to nucleus is 0.323\n" ] } ], - "prompt_number": 3 + "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ - "Example 7.2, page no. 236" + "Example 7.3 Page 213" ] }, { "cell_type": "code", "collapsed": false, "input": [ + "#initiation of variable\n", + "from math import exp\n", + "import math\n", + "from scipy import integrate\n", + "# employing the formula for probability distribution similarly as done in Exa-7.2 \n", + "#calculation\n", + "def integrand(x):\n", + " return (1.0/8)*((4.0*x**2)-(4.0*x**3)+(x**4))*exp(-x)\n", + "Pr1= integrate.quad(integrand,0,1,args=()) #x=r/ao; similrly limits between 0 and 1.\n", "\n", - "#Variable declaration\n", - "\n", - "e = 1.6 * 10 ** -19 #charge of electron (C)\n", - "I = 1.00 * 10 ** -3 #electron current(A)\n", - "T = 0.657 *10**-7 #Transmission coefficient\n", - "\n", - "#Calculation\n", - "\n", - "Ne = I / e\n", - "Nadj = Ne * T\n", - "Iadj = Nadj * e\n", + "#result\n", + "print\"The probability for l=0 electron is\",round(Pr1[0],5)\n", "\n", - "#Result\n", + "#part2\n", + "def integrand(x):\n", + " return (1.0/24)*(x**4)*(exp(-x))\n", + "Pr2=integrate.quad(integrand,0,1); #x=r/ao; similarly limits between 0 and 1.\n", "\n", - "print \"The number of electrons per second continuing on the adjacent wire is\",round(Nadj/10**8,2),\"X 10^8 and the transmitted current is\",round(Iadj/10**-12,1),\"pA.\"" + "#result\n", + "print\"The probability for l=1 electron is\",round(Pr2[0],5)\n" ], "language": "python", "metadata": {}, @@ -112,46 +94,38 @@ "output_type": "stream", "stream": "stdout", "text": [ - "The number of electrons per second continuing on the adjacent wire is 4.11 X 10^8 and the transmitted current is 65.7 pA.\n" + "The probability for l=0 electron is 0.03432\n", + "The probability for l=1 electron is 0.00366\n" ] } ], - "prompt_number": 8 + "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ - "Example 7.5, page no. 241" + "Example 7.4 Page 215" ] }, { "cell_type": "code", "collapsed": false, "input": [ - "\n", - "\n", + "#initiation of variable\n", + "from math import exp, sqrt\n", "import math\n", + "from scipy import integrate\n", + "l=1.0; #given value of l\n", "\n", - "#Variable Declaration\n", - "\n", - "e = 1.6 * 10 **-19 #charge of electron(C)\n", - "f = 1.0*10**30 #collision frequency (s^-1.cm^-2)\n", - "Ec = 5.5 * 10 ** 10 \n", - "V = 10 * 10 ** 3 #potential difference(V)\n", - "d = 0.010 * 10**-3 #plate separation(m)\n", - "\n", - "#Calculation\n", - "\n", - "E = V /d\n", - "Te = math.exp(-Ec/E)\n", - "rate = f * Te\n", - "I = e * rate\n", + "#calculation\n", + "am1=sqrt(l*(l+1)); #angular momentum==sqrt(l(l+1)) h\n", + "l=2.0 #given l\n", + "am2=sqrt(l*(l+1));\n", "\n", "#result\n", - "\n", - "print \"The tunneling current is\",round(I/10**-12,2),\"pA.\"" + "print\"The angular momenta are found out to be\", round(am1,3),\" h and\",round(am2,3),\" h respectively for l=1 and l=2.\";\n" ], "language": "python", "metadata": {}, @@ -160,55 +134,102 @@ "output_type": "stream", "stream": "stdout", "text": [ - "The tunneling current is 0.21 pA.\n" + "The angular momenta are found out to be 1.414 h and 2.449 h respectively for l=1 and l=2.\n" ] } ], - "prompt_number": 12 + "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ - "Example 7.6, page no. 244" + "Example 7.5 Page 216" ] }, { "cell_type": "code", "collapsed": false, "input": [ - " \n", - "\n", - "import math\n", - "\n", - "#Variable declaration\n", - "\n", - "Zth = 90 #atomic number of thorium\n", - "Zdth = 88 #atomic number of thorium's daughter nucleus\n", - "E = 4.05 #energy of ejected alphas(MeV)\n", - "Zpo = 84 #atomic number of polonium\n", - "Zdpo = 82 #atomic number of polonium's daughter nucleus\n", - "Epo = 8.95 #energy of ejected alphas(MeV)\n", - "R = 9.00 #nucleus size(fm)\n", - "r0 = 7.25 #Bohr radius of alpha(fm)\n", - "E0 = 0.0993 #(MeV)\n", - "f = 10 ** 21 #collision frequency(Hz)\n", - "\n", - "\n", - "#Calculation\n", + "#initiation of variable\n", + "from math import sqrt\n", + "print \"The possible values for m are [+2,-2] and hence any of the 5 components [-2h,2h] are possible for the L vector.\";\n", + "print \"Length of the vector as found out previously is %.2f*h.\",round(sqrt(6),4);#angular momentum==sqrt(l(l+1)) h" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The possible values for m are [+2,-2] and hence any of the 5 components [-2h,2h] are possible for the L vector.\n", + "Length of the vector as found out previously is %.2f*h. 2.4495\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 7.6 Page 223" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#initiation of variable\n", + "uz=9.27*10**-24; t=1.4*10**3; x=3.5*10**-2; #various constants and given values\n", + "m=1.8*10**-25;v=750; # mass and velocity of the particle\n", "\n", - "Te = math.exp(-4*math.pi*Zdth*math.sqrt((E0/E))+ 8 * math.sqrt(Zdth*R/r0))\n", - "rate = f * Te\n", - "t = math.log(2)/rate\n", - "Tep = math.exp(-4*math.pi*Zdpo*math.sqrt((E0/Epo))+ 8 * math.sqrt(Zdpo*R/r0))\n", - "ratep = f * Tep\n", - "tp = math.log(2)/ratep\n", + "#calculation\n", + "d=(uz*t*(x**2))/(m*(v**2)); #net separtion \n", "\n", + "#result\n", + "print\"The distance of separation in mm is\",round(d*10**3,3);" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The distance of separation in mm is 0.157\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 7.7 Page 227" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#initiation of variable\n", + "n1=1.0;n2=2.0;hc=1240.0; #hc=1240 eV.nm\n", + "E=(-13.6)*((1/n2**2)-(1/n1**2)); #Energy calculation\n", "\n", - "#Result\n", + "#calculation\n", + "w=hc/E; #wavelength\n", + "u=9.27*10**-24; B=2; #constants\n", + "delE= u*B/(1.6*10**-19); #change in energy\n", + "delw=((w**2/hc))*delE; #change in wavelength\n", "\n", - "print \"The half life of thorium is\",round(t/10**17,1),\"X 10^17 s and that of polonium is\",round(tp/10**-10,1),\"X 10^-10 s.\"" + "#result\n", + "print\"The change in wavelength in nm. is\",round(delw,4);" ], "language": "python", "metadata": {}, @@ -217,11 +238,11 @@ "output_type": "stream", "stream": "stdout", "text": [ - "The half life of thorium is 5.4 X 10^17 s and that of polonium is 8.4 X 10^-10 s.\n" + "The change in wavelength in nm. is 0.0014\n" ] } ], - "prompt_number": 14 + "prompt_number": 12 } ], "metadata": {} |