summaryrefslogtreecommitdiff
path: root/Modern_Physics/Chapter6.ipynb
diff options
context:
space:
mode:
authornice2014-08-27 16:12:51 +0530
committernice2014-08-27 16:12:51 +0530
commit238d7e632aecde748a97437c2b5774e136a3b4da (patch)
treea05d96f81cf72dc03ceec32af934961cf4ccf7dd /Modern_Physics/Chapter6.ipynb
parent7e82f054d405211e1e8760524da8ad7c9fd75286 (diff)
downloadPython-Textbook-Companions-238d7e632aecde748a97437c2b5774e136a3b4da.tar.gz
Python-Textbook-Companions-238d7e632aecde748a97437c2b5774e136a3b4da.tar.bz2
Python-Textbook-Companions-238d7e632aecde748a97437c2b5774e136a3b4da.zip
adding book
Diffstat (limited to 'Modern_Physics/Chapter6.ipynb')
-rwxr-xr-xModern_Physics/Chapter6.ipynb268
1 files changed, 268 insertions, 0 deletions
diff --git a/Modern_Physics/Chapter6.ipynb b/Modern_Physics/Chapter6.ipynb
new file mode 100755
index 00000000..76cd1700
--- /dev/null
+++ b/Modern_Physics/Chapter6.ipynb
@@ -0,0 +1,268 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:846e8e3b3770f7cb30a2e91a53718bf5de841338951843c54481c2acfda5e63d"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 6: Quantum Mechanics in One Dimension"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.4, page no. 197"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ " \n",
+ "\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "\n",
+ "me = 9.11 * 10 ** -31 #mass of electron (kg)\n",
+ "h = 1.055 * 10**-34 #h/2*pi (J.s)\n",
+ "dx0 = 1.0 * 10**-10 #initial location of electron(m)\n",
+ "m = 1.0 * 10**-3 #mass of marble (kg)\n",
+ "dx0m = 10**-4 #initial location of marble (m)\n",
+ "\n",
+ "#Calculation\n",
+ "\n",
+ "te = math.sqrt(99)* (2* me / h) * dx0**2\n",
+ "tm = math.sqrt(99)* (2* m / h) * dx0m**2\n",
+ "\n",
+ "#result\n",
+ "\n",
+ "print \"The time elapsed for electron is\",round(te/10**-15,1),\"X 10^-15 s and that of marble is \",round(tm/10**24,1),\"X 10^24 s.\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The time elapsed for electron is 1.7 X 10^-15 s and that of marble is 1.9 X 10^24 s.\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.5, page no. 202"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "\n",
+ "m = 1.0 * 10 **-6 #mass (kg)\n",
+ "h = 6.626 * 10 **-34 #Planck's constant(J.s)\n",
+ "n = 1.0\n",
+ "L = 1.0 * 10**-2 #separation(m)\n",
+ "\n",
+ "#Calculation\n",
+ "\n",
+ "E1 = n**2 * h**2 /(8*m*L**2)\n",
+ "v1 = math.sqrt(2*E1/m)\n",
+ "\n",
+ "#result\n",
+ "\n",
+ "print \"(a) The minimum speed of the particle is\",round(v1/10**-26,2),\"X 10^-26 m/s.\"\n",
+ "\n",
+ "\n",
+ "#Variable declaration\n",
+ "\n",
+ "v = 3.00 * 10**-2 #speed of the particle (m/s)\n",
+ "\n",
+ "#Calculation\n",
+ "\n",
+ "E = m* v**2 /2\n",
+ "n = math.sqrt(8*m*L**2*E)/h\n",
+ "\n",
+ "#results\n",
+ "\n",
+ "print \"(b) We get n = \",round(n/10**23,2),\"X 10^23.\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(a) The minimum speed of the particle is 3.31 X 10^-26 m/s.\n",
+ "(b) We get n = 9.06 X 10^23.\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.6, page no. 203"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "\n",
+ "L = 0.2 #length of the box (nm)\n",
+ "me = 511 * 10 ** 3 #mass of electron (eV/c^2)\n",
+ "hc = 197.3 #(eV.nm)\n",
+ "\n",
+ "#Calculation\n",
+ "\n",
+ "E1 = math.pi ** 2 * hc**2 /(2* me * L**2)\n",
+ "E2 = 2**2 * E1\n",
+ "dE = E2-E1\n",
+ "lamda = hc*2*math.pi / dE\n",
+ "\n",
+ "#result\n",
+ "\n",
+ "print \"The energy required is\",round(dE,1),\"eV and the wavelength of the photon that could cause this transition is\",round(lamda),\"nm.\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The energy required is 28.2 eV and the wavelength of the photon that could cause this transition is 44.0 nm.\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.8, page no. 211"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "\n",
+ "h = 197.3 #(eV.nm/c)\n",
+ "m = 511 * 10**3 #mass of electron (eV/c**2)\n",
+ "U = 100 #(eV)\n",
+ "L = 0.200 #width(nm)\n",
+ "\n",
+ "#Calculation\n",
+ "\n",
+ "d = h /math.sqrt(2*m*U)\n",
+ "E = math.pi**2 * h**2 /(2*m*(L+2*d)**2)\n",
+ "new_U = U - E\n",
+ "d = h/math.sqrt(2*m*new_U)\n",
+ "E = math.pi**2 * h**2 /(2*m*(L+2*d)**2)\n",
+ "\n",
+ "#result\n",
+ "\n",
+ "print \"The ground-state energy for the electron is\",round(E,3),\"eV.\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The ground-state energy for the electron is 6.506 eV.\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.13, page no. 217"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "\n",
+ "m = 0.0100 #mass of the spring (kg)\n",
+ "K = 0.100 #force constant of spring (N/m)\n",
+ "Kh = 510.5 #force constant of hydrogen (N/m)\n",
+ "h = 6.582 * 10**-16#Planck's constant (eV.s)\n",
+ "mu = 8.37 * 10**-28#mass of hydrogen molecule(kg)\n",
+ "\n",
+ "#calculation\n",
+ "\n",
+ "w = math.sqrt(K / m)\n",
+ "dE = h * w\n",
+ "wh =math.sqrt(Kh / mu)\n",
+ "dEh = h * wh\n",
+ "\n",
+ "#results\n",
+ "\n",
+ "print \"The quantum level spacing in the spring case is\",round(dE/10**-15,2),\"X 10^-15 eV, while in case of hydrogen molecule it is\",round(dEh,3),\"eV which is easily measurable.\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The quantum level spacing in the spring case is 2.08 X 10^-15 eV, while in case of hydrogen molecule it is 0.514 eV which is easily measurable.\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file