summaryrefslogtreecommitdiff
path: root/Modern_Physics/Chapter10.ipynb
diff options
context:
space:
mode:
authornice2014-08-27 16:12:51 +0530
committernice2014-08-27 16:12:51 +0530
commit238d7e632aecde748a97437c2b5774e136a3b4da (patch)
treea05d96f81cf72dc03ceec32af934961cf4ccf7dd /Modern_Physics/Chapter10.ipynb
parent7e82f054d405211e1e8760524da8ad7c9fd75286 (diff)
downloadPython-Textbook-Companions-238d7e632aecde748a97437c2b5774e136a3b4da.tar.gz
Python-Textbook-Companions-238d7e632aecde748a97437c2b5774e136a3b4da.tar.bz2
Python-Textbook-Companions-238d7e632aecde748a97437c2b5774e136a3b4da.zip
adding book
Diffstat (limited to 'Modern_Physics/Chapter10.ipynb')
-rwxr-xr-xModern_Physics/Chapter10.ipynb214
1 files changed, 214 insertions, 0 deletions
diff --git a/Modern_Physics/Chapter10.ipynb b/Modern_Physics/Chapter10.ipynb
new file mode 100755
index 00000000..a9cbc233
--- /dev/null
+++ b/Modern_Physics/Chapter10.ipynb
@@ -0,0 +1,214 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:1d13a558dd2cc62e2c7ada350fc7a07d9283efcbc790578d0711fd6c96f50df0"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 10: Statistical Physics"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 10.1, page no. 340"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "\n",
+ "n1 = 1 #Ground state\n",
+ "n2 = 2 #First excited state\n",
+ "n3 = 3 #second excited state\n",
+ "T = 300 #room temperature(K)\n",
+ "kb = 8.617 * 10 **-5 #Boltzmann constant(eV/K)\n",
+ "\n",
+ "#Calculation\n",
+ "\n",
+ "E1 = -13.6 / n1 ** 2\n",
+ "g1 = 2 * n1 ** 2\n",
+ "E2 = -13.6 / n2 ** 2\n",
+ "g2 = 2 * n2 ** 2\n",
+ "E3 = -13.6 / n3 ** 2\n",
+ "g3 = 2 * n3 ** 2\n",
+ "N3 = g3 * math.exp(-E3/(kb*T))\n",
+ "N2 = g2 * math.exp(-E2/(kb*T))\n",
+ "N1 = g1 * math.exp(-E1/(kb*T))\n",
+ "ratio1 = N2 / N1\n",
+ "ratio2 = N3 / N1\n",
+ "\n",
+ "#results\n",
+ "\n",
+ "print \"(a) We can see that n2/n1=\",round(ratio1),\"and n3/n1=\",round(ratio2),\"essentially all atoms are in ground state.\"\n",
+ "\n",
+ "\n",
+ "#Variable Declaration\n",
+ "\n",
+ "T = 20000 #Temperature(K)\n",
+ "\n",
+ "#Calculation\n",
+ "\n",
+ "N3 = g3 * math.exp(-E3/(kb*T))\n",
+ "N2 = g2 * math.exp(-E2/(kb*T))\n",
+ "N1 = g1 * math.exp(-E1/(kb*T))\n",
+ "ratio1 = N2 / N1\n",
+ "ratio2 = N3 / N1\n",
+ "\n",
+ "#result\n",
+ "\n",
+ "print \"(b) n2/n1=\",round(ratio1,5),\"and n3/n1=\",round(ratio2,5)\n",
+ "\n",
+ "\n",
+ "ratio3 = N3 / N2\n",
+ "\n",
+ "print \"(c) S(3->2)/S(2->1)=\",round(ratio3,2)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(a) We can see that n2/n1= 0.0 and n3/n1= 0.0 essentially all atoms are in ground state.\n",
+ "(b) n2/n1= 0.01076 and n3/n1= 0.00809\n",
+ "(c) S(3->2)/S(2->1)= 0.75\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 10.2, page no. 345"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "#Variable Declaration\n",
+ "\n",
+ "m = 3.34 * 10 ** -27 #mass of hydrogen(kg)\n",
+ "kbT = 3.77 * 10 ** -21 #kb * T (eV)\n",
+ "N = 6.02 * 10 ** 23 #avogadro's number\n",
+ "V = 22.4 * 10 ** -3 #Volume of H2 gas (m^3)\n",
+ "h = 1.055 * 10 ** -34 #Planck's constant (J.s)\n",
+ "\n",
+ "#Calculation\n",
+ "\n",
+ "r = (N/V)* h ** 3 / (8 * (m * kbT)**1.5)\n",
+ "\n",
+ "#result\n",
+ "\n",
+ "print \"(a) (N/V)h^3/(8*(mkbT)^3/2)=\",round(r/10**-8,2),\"X10^-8 is much less than 1, we conclude that even hydrogen is described by Maxwell-Boltzmann statistics.\"\n",
+ "\n",
+ "\n",
+ "\n",
+ "#Variable declaration\n",
+ "\n",
+ "d = 10.5 #density of silver (g/cm^3)\n",
+ "mw = 107.9 #Molar weight of silver (g/mol)\n",
+ "me = 9.109*10**-31 #mass of electron(kg)\n",
+ "kbT = 4.14 * 10 ** -21 #kb*T (J)\n",
+ "\n",
+ "#Calculation\n",
+ "\n",
+ "Ns = (d/mw)* N * 10 ** 6\n",
+ "r = (Ns)* h ** 3 / (8 * (me * kbT)**1.5)\n",
+ "\n",
+ "#result\n",
+ "\n",
+ "print \"(b) (N/V)h^3/(8*(mkbT)^3/2)=\",round(r/8,2),\"is greater than 1, we conclude that the Maxwell-Boltzmann statistics does not hold for electrons of silver.\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(a) (N/V)h^3/(8*(mkbT)^3/2)= 8.83 X10^-8 is much less than 1, we conclude that even hydrogen is described by Maxwell-Boltzmann statistics.\n",
+ "(b) (N/V)h^3/(8*(mkbT)^3/2)= 4.64 is greater than 1, we conclude that the Maxwell-Boltzmann statistics does not hold for electrons of silver.\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 10.3, page no. 352"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ " \n",
+ "\n",
+ "import math\n",
+ "\n",
+ "#Variable Declaration\n",
+ "\n",
+ "kB = 8.62 * 10 ** -5 #Boltzmann constant(eV/K)\n",
+ "T1 = 3000 #Cavity walls temperature(K)\n",
+ "T2 = 3.00 #Cavity walls temperature(K)\n",
+ "hc = 1.24 * 10 ** -4 #product of planck's constant and speed of light (eV.cm)\n",
+ "integration = 2.40 #value of integral(z^2/e^z-1,0,+inf)\n",
+ "\n",
+ "#Calculation\n",
+ "\n",
+ "NbyV_at_3000 = 8* math.pi * (kB * T1/hc)**3 * integration\n",
+ "NbyV_at_3 = 8* math.pi * (kB * T2/hc)**3 * integration\n",
+ "\n",
+ "#result\n",
+ "\n",
+ "print \"N/V at 3000K is\",round(NbyV_at_3000/10**11,2),\"X 10^11 photons/cm^3. Likewise N/V at 3.00 K is\",round(NbyV_at_3/10**2,2),\"X 10^2 photons/cm^3\"\n",
+ "print \"Therefore the photon density decreases by a factor of\",round(NbyV_at_3000/NbyV_at_3/10**9),\" X 10^9 when the temperature drops from 3000K to 3.00K\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "N/V at 3000K is 5.47 X 10^11 photons/cm^3. Likewise N/V at 3.00 K is 5.47 X 10^2 photons/cm^3\n",
+ "Therefore the photon density decreases by a factor of 1.0 X 10^9 when the temperature drops from 3000K to 3.00K\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file