summaryrefslogtreecommitdiff
path: root/Microwave_and_Radar_Engineering/Chapter_9.ipynb
diff options
context:
space:
mode:
authorJovina Dsouza2014-06-18 12:43:07 +0530
committerJovina Dsouza2014-06-18 12:43:07 +0530
commit206d0358703aa05d5d7315900fe1d054c2817ddc (patch)
treef2403e29f3aded0caf7a2434ea50dd507f6545e2 /Microwave_and_Radar_Engineering/Chapter_9.ipynb
parentc6f0d6aeb95beaf41e4b679e78bb42c4ffe45a40 (diff)
downloadPython-Textbook-Companions-206d0358703aa05d5d7315900fe1d054c2817ddc.tar.gz
Python-Textbook-Companions-206d0358703aa05d5d7315900fe1d054c2817ddc.tar.bz2
Python-Textbook-Companions-206d0358703aa05d5d7315900fe1d054c2817ddc.zip
adding book
Diffstat (limited to 'Microwave_and_Radar_Engineering/Chapter_9.ipynb')
-rw-r--r--Microwave_and_Radar_Engineering/Chapter_9.ipynb635
1 files changed, 635 insertions, 0 deletions
diff --git a/Microwave_and_Radar_Engineering/Chapter_9.ipynb b/Microwave_and_Radar_Engineering/Chapter_9.ipynb
new file mode 100644
index 00000000..4a94447f
--- /dev/null
+++ b/Microwave_and_Radar_Engineering/Chapter_9.ipynb
@@ -0,0 +1,635 @@
+{
+ "metadata": {
+ "name": "Chapter 9"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 9:Solid State Microwave devices"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.1, Page number 411"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "'''Determine operating frequency of an IMPATT diode'''\n",
+ "\n",
+ "#Variable declaration\n",
+ "L = 2*10**-6 #drift length(m)\n",
+ "Vd = 10**7*10**-2 #dfrift velocit(m/s)\n",
+ "\n",
+ "#Calculations\n",
+ "f = Vd/(2*L)\n",
+ "\n",
+ "#Results\n",
+ "print \"Frequncy of IMPATT diode is\",round((f/1E+9),2),\"GHz\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Frequncy of IMPATT diode is 25.0 GHz\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.2, Page number 411"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "'''Determine the threshold electric field'''\n",
+ "\n",
+ "#Variable declaration\n",
+ "f = 10*10**9 #operating frequency(Hz)\n",
+ "L = 75*10**-6 #device length(m)\n",
+ "V = 25. #voltage pulse amplified(V)\n",
+ "\n",
+ "#Calculations\n",
+ "Eth = V/(L)\n",
+ "\n",
+ "#Result\n",
+ "print \"The threshold electric field is\",round((Eth/1E+5),2),\"KV/cm\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The threshold electric field is 3.33 KV/cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 20
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.3, Page number 411"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "'''Determine - \n",
+ "a)power gain in dB\n",
+ "b) power gain as USB converter'''\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "fs = 2*10**9 #signal frequency(Hz)\n",
+ "fp = 12*10**9 #pump frequency(Hz)\n",
+ "Ri = 16 #output resistance of signal generator(Ohms)\n",
+ "Rs = 1*10**3 #resistance of signal generator(Ohms)\n",
+ "\n",
+ "#Calculations\n",
+ "#Part a \n",
+ "P = 10*math.log10((fp-fs)/fs)\n",
+ "\n",
+ "#Part b\n",
+ "Pc = 10*math.log10((fp+fs)/fs)\n",
+ "\n",
+ "#Results\n",
+ "print \"Please note that there are calculation mistakes in the textbook. Hence, the difference in answers.\\n\"\n",
+ "print \"Power gain =\",round(P,2),\"dB\"\n",
+ "print \"Power gain as USB converter =\",round(Pc,2),\"dB\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Please note that there are calculation mistakes in the textbook. Hence, the difference in answers.\n",
+ "\n",
+ "Power gain = 6.99 dB\n",
+ "Power gain as USB converter = 8.45 dB\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.4, Page number 411"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "'''Calculate -\n",
+ "a)critical voltage\n",
+ "b)breakdown voltage\n",
+ "c)breakdown electric field'''\n",
+ "\n",
+ "#Variable declaration\n",
+ "Es = 12.5 #relative dielectric constant\n",
+ "N = 3.2*10**22 #donor concentration(/m**3)\n",
+ "L = 8*10**-6 #length(m)\n",
+ "Eo = 8.854*10**-12 #dielectric constant\n",
+ "q = 1.6*10**-19\n",
+ "\n",
+ "#Calculations\n",
+ "#Part a\n",
+ "Vc = (q*N*L**2)/(2*Eo*Es)\n",
+ "\n",
+ "#Part b\n",
+ "Vbd = 2*Vc\n",
+ "\n",
+ "#Part c\n",
+ "Ebd = Vbd/L\n",
+ "\n",
+ "#Results\n",
+ "print \"Critical voltage =\",round((Vc/1E+3),2),\"kV\"\n",
+ "print \"Breakdown voltage =\",round((Vbd/1E+3),2),\"kV\"\n",
+ "print \"Breakdown electric field =\",round((Ebd/1E+8),2),\"*10**8 V/cm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Critical voltage = 1.48 kV\n",
+ "Breakdown voltage = 2.96 kV\n",
+ "Breakdown electric field = 3.7 *10**8 V/cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.5, Page number 412"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "'''Calculate the avalanche zone velocity'''\n",
+ "\n",
+ "#Variable declaration\n",
+ "Na = 2.5*10**16 #doping concentration(/cm**3)\n",
+ "J = 33*10**3 #current density(A/cm**2)\n",
+ "q = 1.6*10**-19\n",
+ "\n",
+ "#Calculations\n",
+ "Vz = J/(q*Na)\n",
+ "\n",
+ "#Results\n",
+ "print \"The avalanche zone velocity is\",round((Vz/1E+6),2),\"*10**6 cm/s\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The avalanche zone velocity is 8.25 *10**6 cm/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.6, Page number 412"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "''' Determine the power gain'''\n",
+ "\n",
+ "#Variable declaration\n",
+ "Rd = -25 #negative resistance(Ohms)\n",
+ "Rl = 50 #load resistance(Ohms)\n",
+ "\n",
+ "#Calculations\n",
+ "G = ((Rd-Rl)/(Rd+Rl))**2\n",
+ "\n",
+ "#Results\n",
+ "print \"Power gain =\",G"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Power gain = 9\n"
+ ]
+ }
+ ],
+ "prompt_number": 20
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.7, Page number 412"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "'''Find the minimum voltage required to initiate Gunn effect'''\n",
+ "\n",
+ "#Variable declaration\n",
+ "L = 5.*10**-6 #drift length(m)\n",
+ "V = 3.3*10**3 #voltagradient(V/cm)\n",
+ "\n",
+ "#Calculation\n",
+ "Vmin = V*L\n",
+ "\n",
+ "#Result\n",
+ "print \"The minimum voltage required is\",round(Vmin,4),\"V\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The minimum voltage required is 0.0165 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 37
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.8, Page number 412"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "'''Calculate rational frequency and critical voltage of diode'''\n",
+ "\n",
+ "#Variable declaration\n",
+ "Vd = 2*10**7 #drift velocity(cm/s)\n",
+ "L = 20*10**-6 #active lengh(m)\n",
+ "Ec = 3.3*10**3 #crtical field(GaAs)\n",
+ "\n",
+ "#Calculations\n",
+ "f = Vd/L\n",
+ "V = L*Ec\n",
+ "\n",
+ "#Results\n",
+ "print \"Please note that there are calculation mistakes in the textbook. Hence, the difference in answers.\\n\"\n",
+ "print \"Rational frequency =\",round((f/1E+9),2),\"GHz\"\n",
+ "print \"Critical voltage =\",round(V,3),\"V\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Please note that there are calculation mistakes in the textbook. Hence, the difference in answers.\n",
+ "\n",
+ "Rational frequency = 1000.0 GHz\n",
+ "Critical voltage = 0.066 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 40
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.9, Page number 412"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "'''Determine resonant frequency and efficiency'''\n",
+ "\n",
+ "from math import pi,sqrt\n",
+ "\n",
+ "#Variable declaration\n",
+ "Cj = 0.5*10**-12 #capacitance of IMPATT diode(F)\n",
+ "Lp = 0.5*10**-9 #Inductance of IMPATT diode(H)\n",
+ "Vbd = 100 #breakdown voltage(V)\n",
+ "Ib = 100*10**-3 #dc bias current(A)\n",
+ "Ip = 0.8 #peak current(A)\n",
+ "Rl = 2 #load resistance(Ohms)\n",
+ "\n",
+ "#Calculations\n",
+ "f = 1/(2*pi*sqrt(Lp*Cj))\n",
+ "Pl = ((Ip**2)*Rl)/2\n",
+ "Pdc = Vbd*Ib\n",
+ "N = (Pl/Pdc)*100\n",
+ "\n",
+ "#Results\n",
+ "print \"The resonant frequency is\",round((f/1E+9),1),\"GHz\"\n",
+ "print \"Efficiency is\",round(N,2),\"%\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The resonant frequency is 10.1 GHz\n",
+ "Efficiency is 6.4 %\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.10, Page number 413"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "'''Determine -\n",
+ "a)drift time\n",
+ "b)operating frequency of IMPATT diode'''\n",
+ "\n",
+ "#Variable declaration\n",
+ "Vd = 10**5 #carrier dirft velocity(cm/s)\n",
+ "L = 2*10**-6 #drift length(m)\n",
+ "\n",
+ "#Calculations\n",
+ "#Part a\n",
+ "tou = L/Vd\n",
+ "\n",
+ "#Part b\n",
+ "f = 1/(2*tou)\n",
+ "\n",
+ "#Results\n",
+ "print \"Drift time of the carrier is\",round((tou/1E-11),2),\"*10**-11 sec\"\n",
+ "print \"Operating frequency of diode is\",(f/1E+9),\"GHz\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Drift time of the carrier is 2.0 *10**-11 sec\n",
+ "Operating frequency of diode is 25.0 GHz\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.11, Page number 413"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "'''Calculate -\n",
+ "a)breakdown voltage\n",
+ "b)breakdown electric field'''\n",
+ "\n",
+ "#Variable declaration\n",
+ "Er = 11.8 #relative dielectric constant\n",
+ "N = 3*10**21 #donor concentration(m^-3)\n",
+ "L = 6.2*10**-6 #Si length(m)\n",
+ "q = 1.6*10**-19 #charge of an electron(C)\n",
+ "Eo = 8.854*10**-12 #dielctric constant\n",
+ "\n",
+ "#Calculations\n",
+ "#Part a\n",
+ "Vbd = (q*N*L**2)/(Eo*Er)\n",
+ "\n",
+ "#Part b\n",
+ "Ebd = Vbd/L\n",
+ "\n",
+ "#Results\n",
+ "print \"Breakdown voltage =\",round(Vbd,1),\"V\"\n",
+ "print \"Breakdown electric field =\",round((Ebd/1E+7),2),\"*10**7 V/m\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Breakdown voltage = 176.6 V\n",
+ "Breakdown electric field = 2.85 *10**7 V/m\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.12, Page number 413"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "'''Calculate -\n",
+ "a)Maximum power gain\n",
+ "b)Noise figure\n",
+ "c)Bandwidth'''\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "rQ = 8. #figure of merit\n",
+ "fo_fs = 8. #ratio of o/p to i/p frequency\n",
+ "Td = 300. #diode temperatur(K)\n",
+ "To = 300. #ambient temperature(K)\n",
+ "r = 0.2\n",
+ "\n",
+ "#Calculations\n",
+ "#Part a\n",
+ "X = rQ**2/fo_fs\n",
+ "G = (X/((1+math.sqrt(1+X))**2))*fo_fs\n",
+ "g = 10*math.log10(G)\n",
+ "\n",
+ "#Part b\n",
+ "F = 1+((2*Td)/To)*((1/rQ)+(1/rQ**2))\n",
+ "f = 10*math.log10(F)\n",
+ "\n",
+ "#Part c\n",
+ "BW = 2*r*math.sqrt(fo_fs)\n",
+ "\n",
+ "#Results\n",
+ "print \"Maximum power gain =\",round(g,2),\"dB\"\n",
+ "print \"Noise figure =\",round(f,2),\"dB\"\n",
+ "print \"Bandwidth =\",round(BW,2)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Maximum power gain = 6.02 dB\n",
+ "Noise figure = 1.08 dB\n",
+ "Bandwidth = 1.13\n"
+ ]
+ }
+ ],
+ "prompt_number": 41
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.13, Page number 414"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "'''Calculate -\n",
+ "a)Equivalent noise resistance\n",
+ "b)Gain\n",
+ "c)Noise figure\n",
+ "d)Bandwidth'''\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "fs = 2*10**9 #signal frequency(Hz)\n",
+ "fp = 12*10**9 #amplifier frquency(Hz)\n",
+ "fi = 10*10**9 #input frequency(Hz)\n",
+ "fd = 5*10**9 #diode frequency(Hz)\n",
+ "Ri = 1*10**3 #input resistance(Ohms)\n",
+ "Rg = 1*10**3 #gate resistance(Ohms)\n",
+ "RTs = 1*10**3 #resistance(Ohms)\n",
+ "RTi = 1*10**3 #resistance(Ohms)\n",
+ "r = 0.35 #resistane(Ohms)\n",
+ "rQ = 10. #figure of merit\n",
+ "rd = 300 #diode temperature(K)\n",
+ "C = 0.01*10**-12 #capacitance(F)\n",
+ "Td = 300\n",
+ "To = 300\n",
+ "\n",
+ "#Calculations\n",
+ "#Part a\n",
+ "ws = 2*pi*fs\n",
+ "wi = 2*pi*fi\n",
+ "R = (r**2)/(ws*wi*C**2*RTi)\n",
+ "a = R/RTs\n",
+ "\n",
+ "#Part b\n",
+ "G = (4*fi*Rg*Ri*a)/(fs*RTs*RTi*(1-a)**2)\n",
+ "g = 10*math.log10(G)\n",
+ "\n",
+ "#Part c\n",
+ "F = 1+((2*Td)/To)*((1/rQ)+(1/rQ**2))\n",
+ "f = 10*math.log10(F)\n",
+ "\n",
+ "#Part d\n",
+ "BW = (r/2)*math.sqrt(fd/(fs*G))\n",
+ "\n",
+ "#Results\n",
+ "print \"Equivalent noise resistance =\",round(a,2),\"Ohms\"\n",
+ "print \"Gain =\",round(g,2),\"dB\"\n",
+ "print \"Noise figure =\",round(f,2),\"dB\"\n",
+ "print \"Bandwidth =\",round(BW,3),\"(Calculation error in the textbook)\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Equivalent noise resistance = 1.55 Ohms\n",
+ "Gain = 20.09 dB\n",
+ "Noise figure = 0.86 dB\n",
+ "Bandwidth = 0.027 (Calculation error in the textbook)\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file