diff options
author | Thomas Stephen Lee | 2015-08-28 16:53:23 +0530 |
---|---|---|
committer | Thomas Stephen Lee | 2015-08-28 16:53:23 +0530 |
commit | db0855dbeb41ecb8a51dde8587d43e5d7e83620f (patch) | |
tree | b95975d958cba9af36cb1680e3f77205354f6512 /Microwave_and_Radar_Engineering/Chapter_8.ipynb | |
parent | 5a86a20b9de487553d4ef88719fb0fd76a5dd6a7 (diff) | |
download | Python-Textbook-Companions-db0855dbeb41ecb8a51dde8587d43e5d7e83620f.tar.gz Python-Textbook-Companions-db0855dbeb41ecb8a51dde8587d43e5d7e83620f.tar.bz2 Python-Textbook-Companions-db0855dbeb41ecb8a51dde8587d43e5d7e83620f.zip |
add books
Diffstat (limited to 'Microwave_and_Radar_Engineering/Chapter_8.ipynb')
-rwxr-xr-x | Microwave_and_Radar_Engineering/Chapter_8.ipynb | 972 |
1 files changed, 0 insertions, 972 deletions
diff --git a/Microwave_and_Radar_Engineering/Chapter_8.ipynb b/Microwave_and_Radar_Engineering/Chapter_8.ipynb deleted file mode 100755 index 7dc18da5..00000000 --- a/Microwave_and_Radar_Engineering/Chapter_8.ipynb +++ /dev/null @@ -1,972 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:35777e633db88a5618cd88c47986862d4ccaaacc3cda8478283a81851ed8d31c" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 8: Microwave Tubes and Circuits" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 8.1, Page number 336" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "import math\n", - "\n", - "#Variable declaration\n", - "Vo = 14.5*10**3 #beam voltage(V)\n", - "i = 1.4 #beam current(A)\n", - "f = 10*10**9 #frequency(Hz)\n", - "rho_o = 10**-6 #dc electron charge density(c/m^3)\n", - "rho = 10**-8 #RF charge density(c/m^3)\n", - "V = 10**5 #velocity perturbations(m/s)\n", - "eo = 8.854*10**-12\n", - "R = 0.4\n", - "\n", - "#Calculations\n", - "#Part a\n", - "vo = 0.593*10**6*math.sqrt(Vo) #dc electron velocity\n", - "\n", - "#Part b\n", - "w = 2.*math.pi*f\n", - "ip = w/vo #dc phase current\n", - "\n", - "#Part c\n", - "wp = math.sqrt((1.759*10**11*rho_o)/eo)\n", - "\n", - "#Part d\n", - "wq = R*wp\n", - "\n", - "#Part e\n", - "Jo = rho_o * vo\n", - "\n", - "#Part f\n", - "J = rho*vo+rho_o*V\n", - "\n", - "#Results\n", - "print \"dc electron velocity =\",round((vo/1E+8),3),\"*10**8 m/sec\"\n", - "print \"dc phase curent =\",round(ip,2),\"rad/sec (Calculation mistake in the textbook)\"\n", - "print \"plasma frequency =\",round((wp/1E+8),2),\"*10**8 rad/sec\"\n", - "print \"Reduced plasma frequency =\",round((wq/1E+8),3),\"*10**8 rad/sec\"\n", - "print \"dc beam current density =\",round(Jo,2), \"A/m^2\"\n", - "print \"instantaeneous beam current density =\",round(J,3),\"A/m^2\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "dc electron velocity = 0.714 *10**8 m/sec\n", - "dc phase curent = 879.92 rad/sec (Calculation mistake in the textbook)\n", - "plasma frequency = 1.41 *10**8 rad/sec\n", - "Reduced plasma frequency = 0.564 *10**8 rad/sec\n", - "dc beam current density = 71.41 A/m^2\n", - "instantaeneous beam current density = 0.814 A/m^2\n" - ] - } - ], - "prompt_number": 73 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 8.2, Page number 337" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "import math\n", - "\n", - "#Variable declaration\n", - "Av = 15. #voltage gain(dB)\n", - "Pin = 5*10**-3 #input power(W)\n", - "Rsh_in = 30*10**3 #Rsh of input cavity(Ohms)\n", - "Rsh_out = 20.*10**3 #Rsh of output cavity(Ohms)\n", - "Rl = 40*10**4 #load impedance(Ohms)\n", - "\n", - "#Calculations\n", - "#Part a\n", - "V1 = math.sqrt(Pin*Rsh_in) #input rms voltage\n", - "\n", - "#Part b\n", - "#Av = 20log(V2/V1) db\n", - "V2 = V1*10**(Av/20) #deriving V2 from above equation\n", - "\n", - "#Part c\n", - "Pout = (V2**2)/Rsh_out #output power\n", - "\n", - "#Results\n", - "print \"input rms voltage =\",round(V1,2),\"V\"\n", - "print \"output rms voltage =\",round(V2,2),\"V\"\n", - "print \"output power =\",round((Pout/1E-3),2),\"mW\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "input rms voltage = 12.25 V\n", - "output rms voltage = 68.87 V\n", - "output power = 237.17 mW\n" - ] - } - ], - "prompt_number": 50 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 8.3, Page number 338" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "a\n", - "\n", - "import math\n", - "\n", - "#Variable declaration\n", - "n = 2 #no. of modes\n", - "Vo = 300 #beam voltage(V)\n", - "Io = 20*10**-3 #beam current(A)\n", - "J1X = 1.25\n", - "\n", - "#Calculations\n", - "#Part a\n", - "Pdc = Vo*Io #input power\n", - "\n", - "#Part b\n", - "Pac = (2*Pdc*J1X)/(2*math.pi*n-(math.pi/2))\n", - "\n", - "#Part c\n", - "N = (Pac/Pdc)*100. #efficiency\n", - "\n", - "\n", - "#Results\n", - "print \"Input power =\",round(Pdc,2),\"W\"\n", - "print \"Output power =\",round(Pac,2),\"W\"\n", - "print \"Efficiency =\",round(N,2),\"%\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Input power = 6.0 W\n", - "Output power = 1.36 W\n", - "Efficiency = 22.74 %\n" - ] - } - ], - "prompt_number": 60 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 8.4, Page number 338" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "import math\n", - "\n", - "#Varaible declaration\n", - "Vo = 900 #beam voltage(V)\n", - "Io = 30*10**-3 #beam current(A)\n", - "f = 8*10**9 #frequency(Hz)\n", - "d = 1*10**-3 #gap spacing in either cavity(m)\n", - "L = 4*10**-2 #spacing between centers of cavities(m)\n", - "Rsh = 40*10**3 #effective shunt impedance(Ohms)\n", - "J1X = 0.582\n", - "X = 1.841\n", - "\n", - "#Calculations\n", - "#Part a\n", - "vo = 0.593*10**6*math.sqrt(Vo)\n", - "\n", - "#Part b\n", - "To = L/vo\n", - "\n", - "#Part c\n", - "w = 2*math.pi*f\n", - "theta_o = w*To\n", - "theta_g = (w*d)/vo\n", - "Bo = math.sin(theta_g/2)/(theta_g/2)\n", - "V1_max = (Vo*3.68)/(Bo*theta_o)\n", - "\n", - "#Part d\n", - "Ro = Vo/Io\n", - "Av = ((Bo**2)*theta_o*J1X*Rsh)/(Ro*X)\n", - "\n", - "#Results\n", - "print \"Electron velocity =\",round((vo/1E+6),2),\"*10**6 m/sec\"\n", - "print \"dc transit time of electrons =\",round((To/1E-8),3),\"*10**-8 sec\"\n", - "print \"Maximum input voltage =\",round(V1_max,3),\"V\"\n", - "print \"Volatge gain =\",round(Av,3),\"V\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Electron velocity = 17.79 *10**6 m/sec\n", - "dc transit time of electrons = 0.225 *10**-8 sec\n", - "Maximum input voltage = 41.923 V\n", - "Volatge gain = 23.278 V\n" - ] - } - ], - "prompt_number": 86 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 8.5, Page number 339" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "import math\n", - "\n", - "#Variable declaration\n", - "Vo = 1200. #beam voltage(V)\n", - "Io = 28*10**-3 #beam current(A)\n", - "f = 8*10**9 #frequency(Hz)\n", - "d = 1*10**-3 #gap spacing in either cavity(m)\n", - "L = 4.*10**-2 #spacing between centers of cavities(m)\n", - "Rsh = 40*10**3 #effective shunt impedance(Ohms)\n", - "J1X = 0.582\n", - "X = 1.841\n", - "Go = 23.3*10**-6\n", - "\n", - "#Calculations\n", - "#Part a\n", - "vo = 0.593*10**6*math.sqrt(Vo)\n", - "w = 2*math.pi*f\n", - "theta_o = (w*L)/vo\n", - "theta_g = (w*d)/vo\n", - "Bo = math.sin(theta_g/2)/(theta_g/2)\n", - "V1_max = (Vo*3.68)/(Bo*theta_o)\n", - "\n", - "#Part b\n", - "Ro = Vo/Io\n", - "Av = ((Bo**2)*theta_o*J1X*Rsh)/(Ro*X)\n", - "\n", - "#Part c\n", - "V2 = 2*Io*J1X*Bo*Rsh\n", - "N = ((0.58*V2)/Vo)*100\n", - "\n", - "#Part d\n", - "Gb = (Go*((Bo**2)-(Bo*math.cos(theta_g))))/2\n", - "Rb = 1/Gb\n", - "\n", - "#Results\n", - "print \"The input microwave voltage V1 in order to generate maximum output voltage is\",round(V1_max,2),\"V\"\n", - "print \"The voltage gain (reflecting beam loading in the output cavity) is\",round(Av,3)\n", - "print \"The efficiency of the amplifier neglecting beam loading is\",round(N,3),\"%\" \n", - "print \"The beam loading conductance is\",round((Rb/1E+3),2),\"K Ohms (Calculation mistake in the textbook)\"\n", - "print \"The value of\",round((Rb/1E+3),2),\"K Ohms is very much comparable to Rsh and cannot be neglected because theta_g is quite high\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The input microwave voltage V1 in order to generate maximum output voltage is 58.71 V\n", - "The voltage gain (reflecting beam loading in the output cavity) is 17.058\n", - "The efficiency of the amplifier neglecting beam loading is 48.427 %\n", - "The beam loading conductance is 72.68 K Ohms (Calculation mistake in the textbook)\n", - "The value of 72.68 K Ohms is very much comparable to Rsh and cannot be neglected because theta_g is quite high\n" - ] - } - ], - "prompt_number": 111 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 8.6, Page number 341" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "import math\n", - "\n", - "#Variable declaration\n", - "Vo = 500. #beam voltage(V)\n", - "Rsh = 20*10**3 #effective shunt impedance(Ohms)\n", - "f = 8*10**9 #frequency(Hz)\n", - "L = 1.*10**-3 #spacing between centers of cavities(m)\n", - "n = 2\n", - "e_m = 1.759*10**11\n", - "V1 = 200\n", - "J1X = 0.582\n", - "\n", - "\n", - "#Calculations\n", - "#Part a\n", - "w = 2*math.pi*f\n", - "x = (e_m*((2*math.pi*n)-(math.pi/2))**2)/(8*(w**2)*(L**2))\n", - "y = math.sqrt(Vo/x)\n", - "Vr = y+Vo\n", - "\n", - "#Part b\n", - "Bo = 1 #Assumption\n", - "Io = V1/(2*J1X*Rsh)\n", - "\n", - "#Part c\n", - "vo = 0.593*10**6*math.sqrt(Vo)\n", - "theta_o = (w*2*L*vo)/(e_m*(Vr+Vo))\n", - "Bi = 1 #Assumption\n", - "X_dash = (V1*theta_o)/(2*Vo)\n", - "X = 1.51 #from graph\n", - "J1X = 0.84\n", - "N = ((2*J1X)/((2*math.pi*n)-(math.pi/2)))*100\n", - "\n", - "#Results\n", - "print \"The value of repeller voltage is\",round(Vr,2),\"V (Calculation mistake in the textbook)\"\n", - "print \"The dc necesaary to give the microwave gap of voltage of 200V is\",round((Io/1E-3),2),\"mA\"\n", - "print \"The elctron efficiency is\", round(N,2),\"%\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The value of repeller voltage is 1189.36 V (Calculation mistake in the textbook)\n", - "The dc necesaary to give the microwave gap of voltage of 200V is 8.59 mA\n", - "The elctron efficiency is 15.28 %\n" - ] - } - ], - "prompt_number": 41 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 8.7, Page number 342" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "import math\n", - "\n", - "#Variable declaration\n", - "n = 1 #no. of modes\n", - "Pdc = 40*10**-3 #input power(W)\n", - "V1_Vo = 0.278 #ratio\n", - "\n", - "#Calculations\n", - "#Part a\n", - "N = (V1_Vo*3*math.pi)/4\n", - "\n", - "#Part b \n", - "Pout = (8.91*Pdc)/100\n", - "\n", - "#Part c\n", - "Pl = (Pout*80)/100\n", - "\n", - "#Results\n", - "print \"The efficiency of the reflex klystron is\",round(N,3)\n", - "print \"The total power output is\",round((Pout/1E-3),2),\"W\"\n", - "print \"The power delivered to the load is\",round((Pl/1E-3),2),\"W\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - " The efficiency of the reflex klystron is 0.655\n", - "The total power output is 3.56 W\n", - "The power delivered to the load is 2.85 W\n" - ] - } - ], - "prompt_number": 23 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 8.8, Page number 343" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "import math\n", - "\n", - "#Variable declaration\n", - "a = 0.15 #inner raddius(m)\n", - "b = 0.45 #outer radius(m)\n", - "Bo = 1.2*10**-3 #magnetic flux density(Wb/m^2)\n", - "Vo = 6000. #beam voltage(V)\n", - "e = 1.759*10**11\n", - "\n", - "#Calculations\n", - "#Part a\n", - "V = (e*Bo*(b**2)*(1-(a**2/b**2))**2)/8\n", - "\n", - "#Part b\n", - "Bc = math.sqrt(8*Vo)/(e**2)*b*(1-(a**2/b**2))**2\n", - "\n", - "#Part c\n", - "wc = (e*Bo)/(math.pi*2)\n", - "\n", - "\n", - "#Results\n", - "print \"Please note that here are calculation errors in this problem. Hence, the difference in answers\\n\"\n", - "print \"Hull cut-off voltage =\",round((V/1E+3),2),\"kV\"\n", - "print \"Cut-off magnetic flux density =\",((Bc/1E-3)),\"mwb/m^2\"\n", - "print \"Cyclotron frequency =\",round(wc,2),\"Hz\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Please note that here are calculation errors in this problem. Hence, the difference in answers\n", - "\n", - "Hull cut-off voltage = 4221.6 kV\n", - "Cut-off magnetic flux density = 2.51765610822e-18 mwb/m^2\n", - "Cyclotron frequency = 33594425.39 Hz\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 8.9, Page number 343" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "import math\n", - "\n", - "#Variable declaration\n", - "d = 2*10**-3 #diameter of helical TWT(m)\n", - "n = 50. #no. of turns per cm\n", - "v = 3*10**8 #velocity of light(m/s)\n", - "m = 9.1*10**-31 #mass of electron\n", - "e = 1.6*10**-19 #charge on electron\n", - "\n", - "#Calculations\n", - "p = 1/n*10**-2 #pitch(m)\n", - "c = math.pi*d #circumference(m)\n", - "Vp = (v*p)/c \n", - "\n", - "Vo = (m*(Vp**2))/(2*e)\n", - "\n", - "#Results\n", - "print \"Axial phase velociity =\",round(Vp,2),\"m/sec\"\n", - "print \"Anode voltage =\",round(Vo,2),\"V(Calculation mistake in the textbook)\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Axial phase velociity = 9549296.59 m/sec\n", - "Anode voltage = 259.32 V(Calculation mistake in the textbook)\n" - ] - } - ], - "prompt_number": 8 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 8.10, Page number 344" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "import math\n", - "\n", - "#Variable declaration\n", - "Vo = 900 #beam voltage(V)\n", - "Io = 30.*10**-3 #beam current(A)\n", - "f = 8.*10**9 #frequency(Hz)\n", - "d = 1.*10**-3 #gap spacing in either cavity(m)\n", - "L = 4.*10**-2 #spacing between centres of cavity(m)\n", - "Rsh = 40.*10**3 #effective shunt impedance(Ohms)\n", - "\n", - "#Calculations\n", - "#Part a\n", - "vo = 0.593*10**6*math.sqrt(Vo)\n", - "\n", - "#Part b\n", - "Tt = d/vo\n", - "\n", - "#Part c\n", - "w = 2*math.pi*f\n", - "theta_g = (w*d)/vo\n", - "Bo = math.sin(theta_g/2)/(theta_g/2) #Beam coupling coefficient\n", - "theta_o = (w*L)/vo #dc transit angle\n", - "#For maximum o/p volltage,\n", - "J1X = 0.582\n", - "X = 1.841\n", - "V1max = (2*Vo*X)/(Bo*theta_o)\n", - "\n", - "#Part d\n", - "Av = (Bo**2*theta_o*J1X*Rsh)/(Io*X)\n", - "\n", - "#Results\n", - "print \"dc electron velocity =\",round((vo/1E+7),1),\"*10**7 m/sec\"\n", - "print \"Transit time =\",round((Tt/1E-10),2),\"*10^-10 s\"\n", - "print \"Input voltage for maximum output voltage =\",round(V1max,2),\"V\"\n", - "print \"Voltage gain =\",round((Av/1E+6),2),\"dB\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "dc electron velocity = 1.8 *10**7 m/sec\n", - "Transit time = 0.56 *10^-10 s\n", - "Input voltage for maximum output voltage = 41.95 V\n", - "Voltage gain = 23.28 dB\n" - ] - } - ], - "prompt_number": 7 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 8.11, Page number 345" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "import math\n", - "\n", - "#Variable declaration\n", - "Vo = 20*10**3 #beam voltage(V)\n", - "Io = 2 #beam current(A)\n", - "f = 9*10**9 #frequency(Hz)\n", - "rho_o = 10**-6 #dc electron charge density(c/m^3)\n", - "rho = 10**-8 #RF charge density(c/m^3)\n", - "V = 10**5 #velocity perturbations(m/s)\n", - "eo = 8.854*10**-12\n", - "R = 0.5\n", - "\n", - "#Calculations\n", - "#Part a\n", - "vo = 0.59*10**6*math.sqrt(Vo)\n", - "\n", - "#Part b\n", - "w = 2.*math.pi*f\n", - "ip = w/vo #dc phase current\n", - "\n", - "#Part c\n", - "wp = math.sqrt((1.759*10**11*rho_o)/eo)\n", - "\n", - "#Part d\n", - "wq = R*wp\n", - "\n", - "#Part e\n", - "Jo = rho_o * vo\n", - "\n", - "#Part f\n", - "J = rho*vo-rho_o*V\n", - "\n", - "#Results\n", - "print \"dc electron velocity =\",round((vo/1E+7),3),\"*10**7 m/sec\"\n", - "print \"dc phase constant =\",round(ip,2),\"rad/sec (Calculation mistake in the textbook)\"\n", - "print \"plasma frequency =\",round((wp/1E+8),2),\"*10**8 rad/sec\"\n", - "print \"Reduced plasma frequency =\",round((wq/1E+8),3),\"*10**8 rad/sec\"\n", - "print \"dc beam current density =\",round(Jo,2), \"A/m^2\"\n", - "print \"instantaeneous beam current density =\",round(J,2),\"A/m^2\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "dc electron velocity = 8.344 *10**7 m/sec\n", - "dc phase constant = 677.73 rad/sec (Calculation mistake in the textbook)\n", - "plasma frequency = 1.41 *10**8 rad/sec\n", - "Reduced plasma frequency = 0.705 *10**8 rad/sec\n", - "dc beam current density = 83.44 A/m^2\n", - "instantaeneous beam current density = 0.73 A/m^2\n" - ] - } - ], - "prompt_number": 71 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 8.12, Page number 345" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "import math\n", - "\n", - "#Variable declaration\n", - "f = 5*10**9 #frequency(Hz)\n", - "Vo = 1000 #operating voltage(V)\n", - "n = 1.75 #no. of turns\n", - "Vr = -500 #repeller voltage(V)\n", - "d = 2*10**-3 #cavity gap(m)\n", - "\n", - "#Calculations\n", - "w = 2*math.pi*f\n", - "uo = 5.93*10**5*math.sqrt(Vo)\n", - "theta_g = (w*d)/uo\n", - "\n", - "#Results\n", - "print \"Transit angle =\",round(theta_g,2),\"radians\"\n", - "print \"\\nThe length of drift region cannot be computed as the value of F is not given\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Transit angle = 3.35 radians\n", - "\n", - "The length of drift region cannot be computed as the value of F is not given\n" - ] - } - ], - "prompt_number": 8 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 8.13, Page number 346" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "import math\n", - "\n", - "#Variable declaration\n", - "f = 10*10**9 #frequency(Hz)\n", - "Vo = 1200 #beam voltage(V)\n", - "Io = 30*10**-3 #beam current(A)\n", - "d = 1*10**-3 #diameter(m)\n", - "Rsh = 40*10**3 #shunt resistance(Ohms)\n", - "L = 4*10**-2 #length(m)\n", - "X = 1.84\n", - "\n", - "#Calculations\n", - "#Part a\n", - "vo = 0.59*10**6*math.sqrt(Vo)\n", - "w = 2*math.pi*f\n", - "theta_o = (w*L)/vo\n", - "V1 = (2*X*Vo)/theta_o\n", - "theta_g = (theta_o*d)/L\n", - "Bi = (math.sin(theta_g/2))/(theta_g/2)\n", - "V1max = V1/Bi\n", - "\n", - "#Part b\n", - "J1X = 0.58 #from table\n", - "I2 = 2*Io*J1X\n", - "V2 = Bi*I2*Rsh\n", - "A = V2/V1\n", - "Av = 20*math.log10(A)\n", - "\n", - "#Part c\n", - "N = ((0.58*V2)/Vo)*100\n", - "\n", - "#Results\n", - "print \"Input RF voltage is\",round(V1max,2),\"V\" \n", - "print \"Voltage gain is\",round(Av,2),\"dB\"\n", - "print \"efficiency is\",round(N,2),\"%\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Input RF voltage is 55.23 V\n", - "Voltage gain is 28.03 dB\n", - "efficiency is 43.75 %\n" - ] - } - ], - "prompt_number": 17 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 8.14, Page number 347" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "import math\n", - "\n", - "#Variable declaration\n", - "Vo = 30*10**3 #beam voltage(V)\n", - "Io = 80 #beam current(A)\n", - "Bo = 0.01 #Wb/m**2\n", - "a = 4*10**-2 #length of magnetron(m)\n", - "b = 8*10**-2 #breadth of magnetron(m)\n", - "e = 1.6*10**-19 #charge on electron(C)\n", - "m = 9.1*10**-31 #mass of electron\n", - "\n", - "#Calculations\n", - "#Part a\n", - "w = (e*Bo)/m\n", - "\n", - "#Part b\n", - "Vhc = (e*(Bo**2)*(b**2)*((1-((a/b)**2))**2))/(8*m)\n", - "\n", - "#PArt c\n", - "Bc = ((8*Vo*(m/e))**0.5)/(b*(1-((a/b)**2)))\n", - "\n", - "#Results\n", - "print \"Cyclotron angular frequency =\",round((w/1E+9),3),\"*10**9 rad/s\"\n", - "print \"Hull cut-off voltage =\",round((Vhc/1E+3),3),\"kV\"\n", - "print \"Cut-off magnetic flux density =\",round((Bc/1E-3),3),\"mWb/m**2\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Cyclotron angular frequency = 1.758 *10**9 rad/s\n", - "Hull cut-off voltage = 7.912 kV\n", - "Cut-off magnetic flux density = 19.472 mWb/m**2\n" - ] - } - ], - "prompt_number": 26 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 8.15, Page number 348" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "import math\n", - "\n", - "#Variable declaration\n", - "n = 2 #mode\n", - "Vo = 280 #beam volatge(V)\n", - "Io = 22*10**-3 #beam current(A)\n", - "V1 = 30 #signal voltage(V)\n", - "\n", - "#Calculations\n", - "#Part a\n", - "Pdc = Vo*Io\n", - "\n", - "#Part b\n", - "J1X = 1.25 #from table\n", - "Pac = (2*Pdc*J1X)/((2*n*math.pi)-(math.pi/2))\n", - "\n", - "#Part c\n", - "N = (Pac/Pdc)*100\n", - "\n", - "#Results\n", - "print \"Input power =\",round(Pdc,2),\"W\"\n", - "print \"Output power =\",round(Pac,2),\"W\"\n", - "print \"Efficiency =\",round(N,2),\"%\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Input power = 6.16 W\n", - "Output power = 1.4 W\n", - "Efficiency = 22.74 %\n" - ] - } - ], - "prompt_number": 28 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 8.16, Page number 348" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "import math\n", - "\n", - "#Variable declaration\n", - "f = 8*10**9 #frequency(Hz)\n", - "Vo = 300 #beam voltage(V)\n", - "Rsh = 20*10**3 #shunt resistance(Ohms)\n", - "L = 1*10**-3 #length(m)\n", - "V1 = 200 #gap voltage(V)\n", - "e_m = 1.759*10**11\n", - "n = 2 #mode\n", - "\n", - "#Calculations\n", - "#Part a\n", - "w = 2*math.pi*f\n", - "x = (e_m*((2*math.pi*n)-(math.pi/2))**2)/(8*(w**2)*(L**2))\n", - "y = math.sqrt(Vo/x)\n", - "Vr = y+Vo\n", - "\n", - "#Part b\n", - "Bo = 1 #assumption\n", - "J1X = 0.582 #from table\n", - "Io = V1/(2*J1X*Rsh)\n", - "\n", - "#Results\n", - "print \"Repeller voltage =\",round(Vr,3),\"V\"\n", - "print \"Beam current =\",round((Io/1E-3),2),\"mA\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Repeller voltage = 833.98 V\n", - "Beam current = 8.59 mA\n" - ] - } - ], - "prompt_number": 37 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file |