diff options
author | debashisdeb | 2014-06-20 15:42:42 +0530 |
---|---|---|
committer | debashisdeb | 2014-06-20 15:42:42 +0530 |
commit | 83c1bfceb1b681b4bb7253b47491be2d8b2014a1 (patch) | |
tree | f54eab21dd3d725d64a495fcd47c00d37abed004 /Microwave_and_Radar_Engineering/Chapter_11.ipynb | |
parent | a78126bbe4443e9526a64df9d8245c4af8843044 (diff) | |
download | Python-Textbook-Companions-83c1bfceb1b681b4bb7253b47491be2d8b2014a1.tar.gz Python-Textbook-Companions-83c1bfceb1b681b4bb7253b47491be2d8b2014a1.tar.bz2 Python-Textbook-Companions-83c1bfceb1b681b4bb7253b47491be2d8b2014a1.zip |
removing problem statements
Diffstat (limited to 'Microwave_and_Radar_Engineering/Chapter_11.ipynb')
-rw-r--r-- | Microwave_and_Radar_Engineering/Chapter_11.ipynb | 606 |
1 files changed, 299 insertions, 307 deletions
diff --git a/Microwave_and_Radar_Engineering/Chapter_11.ipynb b/Microwave_and_Radar_Engineering/Chapter_11.ipynb index 8ad823b1..afe53dd6 100644 --- a/Microwave_and_Radar_Engineering/Chapter_11.ipynb +++ b/Microwave_and_Radar_Engineering/Chapter_11.ipynb @@ -1,308 +1,300 @@ -{
- "metadata": {
- "name": "Chapter 11"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "Chapter 11: Radars"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 11.1, Page number 504"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "'''Calculate maximum range of radar system'''\n",
- "\n",
- "import math\n",
- "\n",
- "#Variable declaraion\n",
- "lamda = 3.*10**-2#operating unit(cm)\n",
- "Pt = 600.*10**3 #peak pulse power(W)\n",
- "Smin = 10.**-13 #minimum detectable signal(W)\n",
- "Ae = 5. #m^2\n",
- "sigma = 20. #cross sectional area(m^2)\n",
- "\n",
- "#Calculations\n",
- "Rmax = ((Pt*Ae**2*sigma)/(4*math.pi*lamda**2*Smin))**0.25\n",
- "Rmax_nau = Rmax/1.853\n",
- "\n",
- "#Result\n",
- "print \"The maximum range of radar system is\",round((Rmax/1E+3),2),\"km\"\n",
- "print \"The maximum range of radar system in nautical miles is\",round((Rmax_nau/1E+3),2),\"nm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The maximum range of radar system is 717.66 km\n",
- "The maximum range of radar system in nautical miles is 387.29 nm\n"
- ]
- }
- ],
- "prompt_number": 25
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 11.2, Page number 504"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "'''Find maximum range possible of an antenna'''\n",
- "\n",
- "#Variable declaration\n",
- "Pt = 250.*10**3 #peak pulse power(W)\n",
- "Smin = 10.**-14 #minimum detectable signal(W)\n",
- "Ae = 10. #m^2\n",
- "sigma = 2. #cross sectional area(m^2)\n",
- "f = 10*10**9 #frequency(Hz)\n",
- "c = 3*10**8 #velocity of propagation(m/s)\n",
- "G = 2500 #power gain of antenna\n",
- "\n",
- "#Calculations\n",
- "lamda = c/f\n",
- "Rmax = ((Pt*G*Ae*sigma)/((4*math.pi)**2*Smin))**0.25\n",
- "\n",
- "#Result\n",
- "print \"Maximum range possible of the antenna is\",round((Rmax/1E+3),2),\"km\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Maximum range possible of the antenna is 298.28 km\n"
- ]
- }
- ],
- "prompt_number": 30
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 11.3, Page number 504"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "'''Determine the cross section the radar can sight'''\n",
- "\n",
- "import math\n",
- "\n",
- "#Variable declaration\n",
- "Pt = 250.*10**3 #peak pulse power(W)\n",
- "f = 10.*10**9 #frequency(Hz)\n",
- "c = 3.*10**8 #velocity of propagation(m/s)\n",
- "G = 4000 #power gain of antenna\n",
- "R = 50*10**3 #range(m)\n",
- "Pr = 10**-11 #minimum detectable signal(W)\n",
- "\n",
- "#Calculations\n",
- "lamda = c/f\n",
- "Ae = (G*lamda**2)/(4*math.pi)\n",
- "sigma = (Pr*((4*math.pi*R**2)**2))/(Pt*G*Ae)\n",
- "\n",
- "#Result\n",
- "print \"The radar can sight cross section area of\",round(sigma,2),\"m^2\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The radar can sight cross section area of 34.45 m^2\n"
- ]
- }
- ],
- "prompt_number": 37
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 11.4, Page number 505"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "'''Determine - \n",
- "a)Unambigous range\n",
- "b)duy cycle\n",
- "c)average power\n",
- "d)bandwidth of radar'''\n",
- "\n",
- "#Variable declaration\n",
- "Pt = 400*10**3 #transmitted power(W)\n",
- "prf = 1500. #pulse repitiion frequency(pps)\n",
- "tw = 0.8*10**-6 #pulse width(sec)\n",
- "c = 3.*10**8 #velocity of propagation(m/s)\n",
- "\n",
- "#Calculations\n",
- "#Part a\n",
- "Run = c/(2*prf)\n",
- "\n",
- "#Part b\n",
- "dc = tw/(1/prf)\n",
- "\n",
- "#Part c\n",
- "Pav = Pt*dc\n",
- "\n",
- "#Part d\n",
- "n1 = 1\n",
- "BW1 = n1/tw\n",
- "\n",
- "n2 = 1.4\n",
- "BW2 = n2/tw\n",
- "\n",
- "#Results\n",
- "print \"The radar's unambiguous range is\",round((Run/1E+3),2),\"km\"\n",
- "print \"The duty cycle for radar is\",dc\n",
- "print \"The average power is\",round(Pav,2),\"W\"\n",
- "print \"Bandwidth range for radar is\",(BW1/1E+6),\"MHz and\",(BW2/1E+6),\"MHz\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The radar's unambiguous range is 100.0 km\n",
- "The duty cycle for radar is 0.0012\n",
- "The average power is 480.0 W\n",
- "Bandwidth range for radar is 1.25 MHz and 1.75 MHz\n"
- ]
- }
- ],
- "prompt_number": 47
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 11.5, Page number 505"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "'''Find the maximum detection range'''\n",
- "\n",
- "import math\n",
- "\n",
- "#Variable declaration\n",
- "Pt = 2.5*10**6 #power output(W)\n",
- "D = 5 #antenna diameter(m)\n",
- "sigma = 1 #cross sectional area of target(m^2)\n",
- "B = 1.6*10**6 #receiver bandwidth(Hz)\n",
- "c = 3.*10**8 #velocity of propagation(m/s)\n",
- "Nf = 12. #noise figure(dB)\n",
- "f = 5*10**9 #frequency(Hz)\n",
- "\n",
- "#Calculations\n",
- "lamda = c/f\n",
- "F = 10**(Nf/10)\n",
- "Rmax = 48*(((Pt*D**4*sigma)/(B*lamda**2*(F-1)))**0.25)\n",
- "\n",
- "#Result\n",
- "print \"The maximum detection range is\",round(Rmax,2),\"km\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The maximum detection range is 558.04 km\n"
- ]
- }
- ],
- "prompt_number": 57
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 11.6, Page number 506"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "'''Find the maximum range and the effect of doubling the transmitter power'''\n",
- "\n",
- "import math \n",
- "\n",
- "#Variable declaration\n",
- "Rmax = 30 #maximum range of radar(km)\n",
- "n = 50 #no. of echos\n",
- "\n",
- "#Calculation\n",
- "R = Rmax*math.sqrt(math.sqrt(n))\n",
- "\n",
- "#After doubling the power\n",
- "R1 = math.sqrt(math.sqrt(2))\n",
- "\n",
- "#Results\n",
- "print \"Maximum range with echoing of 50 times is\",round(R,2),\"km\"\n",
- "print \"If transmitter power is doubled, range would increase by a factor of\",round(R1,2)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Maximum range with echoing of 50 times is 79.77 km\n",
- "If transmitter power is doubled, range would increase by a factor of 1.19\n"
- ]
- }
- ],
- "prompt_number": 61
- }
- ],
- "metadata": {}
- }
- ]
+{ + "metadata": { + "name": "", + "signature": "sha256:efd0e56c04d2245e98b2287a63fba67799b88e9847372ba4c5f3c4cf5de91c4c" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 11: Radars" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 11.1, Page number 504" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "import math\n", + "\n", + "#Variable declaraion\n", + "lamda = 3.*10**-2#operating unit(cm)\n", + "Pt = 600.*10**3 #peak pulse power(W)\n", + "Smin = 10.**-13 #minimum detectable signal(W)\n", + "Ae = 5. #m^2\n", + "sigma = 20. #cross sectional area(m^2)\n", + "\n", + "#Calculations\n", + "Rmax = ((Pt*Ae**2*sigma)/(4*math.pi*lamda**2*Smin))**0.25\n", + "Rmax_nau = Rmax/1.853\n", + "\n", + "#Result\n", + "print \"The maximum range of radar system is\",round((Rmax/1E+3),2),\"km\"\n", + "print \"The maximum range of radar system in nautical miles is\",round((Rmax_nau/1E+3),2),\"nm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The maximum range of radar system is 717.66 km\n", + "The maximum range of radar system in nautical miles is 387.29 nm\n" + ] + } + ], + "prompt_number": 25 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 11.2, Page number 504" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "#Variable declaration\n", + "Pt = 250.*10**3 #peak pulse power(W)\n", + "Smin = 10.**-14 #minimum detectable signal(W)\n", + "Ae = 10. #m^2\n", + "sigma = 2. #cross sectional area(m^2)\n", + "f = 10*10**9 #frequency(Hz)\n", + "c = 3*10**8 #velocity of propagation(m/s)\n", + "G = 2500 #power gain of antenna\n", + "\n", + "#Calculations\n", + "lamda = c/f\n", + "Rmax = ((Pt*G*Ae*sigma)/((4*math.pi)**2*Smin))**0.25\n", + "\n", + "#Result\n", + "print \"Maximum range possible of the antenna is\",round((Rmax/1E+3),2),\"km\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Maximum range possible of the antenna is 298.28 km\n" + ] + } + ], + "prompt_number": 30 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 11.3, Page number 504" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "import math\n", + "\n", + "#Variable declaration\n", + "Pt = 250.*10**3 #peak pulse power(W)\n", + "f = 10.*10**9 #frequency(Hz)\n", + "c = 3.*10**8 #velocity of propagation(m/s)\n", + "G = 4000 #power gain of antenna\n", + "R = 50*10**3 #range(m)\n", + "Pr = 10**-11 #minimum detectable signal(W)\n", + "\n", + "#Calculations\n", + "lamda = c/f\n", + "Ae = (G*lamda**2)/(4*math.pi)\n", + "sigma = (Pr*((4*math.pi*R**2)**2))/(Pt*G*Ae)\n", + "\n", + "#Result\n", + "print \"The radar can sight cross section area of\",round(sigma,2),\"m^2\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The radar can sight cross section area of 34.45 m^2\n" + ] + } + ], + "prompt_number": 37 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 11.4, Page number 505" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "#Variable declaration\n", + "Pt = 400*10**3 #transmitted power(W)\n", + "prf = 1500. #pulse repitiion frequency(pps)\n", + "tw = 0.8*10**-6 #pulse width(sec)\n", + "c = 3.*10**8 #velocity of propagation(m/s)\n", + "\n", + "#Calculations\n", + "#Part a\n", + "Run = c/(2*prf)\n", + "\n", + "#Part b\n", + "dc = tw/(1/prf)\n", + "\n", + "#Part c\n", + "Pav = Pt*dc\n", + "\n", + "#Part d\n", + "n1 = 1\n", + "BW1 = n1/tw\n", + "\n", + "n2 = 1.4\n", + "BW2 = n2/tw\n", + "\n", + "#Results\n", + "print \"The radar's unambiguous range is\",round((Run/1E+3),2),\"km\"\n", + "print \"The duty cycle for radar is\",dc\n", + "print \"The average power is\",round(Pav,2),\"W\"\n", + "print \"Bandwidth range for radar is\",(BW1/1E+6),\"MHz and\",(BW2/1E+6),\"MHz\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The radar's unambiguous range is 100.0 km\n", + "The duty cycle for radar is 0.0012\n", + "The average power is 480.0 W\n", + "Bandwidth range for radar is 1.25 MHz and 1.75 MHz\n" + ] + } + ], + "prompt_number": 47 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 11.5, Page number 505" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "import math\n", + "\n", + "#Variable declaration\n", + "Pt = 2.5*10**6 #power output(W)\n", + "D = 5 #antenna diameter(m)\n", + "sigma = 1 #cross sectional area of target(m^2)\n", + "B = 1.6*10**6 #receiver bandwidth(Hz)\n", + "c = 3.*10**8 #velocity of propagation(m/s)\n", + "Nf = 12. #noise figure(dB)\n", + "f = 5*10**9 #frequency(Hz)\n", + "\n", + "#Calculations\n", + "lamda = c/f\n", + "F = 10**(Nf/10)\n", + "Rmax = 48*(((Pt*D**4*sigma)/(B*lamda**2*(F-1)))**0.25)\n", + "\n", + "#Result\n", + "print \"The maximum detection range is\",round(Rmax,2),\"km\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The maximum detection range is 558.04 km\n" + ] + } + ], + "prompt_number": 57 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 11.6, Page number 506" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "import math \n", + "\n", + "#Variable declaration\n", + "Rmax = 30 #maximum range of radar(km)\n", + "n = 50 #no. of echos\n", + "\n", + "#Calculation\n", + "R = Rmax*math.sqrt(math.sqrt(n))\n", + "\n", + "#After doubling the power\n", + "R1 = math.sqrt(math.sqrt(2))\n", + "\n", + "#Results\n", + "print \"Maximum range with echoing of 50 times is\",round(R,2),\"km\"\n", + "print \"If transmitter power is doubled, range would increase by a factor of\",round(R1,2)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Maximum range with echoing of 50 times is 79.77 km\n", + "If transmitter power is doubled, range would increase by a factor of 1.19\n" + ] + } + ], + "prompt_number": 61 + } + ], + "metadata": {} + } + ] }
\ No newline at end of file |