diff options
author | Jovina Dsouza | 2014-06-18 12:43:07 +0530 |
---|---|---|
committer | Jovina Dsouza | 2014-06-18 12:43:07 +0530 |
commit | 206d0358703aa05d5d7315900fe1d054c2817ddc (patch) | |
tree | f2403e29f3aded0caf7a2434ea50dd507f6545e2 /Microwave_and_Radar_Engineering/Chapter_11.ipynb | |
parent | c6f0d6aeb95beaf41e4b679e78bb42c4ffe45a40 (diff) | |
download | Python-Textbook-Companions-206d0358703aa05d5d7315900fe1d054c2817ddc.tar.gz Python-Textbook-Companions-206d0358703aa05d5d7315900fe1d054c2817ddc.tar.bz2 Python-Textbook-Companions-206d0358703aa05d5d7315900fe1d054c2817ddc.zip |
adding book
Diffstat (limited to 'Microwave_and_Radar_Engineering/Chapter_11.ipynb')
-rw-r--r-- | Microwave_and_Radar_Engineering/Chapter_11.ipynb | 308 |
1 files changed, 308 insertions, 0 deletions
diff --git a/Microwave_and_Radar_Engineering/Chapter_11.ipynb b/Microwave_and_Radar_Engineering/Chapter_11.ipynb new file mode 100644 index 00000000..8ad823b1 --- /dev/null +++ b/Microwave_and_Radar_Engineering/Chapter_11.ipynb @@ -0,0 +1,308 @@ +{
+ "metadata": {
+ "name": "Chapter 11"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 11: Radars"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.1, Page number 504"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "'''Calculate maximum range of radar system'''\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "#Variable declaraion\n",
+ "lamda = 3.*10**-2#operating unit(cm)\n",
+ "Pt = 600.*10**3 #peak pulse power(W)\n",
+ "Smin = 10.**-13 #minimum detectable signal(W)\n",
+ "Ae = 5. #m^2\n",
+ "sigma = 20. #cross sectional area(m^2)\n",
+ "\n",
+ "#Calculations\n",
+ "Rmax = ((Pt*Ae**2*sigma)/(4*math.pi*lamda**2*Smin))**0.25\n",
+ "Rmax_nau = Rmax/1.853\n",
+ "\n",
+ "#Result\n",
+ "print \"The maximum range of radar system is\",round((Rmax/1E+3),2),\"km\"\n",
+ "print \"The maximum range of radar system in nautical miles is\",round((Rmax_nau/1E+3),2),\"nm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The maximum range of radar system is 717.66 km\n",
+ "The maximum range of radar system in nautical miles is 387.29 nm\n"
+ ]
+ }
+ ],
+ "prompt_number": 25
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.2, Page number 504"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "'''Find maximum range possible of an antenna'''\n",
+ "\n",
+ "#Variable declaration\n",
+ "Pt = 250.*10**3 #peak pulse power(W)\n",
+ "Smin = 10.**-14 #minimum detectable signal(W)\n",
+ "Ae = 10. #m^2\n",
+ "sigma = 2. #cross sectional area(m^2)\n",
+ "f = 10*10**9 #frequency(Hz)\n",
+ "c = 3*10**8 #velocity of propagation(m/s)\n",
+ "G = 2500 #power gain of antenna\n",
+ "\n",
+ "#Calculations\n",
+ "lamda = c/f\n",
+ "Rmax = ((Pt*G*Ae*sigma)/((4*math.pi)**2*Smin))**0.25\n",
+ "\n",
+ "#Result\n",
+ "print \"Maximum range possible of the antenna is\",round((Rmax/1E+3),2),\"km\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Maximum range possible of the antenna is 298.28 km\n"
+ ]
+ }
+ ],
+ "prompt_number": 30
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.3, Page number 504"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "'''Determine the cross section the radar can sight'''\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "Pt = 250.*10**3 #peak pulse power(W)\n",
+ "f = 10.*10**9 #frequency(Hz)\n",
+ "c = 3.*10**8 #velocity of propagation(m/s)\n",
+ "G = 4000 #power gain of antenna\n",
+ "R = 50*10**3 #range(m)\n",
+ "Pr = 10**-11 #minimum detectable signal(W)\n",
+ "\n",
+ "#Calculations\n",
+ "lamda = c/f\n",
+ "Ae = (G*lamda**2)/(4*math.pi)\n",
+ "sigma = (Pr*((4*math.pi*R**2)**2))/(Pt*G*Ae)\n",
+ "\n",
+ "#Result\n",
+ "print \"The radar can sight cross section area of\",round(sigma,2),\"m^2\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The radar can sight cross section area of 34.45 m^2\n"
+ ]
+ }
+ ],
+ "prompt_number": 37
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.4, Page number 505"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "'''Determine - \n",
+ "a)Unambigous range\n",
+ "b)duy cycle\n",
+ "c)average power\n",
+ "d)bandwidth of radar'''\n",
+ "\n",
+ "#Variable declaration\n",
+ "Pt = 400*10**3 #transmitted power(W)\n",
+ "prf = 1500. #pulse repitiion frequency(pps)\n",
+ "tw = 0.8*10**-6 #pulse width(sec)\n",
+ "c = 3.*10**8 #velocity of propagation(m/s)\n",
+ "\n",
+ "#Calculations\n",
+ "#Part a\n",
+ "Run = c/(2*prf)\n",
+ "\n",
+ "#Part b\n",
+ "dc = tw/(1/prf)\n",
+ "\n",
+ "#Part c\n",
+ "Pav = Pt*dc\n",
+ "\n",
+ "#Part d\n",
+ "n1 = 1\n",
+ "BW1 = n1/tw\n",
+ "\n",
+ "n2 = 1.4\n",
+ "BW2 = n2/tw\n",
+ "\n",
+ "#Results\n",
+ "print \"The radar's unambiguous range is\",round((Run/1E+3),2),\"km\"\n",
+ "print \"The duty cycle for radar is\",dc\n",
+ "print \"The average power is\",round(Pav,2),\"W\"\n",
+ "print \"Bandwidth range for radar is\",(BW1/1E+6),\"MHz and\",(BW2/1E+6),\"MHz\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The radar's unambiguous range is 100.0 km\n",
+ "The duty cycle for radar is 0.0012\n",
+ "The average power is 480.0 W\n",
+ "Bandwidth range for radar is 1.25 MHz and 1.75 MHz\n"
+ ]
+ }
+ ],
+ "prompt_number": 47
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.5, Page number 505"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "'''Find the maximum detection range'''\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "Pt = 2.5*10**6 #power output(W)\n",
+ "D = 5 #antenna diameter(m)\n",
+ "sigma = 1 #cross sectional area of target(m^2)\n",
+ "B = 1.6*10**6 #receiver bandwidth(Hz)\n",
+ "c = 3.*10**8 #velocity of propagation(m/s)\n",
+ "Nf = 12. #noise figure(dB)\n",
+ "f = 5*10**9 #frequency(Hz)\n",
+ "\n",
+ "#Calculations\n",
+ "lamda = c/f\n",
+ "F = 10**(Nf/10)\n",
+ "Rmax = 48*(((Pt*D**4*sigma)/(B*lamda**2*(F-1)))**0.25)\n",
+ "\n",
+ "#Result\n",
+ "print \"The maximum detection range is\",round(Rmax,2),\"km\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The maximum detection range is 558.04 km\n"
+ ]
+ }
+ ],
+ "prompt_number": 57
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.6, Page number 506"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "'''Find the maximum range and the effect of doubling the transmitter power'''\n",
+ "\n",
+ "import math \n",
+ "\n",
+ "#Variable declaration\n",
+ "Rmax = 30 #maximum range of radar(km)\n",
+ "n = 50 #no. of echos\n",
+ "\n",
+ "#Calculation\n",
+ "R = Rmax*math.sqrt(math.sqrt(n))\n",
+ "\n",
+ "#After doubling the power\n",
+ "R1 = math.sqrt(math.sqrt(2))\n",
+ "\n",
+ "#Results\n",
+ "print \"Maximum range with echoing of 50 times is\",round(R,2),\"km\"\n",
+ "print \"If transmitter power is doubled, range would increase by a factor of\",round(R1,2)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Maximum range with echoing of 50 times is 79.77 km\n",
+ "If transmitter power is doubled, range would increase by a factor of 1.19\n"
+ ]
+ }
+ ],
+ "prompt_number": 61
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file |