summaryrefslogtreecommitdiff
path: root/Mechanics_of_Materials/chapter12.ipynb
diff options
context:
space:
mode:
authorJovina Dsouza2014-06-18 12:43:07 +0530
committerJovina Dsouza2014-06-18 12:43:07 +0530
commit206d0358703aa05d5d7315900fe1d054c2817ddc (patch)
treef2403e29f3aded0caf7a2434ea50dd507f6545e2 /Mechanics_of_Materials/chapter12.ipynb
parentc6f0d6aeb95beaf41e4b679e78bb42c4ffe45a40 (diff)
downloadPython-Textbook-Companions-206d0358703aa05d5d7315900fe1d054c2817ddc.tar.gz
Python-Textbook-Companions-206d0358703aa05d5d7315900fe1d054c2817ddc.tar.bz2
Python-Textbook-Companions-206d0358703aa05d5d7315900fe1d054c2817ddc.zip
adding book
Diffstat (limited to 'Mechanics_of_Materials/chapter12.ipynb')
-rw-r--r--Mechanics_of_Materials/chapter12.ipynb172
1 files changed, 172 insertions, 0 deletions
diff --git a/Mechanics_of_Materials/chapter12.ipynb b/Mechanics_of_Materials/chapter12.ipynb
new file mode 100644
index 00000000..b8be714d
--- /dev/null
+++ b/Mechanics_of_Materials/chapter12.ipynb
@@ -0,0 +1,172 @@
+{
+ "metadata": {
+ "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 12: Review of Centroids and Moments of Inertia "
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.2, page no. 833"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\"\"\"\n",
+ "find centroid C of the cross-sectional area.\n",
+ "\"\"\"\n",
+ "\n",
+ "import math \n",
+ "\n",
+ "#initialisation\n",
+ "A1 = 6*0.5 # Partial Area in in2\n",
+ "A2 = 20.8 # from table E1 and E3\n",
+ "A3 = 8.82 # from table E1 and E3\n",
+ "y1 = (18.47/2.0) + (0.5/2.0) # Distance between centroid C1 and C2\n",
+ "y2 = 0 # Distance between centroid C2 and C2\n",
+ "y3 = (18.47/2.0) + 0.649 # Distance between centroid C3 and C2\n",
+ "\n",
+ "#calculation\n",
+ "A = A1 + A2 + A3 # Area of entire cross section\n",
+ "Qx = (y1*A1) + (y2*A2) - (y3*A3) # First moment of entire cross section\n",
+ "y_bar = Qx/A # Distance between x-axis and centroid of the cross section\n",
+ "print \"The distance between x-axis and centroid of the cross section is \", round(-y_bar,2), \"inch\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The distance between x-axis and centroid of the cross section is 1.8 inch\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.5, page no. 840"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\"\"\"\n",
+ "evaluate moment of inertia Ic with respect to the horizontal axis C-C\n",
+ "\"\"\"\n",
+ "\n",
+ "import math \n",
+ "\n",
+ "#initialisation\n",
+ "A1 = 6*0.5 # Partial Area in in2\n",
+ "A2 = 20.8 # from table E1 and E3\n",
+ "A3 = 8.82 # from table E1 and E3\n",
+ "y1 = (18.47/2.0) + (0.5/2.0) # Distance between centroid C1 and C2\n",
+ "y2 = 0 # Distance between centroid C2 and C2\n",
+ "y3 = (18.47/2.0) + 0.649 # Distance between centroid C3 and C2\n",
+ "\n",
+ "#calculation\n",
+ "A = A1 + A2 + A3 # Area of entire cross section\n",
+ "Qx = (y1*A1) + (y2*A2) - (y3*A3) # First moment of entire cross section\n",
+ "y_bar = Qx/A # Distance between x-axis and centroid of the cross section\n",
+ "c_bar = -(y_bar)\n",
+ "\n",
+ "I1 = (6*0.5**3)/12.0 # Moment of inertia of A1 \n",
+ "I2 = 1170 # Moment of inertia of A2 from table E1\n",
+ "I3 = 3.94 # Moment of inertia of A3 from table E3\n",
+ "Ic1 = I1 + (A1*(y1+c_bar)**2) # Moment of inertia about C-C axis of area C1\n",
+ "Ic2 = I2 + (A2*(y2+c_bar)**2) # Moment of inertia about C-C axis of area C2\n",
+ "Ic3 = I3 + (A3*(y3-c_bar)**2) # Moment of inertia about C-C axis of area C3\n",
+ "Ic = Ic1 + Ic2 + Ic3 # Moment of inertia about C-C axis of whole area\n",
+ "print \"The moment of inertia of entire cross section area about its centroidal axis C-C\", round(Ic), \"in^4\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The moment of inertia of entire cross section area about its centroidal axis C-C 2200.0 in^4\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.7, page no. 851"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\"\"\"\n",
+ "calculate orientations of the principal centroidal axes and the magnitudes\n",
+ "of the principal centroidal moments of inertia\n",
+ "\"\"\"\n",
+ "\n",
+ "import math \n",
+ "import numpy\n",
+ "\n",
+ "#initialisation\n",
+ "Ix = 29.29e06 # Moment of inertia of crosssection about x-axis\n",
+ "Iy = 5.667e06 # Moment of inertia of crosssection about y-axis\n",
+ "Ixy = -9.336e06 # Moment of inertia of crosssection \n",
+ "\n",
+ "#calculation\n",
+ "tp1 = (numpy.degrees(numpy.arctan((-(2*Ixy)/(Ix-Iy)))))/2.0 # Angle definig a Principle axix\n",
+ "tp2 = 90 + tp1 \n",
+ "print \"The Principle axis is inclined at an angle\", round(tp1,2), \"degree\"\n",
+ "print \"Second angle of inclination of Principle axis is\", round(tp2,2), \"degree\"\n",
+ "Ix1 = (Ix+Iy)/2.0 + ((Ix-Iy)/2.0)*math.cos(math.radians(tp1)) - Ixy*math.sin(math.radians(tp1))\n",
+ "Ix2 = (Ix+Iy)/2.0 + ((Ix-Iy)/2.0)*math.cos(math.radians(tp2)) - Ixy*math.sin(math.radians(tp2))\n",
+ "print \"Principle Moment of inertia corresponding to tp1\", round(Ix1), \"mm^4\"\n",
+ "print \"Principle Moment of inertia corresponding to tp2\", round(Ix2), \"mm^4\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The Principle axis is inclined at an angle 19.16 degree\n",
+ "Second angle of inclination of Principle axis is 109.16 degree\n",
+ "Principle Moment of inertia corresponding to tp1 31700001.0 mm^4\n",
+ "Principle Moment of inertia corresponding to tp2 22420295.0 mm^4\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file