summaryrefslogtreecommitdiff
path: root/Mechanics_of_Materials/chapter1.ipynb
diff options
context:
space:
mode:
authorJovina Dsouza2014-06-18 12:43:07 +0530
committerJovina Dsouza2014-06-18 12:43:07 +0530
commit206d0358703aa05d5d7315900fe1d054c2817ddc (patch)
treef2403e29f3aded0caf7a2434ea50dd507f6545e2 /Mechanics_of_Materials/chapter1.ipynb
parentc6f0d6aeb95beaf41e4b679e78bb42c4ffe45a40 (diff)
downloadPython-Textbook-Companions-206d0358703aa05d5d7315900fe1d054c2817ddc.tar.gz
Python-Textbook-Companions-206d0358703aa05d5d7315900fe1d054c2817ddc.tar.bz2
Python-Textbook-Companions-206d0358703aa05d5d7315900fe1d054c2817ddc.zip
adding book
Diffstat (limited to 'Mechanics_of_Materials/chapter1.ipynb')
-rw-r--r--Mechanics_of_Materials/chapter1.ipynb423
1 files changed, 423 insertions, 0 deletions
diff --git a/Mechanics_of_Materials/chapter1.ipynb b/Mechanics_of_Materials/chapter1.ipynb
new file mode 100644
index 00000000..cf45a409
--- /dev/null
+++ b/Mechanics_of_Materials/chapter1.ipynb
@@ -0,0 +1,423 @@
+{
+ "metadata": {
+ "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 1: Tension Comprssion and Shear"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.1, page no. 9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\"\"\"\n",
+ "Find compressive stress and strain in the post\n",
+ "\"\"\"\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "#initialisation\n",
+ "\n",
+ "d_1 = 4 # inner diameter (inch)\n",
+ "d_2 = 4.5 #outer diameter (inch)\n",
+ "P = 26000 # pressure in pound\n",
+ "L = 16 # Length of cylinder (inch)\n",
+ "my_del = 0.012 # shortening of post (inch)\n",
+ "\n",
+ "#calculation\n",
+ "A = (math.pi/4)*((d_2**2)-(d_1**2)) #Area (inch^2)\n",
+ "s = P/A # stress\n",
+ "\n",
+ "print \"compressive stress in the post is \", round(s), \"psi\"\n",
+ "\n",
+ "e = my_del/L # strain\n",
+ "\n",
+ "print \"compressive strain in the post is %e\" %e"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "compressive stress in the post is 7789.0 psi\n",
+ "compressive strain in the post is 7.500000e-04\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.2, page no. 10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\"\"\"\n",
+ "formula for maximum stress & calculating maximum stress\n",
+ "\"\"\"\n",
+ "\n",
+ "import math \n",
+ "\n",
+ "#initialisation\n",
+ "W = 1500 # weight (Newton)\n",
+ "d = 0.008 #diameter(meter) \n",
+ "g = 77000 # Weight density of steel\n",
+ "L = 40 # Length of bar (m)\n",
+ "\n",
+ "#calculation\n",
+ "\n",
+ "A = (math.pi/4)*(d**2) # Area\n",
+ "s_max = (1500/A) + (g*L) # maximum stress\n",
+ "\n",
+ "#result\n",
+ "print \"Therefore the maximum stress in the rod is \", round(s_max,1), \"Pa\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Therefore the maximum stress in the rod is 32921551.8 Pa\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.3. page no. 26"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\"\"\"\n",
+ "calculating change in lenght of pipe, strain in pipe, increase in diameter & increase in wall thickness\n",
+ "\"\"\"\n",
+ "\n",
+ "import math \n",
+ "\n",
+ "#initialisation\n",
+ "d1 = 4.5 # diameter in inch\n",
+ "d2 = 6 # diameter in inch\n",
+ "A = (math.pi/4)*((d2**2)-(d1**2)) # Area\n",
+ "P = 140 # pressure in K\n",
+ "s = -P/A # stress (compression)\n",
+ "E = 30000 # young's modulus in Ksi\n",
+ "e = s/E # strain\n",
+ "\n",
+ "#calculation\n",
+ "\n",
+ "# Part (a)\n",
+ "my_del = e*4*12 # del = e*L \n",
+ "print \"Change in length of the pipe is\", round(my_del,3), \"inch\"\n",
+ "\n",
+ "# Part (b)\n",
+ "v = 0.30 # Poissio's ratio\n",
+ "e_ = -(v*e)\n",
+ "print \"Lateral strain in the pipe is %e\" %e_\n",
+ "\n",
+ "# Part (c)\n",
+ "del_d2 = e_*d2 \n",
+ "del_d1 = e_*d1\n",
+ "print \"Increase in the inner diameter is \", round(del_d1,6), \"inch\"\n",
+ "\n",
+ "# Part (d)\n",
+ "t = 0.75\n",
+ "del_t = e_*t\n",
+ "print \"Increase in the wall thicness is %f\" %del_t, \"inch\"\n",
+ "del_t1 = (del_d2-del_d1)/2 \n",
+ "print \"del_t1 = del_t\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Change in length of the pipe is -0.018 inch\n",
+ "Lateral strain in the pipe is 1.131768e-04\n",
+ "Increase in the inner diameter is 0.000509 inch\n",
+ "Increase in the wall thicness is 0.000085 inch\n",
+ "del_t1 = del_t\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.4, page no. 35"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\"\"\"\n",
+ "calculate average shear stress and compressive stress\n",
+ "\"\"\"\n",
+ "\n",
+ "import math \n",
+ "\n",
+ "#initialisation\n",
+ "d = 0.02 # diameter in m\n",
+ "t = 0.008 # thickness in m\n",
+ "A = math.pi*d*t # shear area\n",
+ "P = 110000 # prassure in Newton\n",
+ "\n",
+ "#calculation\n",
+ "A1 = (math.pi/4)*(d**2) # Punch area\n",
+ "t_aver = P/A # Average shear stress \n",
+ "\n",
+ "\n",
+ "print \"Average shear stress in the plate is \", t_aver, \"Pa\"\n",
+ "s_c = P/A1 # compressive stress\n",
+ "print \"Average compressive stress in the plate is \", s_c, \"Pa\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Average shear stress in the plate is 218838046.751 Pa\n",
+ "Average compressive stress in the plate is 350140874.802 Pa\n"
+ ]
+ }
+ ],
+ "prompt_number": 37
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Eample 1.5, page no. 36"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\"\"\"\n",
+ "calculate bearing stress, shear stress in pin,\n",
+ "bearing stress between pin and gussets,\n",
+ "shear stress in anchor bolts\n",
+ "\"\"\"\n",
+ "\n",
+ "import math \n",
+ "\n",
+ "#initialisation\n",
+ "\n",
+ "P = 12.0 # Pressure in K\n",
+ "t = 0.375 # thickness of wall in inch\n",
+ "theta = 40.0 # angle in degree\n",
+ "d_pin = 0.75 # diameter of pin in inch\n",
+ "t_G = 0.625 # thickness of gusset in inch\n",
+ "t_B = 0.375 #thickness of base plate in inch\n",
+ "d_b = 0.50 # diameter of bolt in inch\n",
+ "\n",
+ "#calculation\n",
+ "\n",
+ "#Part (a)\n",
+ "s_b1 = P/(2*t*d_pin) # bearing stress\n",
+ "print \"Bearing stress between strut and pin\", round(s_b1,1), \"ksi\"\n",
+ "\n",
+ "#Part (b)\n",
+ "t_pin = (4*P)/(2*math.pi*(d_pin**2)) # average shear stress in the \n",
+ "print \"Shear stress in pin is \", round(t_pin,1), \"ksi\"\n",
+ "\n",
+ "# Part (c)\n",
+ "s_b2 = P/(2*t_G*d_pin) # bearing stress between pin and gusset\n",
+ "print \"Bearing stress between pin and gussets is\", s_b2, \"ksi\"\n",
+ "\n",
+ "# Part (d)\n",
+ "s_b3 = (P*math.cos(math.radians(40))/(4*t_B*d_b)) # bearing stress between anchor bolt and base plate\n",
+ "print \"Bearing stress between anchor bolts & base plate\", round(s_b3,1), \"ksi\"\n",
+ "\n",
+ "# Part (e)\n",
+ "t_bolt = (4*math.cos(math.radians(40))*P)/(4*math.pi*(d_b**2)) # shear stress in anchor bolt\n",
+ "print \"Shear stress in anchor bolts is\", round(t_bolt,1), \"ksi\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Bearing stress between strut and pin 21.3 ksi\n",
+ "Shear stress in pin is 13.6 ksi\n",
+ "Bearing stress between pin and gussets is 12.8 ksi\n",
+ "Bearing stress between anchor bolts & base plate 12.3 ksi\n",
+ "Shear stress in anchor bolts is 11.7 ksi\n"
+ ]
+ }
+ ],
+ "prompt_number": 39
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.7, page no. 42"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\"\"\"\n",
+ "determine stress at various parts\n",
+ "\"\"\"\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "#initialisation\n",
+ "b1 = 1.5 # width of recmath.tangular crosssection in inch\n",
+ "t = 0.5 # thickness of recmath.tangular crosssection in inch\n",
+ "b2 = 3.0 # width of enlarged recmath.tangular crosssection in inch\n",
+ "d = 1.0 # diameter in inch\n",
+ "\n",
+ "#calculation\n",
+ "\n",
+ "# Part (a)\n",
+ "s_1 = 16000 # maximum allowable tensile stress in Psi\n",
+ "P_1 = s_1*t*b1 \n",
+ "print \"The allowable load P1 is\", P_1, \"lb\"\n",
+ "\n",
+ "# Part (b)\n",
+ "s_2 = 11000 # maximum allowable tensile stress in Psi\n",
+ "P_2 = s_2*t*(b2-d) \n",
+ "print \"allowable load P2 at this section is\", P_2, \"lb\"\n",
+ "\n",
+ "#Part (c)\n",
+ "s_3 = 26000 # maximum allowable tensile stress in Psi\n",
+ "P_3 = s_3*t*d \n",
+ "print \"The allowable load based upon bearing between the hanger and the bolt is\", P_3, \"lb\"\n",
+ "\n",
+ "# Part (d)\n",
+ "s_4 = 6500 # maximum allowable tensile stress in Psi\n",
+ "P_4 = (math.pi/4)*(d**2)*2*s_4 \n",
+ "print \"the allowable load P4 based upon shear in the bolt is\", round(P_4), \"lb\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The allowable load P1 is 12000.0 lb\n",
+ "allowable load P2 at this section is 11000.0 lb\n",
+ "The allowable load based upon bearing between the hanger and the bolt is 13000.0 lb\n",
+ "the allowable load P4 based upon shear in the bolt is 10210.0 lb\n"
+ ]
+ }
+ ],
+ "prompt_number": 42
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.8, page no. 46"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\"\"\"\n",
+ "calculating the cross sectional area \n",
+ "\"\"\"\n",
+ "\n",
+ "import math \n",
+ "\n",
+ "#initialisation\n",
+ "R_ah = (2700*0.8 + 2700*2.6)/2 # Horizontal component at A in N\n",
+ "R_ch = R_ah # Horizontal component at C in N\n",
+ "R_cv = (2700*2.2 + 2700*0.4)/3 # vertical component at C in N\n",
+ "R_av = 2700 + 2700 - R_cv # vertical component at A in N\n",
+ "R_a = math.sqrt((R_ah**2)+(R_av**2))\n",
+ "R_c = math.sqrt((R_ch**2)+(R_cv**2))\n",
+ "Fab = R_a # Tensile force in bar AB\n",
+ "Vc = R_c # Shear force acting on the pin at C\n",
+ "s_allow = 125000000 # allowable stress in tension \n",
+ "t_allow = 45000000 # allowable stress in shear\n",
+ "\n",
+ "#calculation\n",
+ "Aab = Fab / s_allow # required area of bar \n",
+ "Apin = Vc / (2*t_allow) # required area of pin\n",
+ "\n",
+ "\n",
+ "print \"Required area of bar is %f\" %Apin, \"m^2\"\n",
+ "d = math.sqrt((4*Apin)/math.pi) # diameter in meter\n",
+ "print \"Required diameter of pin is %f\" %d, \"m\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Required area of bar is 0.000057 m^2\n",
+ "Required diameter of pin is 0.008537 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file