summaryrefslogtreecommitdiff
path: root/Material_Science_by_S._L._Kakani_and_A._Kakani
diff options
context:
space:
mode:
authorTrupti Kini2016-08-26 23:30:24 +0600
committerTrupti Kini2016-08-26 23:30:24 +0600
commite05977ece06f8cd61b53adcff9febb2e443de861 (patch)
tree032a1bd0616e6338797e6ce9abd2e08f6b51319e /Material_Science_by_S._L._Kakani_and_A._Kakani
parent189c5cc9de1ac8d3e79f23c42ce8fe462e151825 (diff)
downloadPython-Textbook-Companions-e05977ece06f8cd61b53adcff9febb2e443de861.tar.gz
Python-Textbook-Companions-e05977ece06f8cd61b53adcff9febb2e443de861.tar.bz2
Python-Textbook-Companions-e05977ece06f8cd61b53adcff9febb2e443de861.zip
Added(A)/Deleted(D) following books
A Introduction_to_Thermal_Systems_Engineering:_Thermodynamics,_Fluid_Mechanics,_and_Heat_Transfe_by_Moran,_Shapiro,_Munson,_Dewitt/README.txt A Material_Science_by_S._L._Kakani_and_A._Kakani/README.txt A Material_Science_by_S._L._Kakani_and_A._Kakani/ch10.ipynb A Material_Science_by_S._L._Kakani_and_A._Kakani/ch11.ipynb A Material_Science_by_S._L._Kakani_and_A._Kakani/ch12.ipynb A Material_Science_by_S._L._Kakani_and_A._Kakani/ch13.ipynb A Material_Science_by_S._L._Kakani_and_A._Kakani/ch14.ipynb A Material_Science_by_S._L._Kakani_and_A._Kakani/ch15.ipynb A Material_Science_by_S._L._Kakani_and_A._Kakani/ch16.ipynb A Material_Science_by_S._L._Kakani_and_A._Kakani/ch18.ipynb A Material_Science_by_S._L._Kakani_and_A._Kakani/ch2.ipynb A Material_Science_by_S._L._Kakani_and_A._Kakani/ch3.ipynb A Material_Science_by_S._L._Kakani_and_A._Kakani/ch4.ipynb A Material_Science_by_S._L._Kakani_and_A._Kakani/ch5.ipynb A Material_Science_by_S._L._Kakani_and_A._Kakani/ch6.ipynb A Material_Science_by_S._L._Kakani_and_A._Kakani/ch7.ipynb A Material_Science_by_S._L._Kakani_and_A._Kakani/ch8.ipynb A Material_Science_by_S._L._Kakani_and_A._Kakani/ch9.ipynb A Material_Science_by_S._L._Kakani_and_A._Kakani/screenshots/10.png A Material_Science_by_S._L._Kakani_and_A._Kakani/screenshots/16.png A Material_Science_by_S._L._Kakani_and_A._Kakani/screenshots/7.png A Thermodynamics_by_K._M._Gupta/README.txt A Thermodynamics_by_K._M._Gupta/ch1.ipynb A Thermodynamics_by_K._M._Gupta/ch10.ipynb A Thermodynamics_by_K._M._Gupta/ch11.ipynb A Thermodynamics_by_K._M._Gupta/ch2.ipynb A Thermodynamics_by_K._M._Gupta/ch3.ipynb A Thermodynamics_by_K._M._Gupta/ch4.ipynb A Thermodynamics_by_K._M._Gupta/ch5.ipynb A Thermodynamics_by_K._M._Gupta/ch6.ipynb A Thermodynamics_by_K._M._Gupta/ch7.ipynb A Thermodynamics_by_K._M._Gupta/ch8.ipynb A Thermodynamics_by_K._M._Gupta/ch9.ipynb A Thermodynamics_by_K._M._Gupta/screenshots/1.png A Thermodynamics_by_K._M._Gupta/screenshots/2.png A Thermodynamics_by_K._M._Gupta/screenshots/3.png
Diffstat (limited to 'Material_Science_by_S._L._Kakani_and_A._Kakani')
-rw-r--r--Material_Science_by_S._L._Kakani_and_A._Kakani/README.txt10
-rw-r--r--Material_Science_by_S._L._Kakani_and_A._Kakani/ch10.ipynb65
-rw-r--r--Material_Science_by_S._L._Kakani_and_A._Kakani/ch11.ipynb163
-rw-r--r--Material_Science_by_S._L._Kakani_and_A._Kakani/ch12.ipynb105
-rw-r--r--Material_Science_by_S._L._Kakani_and_A._Kakani/ch13.ipynb65
-rw-r--r--Material_Science_by_S._L._Kakani_and_A._Kakani/ch14.ipynb403
-rw-r--r--Material_Science_by_S._L._Kakani_and_A._Kakani/ch15.ipynb197
-rw-r--r--Material_Science_by_S._L._Kakani_and_A._Kakani/ch16.ipynb70
-rw-r--r--Material_Science_by_S._L._Kakani_and_A._Kakani/ch18.ipynb104
-rw-r--r--Material_Science_by_S._L._Kakani_and_A._Kakani/ch2.ipynb516
-rw-r--r--Material_Science_by_S._L._Kakani_and_A._Kakani/ch3.ipynb923
-rw-r--r--Material_Science_by_S._L._Kakani_and_A._Kakani/ch4.ipynb285
-rw-r--r--Material_Science_by_S._L._Kakani_and_A._Kakani/ch5.ipynb465
-rw-r--r--Material_Science_by_S._L._Kakani_and_A._Kakani/ch6.ipynb328
-rw-r--r--Material_Science_by_S._L._Kakani_and_A._Kakani/ch7.ipynb209
-rw-r--r--Material_Science_by_S._L._Kakani_and_A._Kakani/ch8.ipynb241
-rw-r--r--Material_Science_by_S._L._Kakani_and_A._Kakani/ch9.ipynb155
-rw-r--r--Material_Science_by_S._L._Kakani_and_A._Kakani/screenshots/10.pngbin0 -> 54362 bytes
-rw-r--r--Material_Science_by_S._L._Kakani_and_A._Kakani/screenshots/16.pngbin0 -> 63326 bytes
-rw-r--r--Material_Science_by_S._L._Kakani_and_A._Kakani/screenshots/7.pngbin0 -> 66112 bytes
20 files changed, 4304 insertions, 0 deletions
diff --git a/Material_Science_by_S._L._Kakani_and_A._Kakani/README.txt b/Material_Science_by_S._L._Kakani_and_A._Kakani/README.txt
new file mode 100644
index 00000000..21e02a20
--- /dev/null
+++ b/Material_Science_by_S._L._Kakani_and_A._Kakani/README.txt
@@ -0,0 +1,10 @@
+Contributed By: Girish Vora
+Course: btech
+College/Institute/Organization: abbccus technology, Ahmedabad
+Department/Designation: Developer
+Book Title: Material Science
+Author: S. L. Kakani and A. Kakani
+Publisher: New Age International Publishers, New Delhi
+Year of publication: 2005
+Isbn: 81-224-1528-8
+Edition: 1 \ No newline at end of file
diff --git a/Material_Science_by_S._L._Kakani_and_A._Kakani/ch10.ipynb b/Material_Science_by_S._L._Kakani_and_A._Kakani/ch10.ipynb
new file mode 100644
index 00000000..a954cb7d
--- /dev/null
+++ b/Material_Science_by_S._L._Kakani_and_A._Kakani/ch10.ipynb
@@ -0,0 +1,65 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:8423f8dd8cef07dd1b306293d3f89231a94157a35ba4e1f68dddcd1c471e99b2"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 10 :\n",
+ "Heat Treatment"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 10.1 Page No : 343"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "N = 8;\t\t\t#ASTM grain size number\n",
+ "n = 2**(N-1);\t\t\t#Number of grains per inch square at a magnification\n",
+ "N_1 = n*100.*100;\t\t\t#Number of grains per inch square without magnification\n",
+ "\n",
+ "# Calculation\n",
+ "N_2 = N_1/(25.4)**2;\t\t\t#Number of grains per mm square without magnification\n",
+ "A_a = 1./(N_2);\t\t\t#Average area of each grain(in mm**2)\n",
+ "D = (A_a)**(1./2);\t\t\t#Average grain diameter(in mm)\n",
+ "\n",
+ "# Results\n",
+ "print 'Average grain diameter = %.3f mm'%D\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Average grain diameter = 0.022 mm\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Material_Science_by_S._L._Kakani_and_A._Kakani/ch11.ipynb b/Material_Science_by_S._L._Kakani_and_A._Kakani/ch11.ipynb
new file mode 100644
index 00000000..cf7a4c6a
--- /dev/null
+++ b/Material_Science_by_S._L._Kakani_and_A._Kakani/ch11.ipynb
@@ -0,0 +1,163 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:ccc34ac1a23df3ea87c02161eb6957101119525a84db5440299d3d3e0c490bb9"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 11 :\n",
+ "Deformation of Materials"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.1 Page No : 369"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "h_1 = 1;\n",
+ "k_1 = 1;\n",
+ "l_1 = 1;\n",
+ "#Miller indices of slip plane\n",
+ "h_2 = 1;\n",
+ "k_2 = -1;\n",
+ "l_2 = 1;\n",
+ "#Miller indices of stress plane\n",
+ "h_3 = 1;\n",
+ "k_3 = 1;\n",
+ "l_3 = 0;\n",
+ "\n",
+ "# Calculation\n",
+ "#Miller indices of slip direction\n",
+ "A = (h_1*h_2+k_1*k_2+l_1*l_2)/(((h_1**2+k_1**2+l_1**2)**(1./2))*((h_2**2+k_2**2+l_2**2)**(1./2)));\t\t\t#Value of math.cos(x) where x = angle between slip plane and stress plane\n",
+ "B = (h_1*h_3+k_1*k_3+l_1*l_3)/(((h_1**2+k_1**2+l_1**2)**(1./2))*((h_3**2+k_3**2+l_3**2)**(1./2)));\t\t\t#Value of math.cos(y) where y = angle between slip direction and stress direction\n",
+ "C = (1-A**2)**(1./2);\t\t\t#Value of math.sin(x)\n",
+ "stress = 3.5;\t\t\t#Applied Stress in Mpa\n",
+ "T_cr = stress*A*B*C;\t\t\t#Critical resolved shear stress(in MPa)\n",
+ "\n",
+ "# Results\n",
+ "print 'Critical resolved shear stress in = %.3f MPa'%T_cr\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Critical resolved shear stress in = 0.898 MPa\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.3 Page No : 370"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "D = 0.022;\t\t\t#Grain diameter(in mm)\n",
+ "d = D*10**(-3);\t\t\t#Grain diameter(in m)\n",
+ "K = 0.63;\t\t\t#Constant(in MNm**(-3/2))\n",
+ "\n",
+ "# Calculation\n",
+ "sigma_i = 80;\t\t\t#in MNm**-2\n",
+ "sigma_y = sigma_i+K*d**(-1./2);\t\t\t#Yield stress for a polycrystalline alloy\n",
+ "\n",
+ "# Results\n",
+ "print 'Yield stress for a polycrystalline alloy in = %.2f MN/m**2'%sigma_y\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Yield stress for a polycrystalline alloy in = 214.32 MN/m**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.4 Page No : 370"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "sigma_y1 = 120;\t\t\t#primary yield strength of polycrystalline material(in MN*m**-2)\n",
+ "sigma_y2 = 220;\t\t\t#increased yield strength of polycrystalline material(in MN*m**-2)\n",
+ "d_1 = 0.04*10**(-3);\t\t\t#primary grain diameter(in meter)\n",
+ "d_2 = 0.01*10**(-3);\t\t\t#grain diameter after decreasing(in meter)\n",
+ "\n",
+ "# Calculation\n",
+ "#sigma_y1 = sigma_i+K*(d_1)**(-1/2)\n",
+ "#sigma_y2 = sigma_i+K*(d_2)**(-1/2)\n",
+ "#putting the values and solving the equation\n",
+ "K = (220-120)/((d_2**(-1./2))-((d_1**(-1./2))));\t\t\t#consmath.tant(in MN*m(-3/2))\n",
+ "sigma_i = sigma_y1-K*(d_1)**(-1./2);\t\t\t#in MN*m**-2\n",
+ "d = 1./((10**4)*(256./645))**(1./2);\t\t\t#grain diameter for grain size ASTM 9(in mm)\n",
+ "D = d*10**(-3);\t\t\t #grain diameter for grain size ASTM 9(in meter)\n",
+ "sigma_y = sigma_i+K*(D)**(-1./2);\t\t\t#Yield stress for a polycrystalline alloy for grain size ASTM 9(in MN*m**-2)\n",
+ "\n",
+ "# Results\n",
+ "print 'Yield stress for a polycrystalline alloy for grain size ASTM 9 in = %.0f MN*m**-2'%round(sigma_y)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Yield stress for a polycrystalline alloy for grain size ASTM 9 in = 179 MN*m**-2\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Material_Science_by_S._L._Kakani_and_A._Kakani/ch12.ipynb b/Material_Science_by_S._L._Kakani_and_A._Kakani/ch12.ipynb
new file mode 100644
index 00000000..025ece08
--- /dev/null
+++ b/Material_Science_by_S._L._Kakani_and_A._Kakani/ch12.ipynb
@@ -0,0 +1,105 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:030c93395768b2f42836485175665cce8f1a2b5170495494504b4c018dda5636"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 12 :\n",
+ "Oxidation and Corrosion"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.1 Page No : 395"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "D = 320*10**-3;\t\t\t#in meter\n",
+ "L = 1;\t\t\t#in meter\n",
+ "\n",
+ "# Calculation\n",
+ "A = math.pi*D*L;\t\t\t#Surface area in meter**2\n",
+ "l = (200/A);\n",
+ "\n",
+ "# Results\n",
+ "print 'the distance at which magnisium anode capable of giving 2MA = %.0f meters'%l\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the distance at which magnisium anode capable of giving 2MA = 199 meters\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.2 Page No : 396"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "W = 0.0243;\t\t\t#1 mole of magnesium weight(in Kg)\n",
+ "C = 2*96490;\t\t\t#used charge (in A-s)\n",
+ "A = 15*10**(-3);\t\t\t#current density (in A/metre2)\n",
+ "t = 10;\t\t\t#time (in years)\n",
+ "T = 10*365*24*3600;\t\t\t#time (in sec)\n",
+ "\n",
+ "# Calculation\n",
+ "#amount of magnesium required = charge required per m2 of hull surface for a design life of 10 years/(used charge for anode)\n",
+ "Mg_required = W*A*T/C;\t\t\t#magnesium required per square meter of the hull surface for a design life of 10 years\n",
+ "\n",
+ "# Results\n",
+ "print 'magnesium required per square meter of the hull surface for a design life of 10 years = %.1f Kg/m2'%Mg_required\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "magnesium required per square meter of the hull surface for a design life of 10 years = 0.6 Kg/m2\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Material_Science_by_S._L._Kakani_and_A._Kakani/ch13.ipynb b/Material_Science_by_S._L._Kakani_and_A._Kakani/ch13.ipynb
new file mode 100644
index 00000000..8e0b482d
--- /dev/null
+++ b/Material_Science_by_S._L._Kakani_and_A._Kakani/ch13.ipynb
@@ -0,0 +1,65 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:b68069a86d982f0fbb7f292544735818ed7473431281a6c20f1e7336e739e90b"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 13 :\n",
+ "Thermal and Optical\n",
+ "Properties of Materials"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 13.1 Page No : 417"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables \n",
+ "alpha = 20*10**(-6);\t\t\t#linear coefficient of thermal expansion per\u00b0C\n",
+ "Sigma = -(172);\t\t\t#compressive stress MPa\n",
+ "T = 20;\t\t\t#Temprature at which rod is stress free(in \u00b0C)\n",
+ "\n",
+ "# Calculation\n",
+ "E = 100*10**3;\t\t\t#modulus of elasticity (in MPa)\n",
+ "T_f = T-(Sigma/(alpha*E));\t\t\t#maximum temperature the rod may be heated without exceeding a compressive stress of 172 MPa\n",
+ "\n",
+ "# Results\n",
+ "print 'maximum temperature(in \u00b0C) the rod may be heated without exceeding a compressive stress of 172 MPa = %.0f \u00b0C'%T_f\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "maximum temperature(in \u00b0C) the rod may be heated without exceeding a compressive stress of 172 MPa = 106 \u00b0C\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Material_Science_by_S._L._Kakani_and_A._Kakani/ch14.ipynb b/Material_Science_by_S._L._Kakani_and_A._Kakani/ch14.ipynb
new file mode 100644
index 00000000..caa4b3ba
--- /dev/null
+++ b/Material_Science_by_S._L._Kakani_and_A._Kakani/ch14.ipynb
@@ -0,0 +1,403 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:c3307fcf5401111c18823817fd228cc6b9116793515454b94be6aa8bf3b80a0e"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 14 :\n",
+ "Electrical and Magnetic\n",
+ "Properties of Materials"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 14.1 Page No : 443"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "l = 100;\t\t\t#length of wire\n",
+ "p = 2.66*10**(-8);\t\t\t#resistivity\n",
+ "\n",
+ "# Calculation\n",
+ "A = 3*10**(-6);\t\t\t#cross sectional area\n",
+ "R = p*l/A;\t\t\t#resismath.tance of an aluminium wire\n",
+ "\n",
+ "# Results\n",
+ "print 'resistance of an aluminium wire = %.3e Ohm'%R\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "resistance of an aluminium wire = 8.867e-01 Ohm\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 14.2 Page No : 443"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "R_Cu = 1.56;\t\t\t#Resistivity of pure copper(in micro-ohm-cm)\n",
+ "R_CuNi = 4.06;\t\t\t#Resistivity of Cu containing two atomic percent (in micro-ohm-cm)\n",
+ "R_Ni = (R_CuNi-R_Cu)/2;\t\t\t#Increase in resistivity due to one atomic % Ni\n",
+ "\n",
+ "# Calculation\n",
+ "R_CuAg = 1.7;\t\t\t#resistivity of copper, containing one atomic percent silver (in micro-ohm-cm)\n",
+ "R_Ag = R_CuAg-R_Cu;\t\t\t#Increase in resistivity due to one atomic % Ag\n",
+ "R_CuNiAg = R_Cu+R_Ni+3*R_Ag;\t\t\t#Resistivity of copper alloy containing one atomic percent Ni and 3 atomic percent Ag\n",
+ "\n",
+ "# Results\n",
+ "print 'Resistivity of copper alloy containing one atomic percent Ni and 3 atomic percent Ag = %.2f micro-ohm-cm'%R_CuNiAg\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Resistivity of copper alloy containing one atomic percent Ni and 3 atomic percent Ag = 3.23 micro-ohm-cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 14.3 Page No : 443"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "R_Cu = 1.8*10**(-8);\t\t\t#resistivity of pure copper at room temperature \n",
+ "R_CuNi = 7*10**(-8);\t\t\t#resistivity of Cu 4% Ni alloy at room temperature \n",
+ "\n",
+ "# Calculation\n",
+ "R_Ni = (R_CuNi-R_Cu)/4;\t\t\t#resistivity due to Impurity scattering per % of Ni\n",
+ "\n",
+ "# Results\n",
+ "print 'resistivity due to impurity scattering per percent of Ni in the Cu lattice = %.1e ohm-meter'%R_Ni\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "resistivity due to impurity scattering per percent of Ni in the Cu lattice = 1.3e-08 ohm-meter\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 14.4 Page No : 455"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "C = 10**(-9);\t\t\t#capacitance(in F)\n",
+ "d = 2*10**(-3);\t\t\t#distance of separation in a parallel plate condenser\n",
+ "E_o = 8.854*10**(-12);\t\t\t#dielectric consmath.tant\n",
+ "\n",
+ "# Calculation\n",
+ "A = (10*10**(-3))*(10*10**(-3));\t\t\t#area of parallel plate condenser\n",
+ "#C = E_o*E_r*A/d\n",
+ "E_r = C*d/(E_o*A);\t\t\t#Relative dielectric constant\n",
+ "\n",
+ "# Results\n",
+ "print 'Relative dielectric constant of a barium titanate crystal %.0f'%(E_r)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Relative dielectric constant of a barium titanate crystal 2259\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 14.5 Page No : 456"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "q = 1.6*10**(-19);\t\t\t#charge (in C)\n",
+ "d_1 = 0.06\t\t\t#shift of the titanium ion from the body centre (in \u00c5)\n",
+ "d_2 = 0.08\t\t\t#shift of the oxygen anions of the side faces (in \u00c5)\n",
+ "d_3 = 0.06\t\t\t#shift of the oxygen anions of the top and bottom face (in \u00c5) \n",
+ "\n",
+ "# Calculation\n",
+ "D_1 = d_1*10**(-10);\t\t\t#shift of the titanium ion from the body centre (in m)\n",
+ "D_2 = d_2*10**(-10);\t\t\t#shift of the oxygen anions of the side faces (in m)\n",
+ "D_3 = d_3*10**(-10);\t\t\t#shift of the oxygen anions of the top and bottom face (in m)\n",
+ "U_1 = 4*q*D_1;\t\t\t#dipole moment due to two O2\u2013 ions on the four side faces(in C-m)\n",
+ "U_2 = 2*q*D_2;\t\t\t#dipole moment due to one O2\u2013 on top and bottom(in C-m)\n",
+ "U_3 = 4*q*D_3;\t\t\t#dipole moment due to one Ti4+ ion at body centre(in C-m)\n",
+ "U = U_1+U_2+U_3;\t\t\t#Total dipole moment(in C-m)\n",
+ "V = 4.03*((3.98)**2)*10**(-30);\t\t\t#volume(in m3)\n",
+ "P = U/V;\t\t\t#polarization the total dipole moments per unit volume\n",
+ "\n",
+ "# Results\n",
+ "print 'polarization = %.2f C/m**2'%P\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "polarization = 0.16 C/m**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 14.6 Page No : 478"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "V = ((2.87)**3)*10**(-30)\t\t\t#Volume of unit cell of BCC iron (in m**3)\n",
+ "N = 2.\t\t\t#Number of atoms in the unit cell\n",
+ "\n",
+ "# Calculation\n",
+ "M = 1750.*10**3;\t\t\t#saturation magnetization of BCC Iron A/m\n",
+ "M_Net = V*M*(1./N)\t\t\t#net magnetic moment per atom\n",
+ "Bohr_magneton = 9.273*10**(-24);\t\t\t#Bohr_magneton (magnetic moment) in A/m2\n",
+ "M_moment = M_Net/Bohr_magneton;\t\t\t#The magnetic moment (in units of U_B)\n",
+ "\n",
+ "# Results\n",
+ "print 'The magnetic moment (in units of U_B) = %.1f'%M_moment\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The magnetic moment (in units of U_B) = 2.2\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 14.7 Page No : 479"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "p = 8.90*10**6;\t\t\t#density of nickel in gm/m3. \n",
+ "N_A = 6.023*10**23;\t\t\t#Avogadro\u2019s number atoms/mol\n",
+ "At_w = 58.71;\t\t\t#Atomic weight of Ni in gm/mol\n",
+ "\n",
+ "# Calculation\n",
+ "N = p*N_A/At_w;\t\t\t#number of atoms/m3\n",
+ "U_B = 9.273*10**(-24);\t\t\t#Bohr_magneton\n",
+ "M_s = 0.60*U_B*N;\t\t\t#saturation magnetization\n",
+ "pi = 22./7;\n",
+ "U_o = 4*pi*10**(-7);\t\t\t#magnetic consmath.tant\n",
+ "B_s = U_o*M_s;\t\t\t#Saturation flux density\n",
+ "\n",
+ "# Results\n",
+ "print 'the saturation magnetization = %.1e'%M_s\n",
+ "print 'Saturation flux density = %.2f'%B_s\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the saturation magnetization = 5.1e+05\n",
+ "Saturation flux density = 0.64\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 14.8 Page No : 479"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "#Each cubic unit cell of ferrous ferric oxide contains 8 Fe2+ and 16 Fe3+ ions and\n",
+ "n_b = 32;\t\t\t#\n",
+ "U_B = 9.273*10**(-24);\t\t\t#Bohr_magneton\n",
+ "\n",
+ "# Calculation\n",
+ "a = 0.839*10**(-9);\t\t\t#the unit cell edge length in m\n",
+ "V = a**3;\t\t\t#volume(in m3)\n",
+ "M_s = n_b*U_B/V;\t\t\t#the saturation magnetization\n",
+ "\n",
+ "# Results\n",
+ "print 'the saturation magnetization = %.0e A/m'%M_s\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the saturation magnetization = 5e+05 A/m\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 14.9 Page No : 479"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math \n",
+ "\n",
+ "\n",
+ "# Variables\n",
+ "#hysteresis loss (Ph) and the induced emf loss (Pe) are proportional to the frequency\n",
+ "#Pe is proportional to the square of the induced emf (Pe)\n",
+ "#Pe + Ph = 750 W (at 25 Hz)\n",
+ "#4Pe + 2Ph = 2300 W(at 50Hz)\n",
+ "#solving equation\n",
+ "P_e = 800./2;\t\t\t#induced emf loss \n",
+ "\n",
+ "# Calculation\n",
+ "I_d = 4*P_e;\t\t\t#The eddy current loss at the normal voltage and frequency\n",
+ "\n",
+ "# Results\n",
+ "print 'The eddy current loss at the normal voltage and frequency = %.0f W'%I_d\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The eddy current loss at the normal voltage and frequency = 1600 W\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Material_Science_by_S._L._Kakani_and_A._Kakani/ch15.ipynb b/Material_Science_by_S._L._Kakani_and_A._Kakani/ch15.ipynb
new file mode 100644
index 00000000..80dc931f
--- /dev/null
+++ b/Material_Science_by_S._L._Kakani_and_A._Kakani/ch15.ipynb
@@ -0,0 +1,197 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:ba1924948de9c5df666fb8372fa076fb175eef8afac1d23c28cb6aaf92d05c98"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 15 :\n",
+ "Semiconductors"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 15.1 Page No : 520"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "U_n = 1350.\t\t\t#mobility of electron in cm2/volt-sec \n",
+ "U_h = 480.\t\t\t#hole mobility in cm2/volt-sec\n",
+ "\n",
+ "# Calculation\n",
+ "Sigma = 1.072*10**10\t\t\t#density of electron hole pair per cc at 300\u00b0K for a pure silicon crystal\n",
+ "e = 1.6*10**(-19);\t\t\t#charge on the electron in C\n",
+ "Sigma_i = Sigma*e*(U_n+U_h);\t\t\t#Conductivity of pure silicon crystal\n",
+ "p_i = 1/(Sigma_i);\t\t\t#Resistivity of silicon crystal in Ohm-cm\n",
+ "P_i = p_i*10**(-2);\t\t\t#Resistivity of silicon crystal in Ohm-m\n",
+ "\n",
+ "# Results\n",
+ "print 'Conductivity of pure silicon crystal = %.2e mho/cm'%Sigma_i\n",
+ "print 'Resistivity of silicon crystal = %.2e Ohm-m'%P_i\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Conductivity of pure silicon crystal = 3.14e-06 mho/cm\n",
+ "Resistivity of silicon crystal = 3.19e+03 Ohm-m\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 15.2 Page No : 521"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "U = 1200;\t\t\t#electron mobility in cm2/Volt-sec\n",
+ "e = 1.6*10**(-19);\t\t\t#charge on the electron in C\n",
+ "\n",
+ "# Calculation\n",
+ "n = 10**13;\t\t\t#concentration of phosphorus\n",
+ "sigma = U*e*n;\t\t\t#conductivity of crystal in mho/cm\n",
+ "p_i = 1/sigma;\t\t\t#resistivity of silicon wafer if all donor atom are active\n",
+ "\n",
+ "# Results\n",
+ "print 'resistivity of silicon wafer if all donor atom are active is %.1e ohm-cm'%p_i\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "resistivity of silicon wafer if all donor atom are active is 5.2e+02 ohm-cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 15.3 Page No : 521"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "U_n = 3900\t\t\t#mobility of electron in cm2/volt-sec \n",
+ "U_h = 1900\t\t\t#hole mobility in cm2/volt-sec\n",
+ "n_i = 2.5*10**13;\t\t\t#concentration of electron\n",
+ "u_n = U_n*10**(-4);\t\t\t#mobility of electron in m2/volt-sec \n",
+ "u_h = U_h*10**(-4);\t\t\t#hole mobility in m2/volt-sec\n",
+ "e = 1.6*10**(-19);\t\t\t#charge on the electron in C\n",
+ "\n",
+ "# Calculation\n",
+ "Sigma_i = n_i*e*(u_n+u_h)*10**6;\t\t\t#Conductivity\n",
+ "p_i = 1/(Sigma_i);\t\t\t#resistivity of intrinsic germanium rod\n",
+ "l = 1*10**(-2);\t\t\t#length of germanium rod in m\n",
+ "w = 1*10**(-3);\t\t\t#width of germanium rod in m\n",
+ "t = 1*10**(-3);\t\t\t#thick of germanium rod in m\n",
+ "A = w*t;\t\t\t#Area of cross section in m2\n",
+ "R = p_i*l/A;\t\t\t#Resistance of an intrinsic germanium rod in Ohm\n",
+ "\n",
+ "# Results\n",
+ "print 'Resistance of an intrinsic germanium rod is %.2f K-Ohm'%(R/10**3)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Resistance of an intrinsic germanium rod is 4.31 K-Ohm\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 15.4 Page No : 521"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "N_a = 1.1*10**20;\t\t\t#acceptor density in atoms/m3\n",
+ "n_i = 2.5*10**19;\t\t\t#concentration of majority carrier per m3 \n",
+ "\n",
+ "# Calculation\n",
+ "n_p = (n_i**2)/N_a;\t\t\t#intrinsic density \n",
+ "R = n_p/n_i;\t\t\t#Ratio of n_p and n_i\n",
+ "\n",
+ "# Results\n",
+ "print 'n_p/n_i = %.2f'%R\n",
+ "\n",
+ "# rounding off error"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "n_p/n_i = 0.23\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Material_Science_by_S._L._Kakani_and_A._Kakani/ch16.ipynb b/Material_Science_by_S._L._Kakani_and_A._Kakani/ch16.ipynb
new file mode 100644
index 00000000..3588418c
--- /dev/null
+++ b/Material_Science_by_S._L._Kakani_and_A._Kakani/ch16.ipynb
@@ -0,0 +1,70 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:56faf14394c3ea1277cb1f85c7bc70faefc404ada370b067ab1e7cf4d70ea9ba"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 16 :\n",
+ "Superconductivity and\n",
+ "Superconducting Materials"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 16.1 Page No : 551"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "T_c = 4.2;\t\t\t#critical temperature of mercury\n",
+ "k = 1.4*10**(-23);\t\t\t#\n",
+ "e = 1.6*10**(-19);\t\t\t#charge on the electron \n",
+ "\n",
+ "# Calculation\n",
+ "E_g = 3*k*T_c;\t\t\t#energy gap (in Joule)\n",
+ "E = E_g/e;\t\t\t#energy gap (in electron volt)\n",
+ "h = 6.6*10**(-34)\t\t\t# in J-s\n",
+ "c = 3*10**8;\t\t\t#in m/s\n",
+ "wavelength = h*c/E_g;\t\t\t#wavelength of a photon (in m)\n",
+ "\n",
+ "# Results\n",
+ "print 'energy gap = %.1e ev'%E\n",
+ "print 'wavelength of a photon = %.1e m'%wavelength\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "energy gap = 1.1e-03 ev\n",
+ "wavelength of a photon = 1.1e-03 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Material_Science_by_S._L._Kakani_and_A._Kakani/ch18.ipynb b/Material_Science_by_S._L._Kakani_and_A._Kakani/ch18.ipynb
new file mode 100644
index 00000000..304b44ec
--- /dev/null
+++ b/Material_Science_by_S._L._Kakani_and_A._Kakani/ch18.ipynb
@@ -0,0 +1,104 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:c178e1bd9fc41dc391bdd628b47b12bf3cc848e75815d75ccf67815a215adacd"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 18 :\n",
+ "Composites"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 18.1 Page No : 610"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "E_f = 69;\t\t\t#modulus of elasticity in GPa\n",
+ "V_f = 40./100;\t\t\t#Volume of glass fibres %\n",
+ "E_m = 3.4;\t\t\t#modulus (in GPa)\n",
+ "V_m = 60./100;\t\t\t#Volume of polyester remath.sin %\n",
+ "\n",
+ "# Calculation\n",
+ "E_cl = E_m*V_m+E_f*V_f;\t\t\t#modulus of elasticity (in Gpa)\n",
+ "\n",
+ "# Results\n",
+ "print 'Modulus of elasticity is %.0f Gpa'%(E_cl)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Modulus of elasticity is 30 Gpa\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 18.2 Page No : 611"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "E_f = 69;\t\t\t#modulus of elasticity in GPa\n",
+ "V_f = 40./100;\t\t\t#Volume of glass fibres %\n",
+ "E_m = 3.4;\t\t\t#modulus (in GPa)\n",
+ "V_m = 60./100;\t\t\t#Volume of polyester remath.sin %\n",
+ "\n",
+ "# Calculation\n",
+ "E_cl = E_m*E_f/(E_m*V_f+E_f*V_m);\t\t\t#modulus of elasticity when the stress is applied perpendicular to the direction of the fibre alignment(in Gpa)\n",
+ "\n",
+ "# Results\n",
+ "print 'modulus of elasticity when the stress is applied perpendicular to the direction of the fibre alignment = %.1f Gpa'%E_cl\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "modulus of elasticity when the stress is applied perpendicular to the direction of the fibre alignment = 5.5 Gpa\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Material_Science_by_S._L._Kakani_and_A._Kakani/ch2.ipynb b/Material_Science_by_S._L._Kakani_and_A._Kakani/ch2.ipynb
new file mode 100644
index 00000000..4478311a
--- /dev/null
+++ b/Material_Science_by_S._L._Kakani_and_A._Kakani/ch2.ipynb
@@ -0,0 +1,516 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 2 : Atomic structure and electronic configuration"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.1 Page No : 32"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "distance of the closest approach alpha particles from the copper nucleus(in meter) = 1.668e-14\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variables\n",
+ "Eg_k = 5.; #kinetic energy of alpha particles(in MeV)\n",
+ "Eg_K = 5.*(10**6)*1.6*(10**-19); #kinetic energy of alpha particles(in J)\n",
+ "mv2 = 2.*Eg_K;\n",
+ "pi = 22./7;\n",
+ "phi = 180.; #firing angle\n",
+ "Z = 29.; #Atomic number\n",
+ "\n",
+ "# Calculation\n",
+ "e = 1.6*(10**-19);\t\t\t#electron charge(in C)\n",
+ "Eo = 8.85*10**-12;\t\t\t#permittivity of free space\n",
+ "d = (Z*e**2/(2*pi*Eo*mv2))*(1+1)\t\t\t#;\n",
+ "\n",
+ "# Results\n",
+ "print 'distance of the closest approach alpha particles from the copper nucleus(in meter) = %.3e'%d\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.2 Page No : 33"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "first orbit radius of hydrogen atom(in m) = 5.3077e-11\n",
+ "Orbital frequency of electron(in Hz) = 6.5407e+15\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "e = 1.6*10**(-19);\t\t\t#electron charge(in C)\n",
+ "m = 9.1*10**(-31);\t\t\t#mass of electron(in Kg)\n",
+ "E_o = 8.854*10**(-12);\t\t\t#permittivity of free space\n",
+ "h = 6.625*10**(-34);\t\t\t#Planck constant\n",
+ "n = 1;\t\t\t#Orbit number\n",
+ "Z = 1;\t\t\t#atomic number\n",
+ "pi = 22./7;\n",
+ "\n",
+ "# Calculation and Results\n",
+ "r_1 = (E_o*n**2*h**2)/(pi*m*Z**2*e**2);\t\t\t#first orbit radius of hydrogen atom\n",
+ "print 'first orbit radius of hydrogen atom(in m) = %.4e'%r_1\n",
+ "Freq = m*(Z**2)*(e**4)/(4*(E_o**2)*(n**3)*h**3);\t\t\t#\n",
+ "print 'Orbital frequency of electron(in Hz) = %.4e'%Freq\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.3 Page No : 33"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "radius of the second bohr orbit in a math.singly ionized helium atom(in A) = 1.058\n"
+ ]
+ }
+ ],
+ "source": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "Z_1 = 1;\t\t\t#atomic number for hydrogen\n",
+ "n_1 = 1;\t\t\t#first orbit\n",
+ "r_1 = 0.529;\t\t\t#radius of first orbit of electron for hydrogen \n",
+ "Z_2 = 2;\t\t\t#atomic number for helium\n",
+ "n_2 = 2;\t\t\t#second orbit\n",
+ "\n",
+ "# Calculation\n",
+ "k = r_1*Z_1/n_1;\n",
+ "r_2 = k*((n_2)**2)/Z_2;\t\t\t#radius of first orbit of electron for helium\n",
+ "\n",
+ "# Results\n",
+ "print 'radius of the second bohr orbit in a math.singly ionized helium atom(in A) = ',r_2\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.4 Page No : 33"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "ratio of energy released = 1.1852\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "n_1 = 1;\t\t\t#first orbit\n",
+ "n_2 = 2;\t\t\t#second orbit\n",
+ "n_3 = 3;\t\t\t#third orbit\n",
+ "\n",
+ "# Calculation\n",
+ "#E_1 = -13.6*(Z**2)/(1**2);\n",
+ "#E_2 = -13.6*(Z**2)/(2**2);\n",
+ "#E_3 = -13.6*(Z**2)/(3**2);\n",
+ "#E_3-E_1 = -13.6*(Z**2)*(-8/9);\n",
+ "#E_2-E_1 = -13.6*(Z**2)*(-3/4);\n",
+ "E_1 = -13.6/(1**2);\t\t\t#energy of electron in the first bohr orbit of an atom\n",
+ "E_2 = -13.6/(2**2);\t\t\t#energy of electron in the second bohr orbit of an atom\n",
+ "E_3 = -13.6/(3**2);\t\t\t#energy of electron in the third bohr orbit of an atom\n",
+ "\n",
+ "# Results\n",
+ "print 'ratio of energy released = %.4f'%((E_3-E_1)/(E_2-E_1))\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.5 Page No : 34"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "revolutions per second of an electron in the bohr orbit of hydrogen atom = 7.516e+15\n"
+ ]
+ }
+ ],
+ "source": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "m = 9.1*10**(-31);\t\t\t#electron mass (in Kg)\n",
+ "Z = 1;\t\t\t#atomic number\n",
+ "e = 1.6*10**(-19);\t\t\t#electron charge(in C)\n",
+ "E_o = 8.25*10**(-12);\t\t\t#permittivity of free space\n",
+ "n = 1;\t\t\t#first bohr orbit\n",
+ "\n",
+ "# Calculation\n",
+ "h = 6.63*10**(-34);\t\t\t#planck consmath.tant\n",
+ "R_ps = m*(e**4)/(4*(E_o**2)*(h**3));\t\t\t#number of revolutions per second\n",
+ "\n",
+ "# Results\n",
+ "print 'revolutions per second of an electron in the bohr orbit of hydrogen atom = %.3e'%R_ps\n",
+ "\n",
+ "# rounding off error"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.6 Page No : 35"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "orbital frequency of an electron in the first bohr orbit in a hydrogen atom(in Hz) = 6.532e+15\n"
+ ]
+ }
+ ],
+ "source": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "n = 1.;\t\t\t#first bohr orbit\n",
+ "Z = 1.;\t\t\t#atomic number\n",
+ "\n",
+ "# Calculation\n",
+ "m = 9.1*10**(-31);\t\t\t#electron mass in Kg.\n",
+ "e = 1.6*10**(-19);\t\t\t#electron charge(in C)\n",
+ "E_o = 8.85*10**(-12);\t\t\t#permittivity of free space\n",
+ "h = 6.63*10**(-34);\t\t\t#planck constant\n",
+ "v_n = m*(Z**2)*(e**4)/(4*(E_o**2)*(h**3)*(n**3));\t\t\t#orbital frequency of an electron in the first bohr orbit in a hydrogen atom\n",
+ "\n",
+ "# Results\n",
+ "print 'orbital frequency of an electron in the first bohr orbit in a hydrogen atom(in Hz) = %.3e'%v_n\n",
+ "\n",
+ "# rounding off error"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.7 Page No : 35"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Total energy in = -13.6 eV\n",
+ "kinetic energy in = 13.6 eV\n",
+ "potential energy in = -27.2 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "m = 9.11*10**-31;\t\t\t#mass of electron(in Kg)\n",
+ "Z = 1; \t\t\t#atomic number\n",
+ "n = 1;\t\t\t #first bohr orbit\n",
+ "\n",
+ "# Calculation\n",
+ "E_o = 8.854*10**-12;\t\t\t#permittivity of free space\n",
+ "h = 6.625*10**-34;\t\t\t#planck consmath.tant\n",
+ "e = 1.6*10**-19;\t\t\t#electron charge(in C)\n",
+ "E_k = (m*(Z**2)*(e**4))/(8*(E_o**2)*(n**2)*(h**2));\t\t\t#Kinetic energy(in joule)\n",
+ "E = E_k/e;\t\t\t#Kinetic energy(in eV)\n",
+ "E_t = -13.6*(Z**2/n**2);\t\t\t#Total Energy(in eV)\n",
+ "E_p = E_t-E;\t\t\t#Potential energy(in eV)\n",
+ "\n",
+ "# Results\n",
+ "print 'Total energy in = %.1f eV'%E_t\n",
+ "print 'kinetic energy in = %.1f eV'%E\n",
+ "print 'potential energy in = %.1f eV'%E_p\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.8 Page No : 35"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "velocity of electron in hydrogen atom in bohr first orbit(in meter/sec) = 2.189e+06\n"
+ ]
+ }
+ ],
+ "source": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "h = 6.626*10**-34;\t\t\t#planck consmath.tant\n",
+ "E_o = 8.825*10**-12;\t\t\t#permittivity of free space\n",
+ "e = 1.6*10**-19;\t\t\t#electron charge(in C)\n",
+ "n = 1;\t\t\t#first bohr orbit\n",
+ "Z = 1;\t\t\t#atomic number\n",
+ "\n",
+ "# Calculation\n",
+ "v = Z*(e**2)/(2*E_o*n*h);\t\t\t#velocity of electron in hydrogen atom in bohr first orbit\n",
+ "\n",
+ "# Results\n",
+ "print 'velocity of electron in hydrogen atom in bohr first orbit(in meter/sec) = %.3e'%v\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.9 Page No : 35"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "principal quntum number when 10.2 eV energy excites electron = 2\n",
+ "wavelength of radiation when 10.2 eV energy excites electron(in A) = 1216\n",
+ "principal quntum number when 12.09 eV energy excites electron = 3\n",
+ "wavelength of radiation when 12.09 eV energy excites electron in = 1026 A\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "\n",
+ "import math \n",
+ "\n",
+ "\n",
+ "# Variables\n",
+ "n_1 = 1.;\t\t\t#electron excited from ground state\n",
+ "h = 6.62*10**-34;\t\t\t#Planck consmath.tant\n",
+ "c = 3.*10**8;\t\t\t#speed of light\n",
+ "E_o = 8.825*10**-12;\t\t\t#permittivity of free space\n",
+ "e = 1.6*10**-19;\t\t\t#electron charge(in C)\n",
+ "m = 9.11*10**-31;\t\t\t#mass of electron(in Kg)\n",
+ "E_1 = 10.2;\t\t\t#energy excites the hydrogen from ground level(in eV)\n",
+ "\n",
+ "# Calculation and Results\n",
+ "K = m*e**4/(8*(E_o**2)*(h**2))\t\t\t#in joule\n",
+ "K_e = K/e;\t\t\t#in eV\n",
+ "#E_1 = K_e*((1/n_1**2)-(1/n**2))\n",
+ "#1/(n**2) = 1/(n_1**2)-E_1/K_e\n",
+ "#n**2 = 1/(1/(n_1**2)-E_1/K_e)\n",
+ "n = (1/(1/(n_1**2)-E_1/K_e))**(1./2);\t\t\t#principal quntum number when 10.2 eV energy excites electron\n",
+ "print 'principal quntum number when 10.2 eV energy excites electron = %.f'%(n)\n",
+ "\n",
+ "W_1 = h*c/(E_1*e)*10**10;\t\t\t#wavelength of radiation when 10.2 eV energy excites electron\n",
+ "print 'wavelength of radiation when 10.2 eV energy excites electron(in A) = %d'%W_1\n",
+ "\n",
+ "E_2 = 12.09;\t\t\t#energy excites the hydrogen from ground level(in eV)\n",
+ "n_2 = (1./(1./(n_1**2)-E_2/K_e))**(1./2);\t\t\t#principal quntum number when 12.09 eV energy excites electron\n",
+ "W_2 = h*c/(E_2*e)*10**10;\t\t\t#wavelength of radiation when 12.09 eV energy excites electron\n",
+ "print 'principal quntum number when 12.09 eV energy excites electron = %.f'%(n_2)\n",
+ "print 'wavelength of radiation when 12.09 eV energy excites electron in = %d A'%W_2\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.13 Page No : 58"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "weight of one atom in 1.055e-22 gm\n",
+ "weight of one proton in 1.675e-24 gm\n"
+ ]
+ }
+ ],
+ "source": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "At_w = 63.54;\t\t\t#atomic weight of copper\n",
+ "N = 6.023*10**23;\t\t\t#avogadro's number\n",
+ "\n",
+ "# Calculation\n",
+ "W_a = At_w/N;\t\t\t#weight of one atom(in gm)\n",
+ "W_p = W_a/63;\t\t\t#weight of one proton(in gm)\n",
+ "\n",
+ "# Results\n",
+ "print 'weight of one atom in %.3e gm'%W_a\n",
+ "print 'weight of one proton in %.3e gm'%W_p\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.15 Page No : 59"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "percentage of Si in Copper silicide Cu_5_Si is = 8.12 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "Atw_Cu = 63.54;\t\t\t#atomic weight of copper\n",
+ "Atw_Si = 28.09;\t\t\t#atomic weight of silicon\n",
+ "\n",
+ "# Calculation\n",
+ "# 5 atoms of copper working in Cu_5_Si\n",
+ "Tw_Cu = 5*Atw_Cu;\t\t\t#total weight of copper used in copper silicide\n",
+ "Tw_Si = Atw_Si;\t\t\t#total weight of silicon used in copper silicide\n",
+ "Percentage = (Tw_Si/(Tw_Cu+Tw_Si))*100;\t\t\t#percentage of Si in Copper silicide\n",
+ "\n",
+ "# Results\n",
+ "print 'percentage of Si in Copper silicide Cu_5_Si is = %.2f %%'%Percentage\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Material_Science_by_S._L._Kakani_and_A._Kakani/ch3.ipynb b/Material_Science_by_S._L._Kakani_and_A._Kakani/ch3.ipynb
new file mode 100644
index 00000000..e5b64fc1
--- /dev/null
+++ b/Material_Science_by_S._L._Kakani_and_A._Kakani/ch3.ipynb
@@ -0,0 +1,923 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 3 : Crystal Geometry Structure and Defects"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.10 Page No : 91"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "angle Between normals to the planes (111) and (121)(in degrees) = 19.47\n"
+ ]
+ }
+ ],
+ "source": [
+ "\t\t\t\n",
+ "from numpy import degrees, arccos\n",
+ "\n",
+ "# Variables\n",
+ "#Miller indices of plane\n",
+ "h_1 = 1.;\n",
+ "k_1 = 1.;\n",
+ "l_1 = 1.;\n",
+ "h_2 = 1.;\n",
+ "k_2 = 2.;\n",
+ "l_2 = 1.;\n",
+ "\n",
+ "# Calculation\n",
+ "angle = degrees(arccos((h_1*h_2+k_1*k_2+l_1*l_2)/(((h_1**2+k_1**2+l_1**2)**(1./2))*((h_2**2+k_2**2+l_2**2)**(1./2)))))\n",
+ "\n",
+ "# Results\n",
+ "print 'angle Between normals to the planes (111) and (121)(in degrees) = %.2f'%angle\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.11 Page No : 91"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Packing efficiency of sodium chloride in = 66.3 %\n",
+ "density of sodium chloride in = 2233 Kg/m3\n"
+ ]
+ }
+ ],
+ "source": [
+ "\t\t\t\n",
+ "\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "r_Na = 0.98;\t\t\t#Radius of Na+(in A)\n",
+ "r_Cl = 1.81;\t\t\t#Radius of Cl-(in A)\n",
+ "a = 2*(r_Na+r_Cl);\t\t\t#Lattice parameter (in A)\n",
+ "\n",
+ "# Calculation\n",
+ "pi = 22./7;\n",
+ "V_i = 4*(4./3)*pi*((r_Na**3)+(r_Cl**3));\t\t\t#Volume of ions present in unit cell\n",
+ "V_u = a**3;\t\t\t#Volume of unit cell\n",
+ "Apf = V_i/V_u;\t\t\t#Atomic packing fraction\n",
+ "Ef_p = (Apf)*100;\t\t\t#Packing efficiency(in %)\n",
+ "AM_sodium = 22.99;\t\t\t#Atomic mass of sodium(in amu)\n",
+ "AM_chlorine = 35.45;\t\t\t#Atomic mass of chlorine(in amu)\n",
+ "M_1 = 4*(AM_sodium+AM_chlorine)*1.66*10**(-27);\t\t\t#Mass of the unit cell\n",
+ "a_1 = a*10**(-10);\t\t\t#Lattice parameter (in meter)\n",
+ "V_u1 = (a_1)**3;\n",
+ "Density = M_1/V_u1;\n",
+ "\n",
+ "# Results\n",
+ "print 'Packing efficiency of sodium chloride in = %.1f %%'%Ef_p\n",
+ "print 'density of sodium chloride in = %.0f Kg/m3'%Density\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.12 Page No : 91"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "radius in = 4.049 A\n",
+ "Diameter in 2.86 A\n"
+ ]
+ }
+ ],
+ "source": [
+ "\t\t\t\n",
+ "\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "Density = 2.7;\t\t\t#(in g/cm**3)\n",
+ "n = 4;\n",
+ "m = 26.98;\t\t\t#atomic weight of Al\n",
+ "\n",
+ "# Calculation and Results\n",
+ "N_a = 6.023*10**(23);\t\t\t #avogadro number\n",
+ "a = ((n*m/(Density*N_a))**(1./3));\t\t\t#Lattice parameter(in Cm)\n",
+ "A = a*10**(8);\t\t\t #Lattice parameter(in A)\n",
+ "print 'radius in = %.3f A'%A\n",
+ "r = A/(2*1.414);\t\t\t#radius for fcp structure\n",
+ "print 'Diameter in %.2f A'%(2*r)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.13 Page No : 92"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "interplaner distance of (200) plane of nickel crystal in = 1.76 A\n",
+ "interplaner distance of (111) plane of nickel crystal in = 2.03 A\n"
+ ]
+ }
+ ],
+ "source": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "r = 1.245;\t\t\t#radius of nickel (in A)\n",
+ "a = 4*r/(2)**(1./2);\t\t\t#Lattice consmath.tant(in A)\n",
+ "#Miller indices of plane 200\n",
+ "h_1 = 2;\n",
+ "k_1 = 0;\n",
+ "l_1 = 0;\n",
+ "#Miller indices of plane 111\n",
+ "h_2 = 1;\n",
+ "k_2 = 1;\n",
+ "l_2 = 1;\n",
+ "\n",
+ "# Calculation\n",
+ "d_200 = a/((h_1**2)+(k_1**2)+(l_1**2))**(1./2);\n",
+ "d_111 = a/((h_2**2)+(k_2**2)+(l_2**2))**(1./2);\n",
+ "\n",
+ "# Results\n",
+ "print 'interplaner distance of (200) plane of nickel crystal in = %.2f A'%d_200\n",
+ "print 'interplaner distance of (111) plane of nickel crystal in = %.2f A'%d_111\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.14 Page No : 92"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Number of atoms in the (100) plane of a simple cubic structure(in per mm**2) = 1.09e+13\n",
+ "Number of atoms in the (110) plane of a simple cubic structure(in per mm**2) = 7.7e+12\n",
+ "Number of atoms in the (111) plane of a simple cubic structure(in per mm**2) = 6.3e+12\n"
+ ]
+ }
+ ],
+ "source": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "a = 3.03*10**(-7);\t\t\t#lattice consmath.tant(in mm)\n",
+ "\n",
+ "# Calculation\n",
+ "N_100 = 1/(a**2);\t\t\t#Number of atoms in the (100) plane of a simple cubic structure\n",
+ "N_110 = 0.707/(a**2);\t\t\t#Number of atoms in the (110) plane of a simple cubic structure\n",
+ "N_111 = 0.58/(a**2);\t\t\t#Number of atoms in the (111) plane of a simple cubic structure\n",
+ "\n",
+ "# Results\n",
+ "print 'Number of atoms in the (100) plane of a simple cubic structure(in per mm**2) = %.2e'%N_100\n",
+ "print 'Number of atoms in the (110) plane of a simple cubic structure(in per mm**2) = %.1e'%N_110\n",
+ "print 'Number of atoms in the (111) plane of a simple cubic structure(in per mm**2) = %.1e'%N_111\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.15 Page No : 92"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "the planer density of Ni (in atoms per mm**2) = 1.6e+13\n"
+ ]
+ }
+ ],
+ "source": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "r = 1.245*10**(-7);\t\t\t#Radius of the Ni atom(in mm)\n",
+ "\n",
+ "# Calculation\n",
+ "NA_100 = 1+(1./4)*4;\t\t\t#Numbers of atom in (100) plane\n",
+ "a = 4*r/(2)**(1./2);\t\t\t#Lattice consmath.tant(in mm)\n",
+ "Area = a**2;\n",
+ "P_density = NA_100/Area;\n",
+ "\n",
+ "# Results\n",
+ "print 'the planer density of Ni (in atoms per mm**2) = %.1e'%P_density\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.16 Page No : 93"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Planar density of plane 100(in atoms/mm**2) = 8.2e+12\n",
+ "Planar density of plane 110(in atoms/mm**2) = 5.8e+12\n",
+ "Planar density of plane 111(in atoms/mm**2) = 9.4e+12\n"
+ ]
+ }
+ ],
+ "source": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "N_a1 = 4*(1./4)+1;\t\t\t#Number of atoms contained in (100) plane\n",
+ "r = 1.75*10**(-7);\t\t\t#radius of lead atom (in mm)\n",
+ "a_1 = 2*2**(1./2)*r;\t\t\t#edge of unit cell in case of (100) plane\n",
+ "PD_100 = N_a1/(a_1**2);\t\t\t#Planar density of plane (100)\n",
+ "\n",
+ "# Calculation\n",
+ "N_a2 = 4*(1./4)+2*(1./2);\t\t\t#Number of atoms contained in (110) plane\n",
+ "a_21 = 4*r;\t\t\t#top edge of the plane (110)\n",
+ "a_22 = 2*2**(1./2)*r;\t\t\t#vertical edge of the plane (110)\n",
+ "PD_110 = N_a2/(a_21*a_22);\t\t\t#Planar density of plane (110)\n",
+ "N_a3 = 3*(1./6)+3./2;\t\t\t#Number of atom contained in (111) plane\n",
+ "Ar_111 = 4*(3**(1./2))*r**2;\t\t\t#area of (111) plane\n",
+ "PD_111 = N_a3/Ar_111;\t\t\t#Planar density of plane (111)\n",
+ "\n",
+ "# Results\n",
+ "print 'Planar density of plane 100(in atoms/mm**2) = %.1e'%PD_100\n",
+ "print 'Planar density of plane 110(in atoms/mm**2) = %.1e'%PD_110\n",
+ "print 'Planar density of plane 111(in atoms/mm**2) = %.1e'%PD_111\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.17 Page No : 94"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "linear atomic density along (110) of copper crystal lattice in = 3.92e+06 atoms/mm\n",
+ "linear atomic density along (111) of copper crystal lattice in = 1.60e+06 atoms/mm\n"
+ ]
+ }
+ ],
+ "source": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "N_a1 = (1./2)+1+(1./2);\t\t\t#Number of diameters of atom along (110) direction\n",
+ "a = 3.61*10**(-7);\t\t\t#lattice consmath.tant of copper in mm\n",
+ "\n",
+ "# Calculation\n",
+ "L_d1 = 2**(1./2)*a;\t\t\t#length of the face diagonal in case of (110) direction\n",
+ "p_110 = N_a1/L_d1;\t\t\t#linear atomic density along (110) of copper crystal lattice(in atoms/mm)\n",
+ "N_a2 = (1./2)+(1./2);\t\t\t#Number of diameters of atom along (111) direction\n",
+ "L_d2 = 3**(1./2)*a;\t\t\t#length of the face diagonal in case of (111) direction\n",
+ "p_111 = N_a2/L_d2;\t\t\t#linear atomic density along (110) of copper crystal lattice(in atoms/mm)\n",
+ "\n",
+ "# Results\n",
+ "print 'linear atomic density along (110) of copper crystal lattice in = %.2e atoms/mm'%p_110\n",
+ "print 'linear atomic density along (111) of copper crystal lattice in = %.2e atoms/mm'%p_111\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.18 Page No : 95"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Value of lattice constant in = 2.867 A\n"
+ ]
+ }
+ ],
+ "source": [
+ "\t\t\t\n",
+ "\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "A = 55.8;\t\t\t#atomic weight of Fe\n",
+ "n = 2;\t\t\t#number of atoms per unit cell\n",
+ "\n",
+ "# Calculation\n",
+ "N = 6.02*10**(26);\t\t\t#Avogadro's number\n",
+ "p = 7.87*10**3;\t\t\t#density of Fe(in kg/m**3)\n",
+ "a = ((A*n/(N*p))**(1./3))*10**10;\t\t\t#Value of lattice consmath.tant\n",
+ "\n",
+ "# Results\n",
+ "print 'Value of lattice constant in = %.3f A'%a\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.19 Page No : 95"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Numbers of atoms per unit cell = 2.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "\n",
+ "# Variables\n",
+ "a = 2.9*10**(-10);\t\t\t#lattice parameter(in m)\n",
+ "A = 55.8;\t\t\t#atomic weight of Fe\n",
+ "\n",
+ "# Calculation\n",
+ "N = 6.02*10**(26);\t\t\t#Avogadro's number\n",
+ "p = 7.87*10**3;\t\t\t#density of Fe(in kg/m**3\n",
+ "n = (a**3)*N*p/A;\t\t\t#Numbers of atoms per unit cell\n",
+ "\n",
+ "# Results\n",
+ "print 'Numbers of atoms per unit cell = ',floor(n)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.20 Page No : 109"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "line energy of disslocation in = 2.47e-09 J/m\n"
+ ]
+ }
+ ],
+ "source": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "a = 2.87*10**(-10);\t\t\t#lattice parameter for bcc iron\n",
+ "b = a*(3**(1./2))/2;\t\t\t#Magnitude of burgers vector\n",
+ "\n",
+ "# Calculation\n",
+ "u = 80*10**9;\t\t\t#shear modulus\n",
+ "E = (1./2)*u*b**2;\t\t\t#line energy of disslocation\n",
+ "\n",
+ "# Results\n",
+ "print 'line energy of disslocation in = %.2e J/m'%E\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.22 Page No : 109"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "number of vacancies created during heating in = 6.54e+23 m**-3\n"
+ ]
+ }
+ ],
+ "source": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "N = 6.023*10**23;\t\t\t#avogadro number\n",
+ "T = 1000.;\t\t\t#absolute temperature\n",
+ "R = 8.314;\t\t\t#consmath.tant\n",
+ "\n",
+ "# Calculation\n",
+ "H_f = 100*1000;\t\t\t#enthalpy of formation of vacancies(in J/mol)\n",
+ "n = N*math.exp(-(H_f)/(R*T));\t\t\t#number of vacancies created during heating(in per mol)\n",
+ "V = 5.5*10**(-6);\t\t\t#volume of 1 mole of the crystal in m**3\n",
+ "n_1 = n/V;\t\t\t#number of vacancies created during heating(in per m**3)\n",
+ "\n",
+ "# Results\n",
+ "print 'number of vacancies created during heating in = %.2e m**-3'%n_1\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.23 Page No : 109"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Surface energy (enthalpy) of copper in = 2.49 J/m**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "#bond energy per atom of copper = bond energy per bond*numbers of bond per atom*(1/2)\n",
+ "A = 56.4*1000;\t\t\t#\n",
+ "N = 6.023*10**23;\t\t\t#avogadro number\n",
+ "n_1 = 12.;\t\t\t#numbers of bond per atom\n",
+ "n_2 = 3.;\t\t\t#bonds broken at the surface\n",
+ "\n",
+ "# Calculation and Results\n",
+ "E = A*n_1/(2*N);\t\t\t#Energy of total bonds\n",
+ "E_b = E*(n_2/n_1);\t\t\t#Energy of broken bonds on surface\n",
+ "n_a = 1.77*10**19;\t\t\t#no. of atoms on {111} planes in copper(in m**-2)\n",
+ "E_c = n_a*E_b;\t\t\t#Surface energy (enthalpy) of copper\n",
+ "print 'Surface energy (enthalpy) of copper in = %.2f J/m**2'%E_c\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.24 Page No : 110"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "equilibrium concentration of vacancies in aluminium at 300 K = 1.44e-12\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "H_f = 68.*1000;\t\t\t#enthalpy of formation of vacancies(in J/mol)\n",
+ "T_1 = 0;\t\t\t#temp (in K)\n",
+ "T_2 = 300.;\t\t\t#temp (in K)\n",
+ "R = 8.314;\t\t\t#consmath.tant\n",
+ "\n",
+ "# Calculation\n",
+ "\n",
+ "n = math.exp(-H_f/(R*T_2));\t\t\t#equilibrium concentration of vacancies in aluminium at 300 K\n",
+ "\n",
+ "# Results\n",
+ "print 'equilibrium concentration of vacancies in aluminium at 300 K = %.2e'%n\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.25 Page No : 113"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "the interplanar spacing between atomic plane in = 2.22 A\n"
+ ]
+ }
+ ],
+ "source": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "Wavelength = 1.54*10**(-10);\t\t\t#in meter\n",
+ "Angle = 20.3;\t\t\t#in degree\n",
+ "n = 1;\t\t\t#First order\n",
+ "\n",
+ "# Calculation\n",
+ "d = Wavelength*n/(2*math.sin(math.radians(Angle)));\t\t\t#the interplanar spacing(in Meter)\n",
+ "\n",
+ "# Results\n",
+ "print 'the interplanar spacing between atomic plane in = %.2f A'%(d/(10**-10))\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.26 Page No : 113"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Size of unit cell in 3.51 Angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "wavelength = 0.58;\t\t\t#in Angstrom\n",
+ "angle = 9.5;\t\t\t#in degree\n",
+ "n = 1;\t\t\t#First order\n",
+ "\n",
+ "# Calculation\n",
+ "#d_200 = wavelength*n/(2*math.sin(math.radians(angle)));\t\t\t#interplanar spacing(in Angstrom)\n",
+ "d_200 = n/math.sqrt(2**2+0**2+0**2)\n",
+ "#Miller indices of plane\n",
+ "h = 2;\n",
+ "k = 0;\n",
+ "l = 0;\n",
+ "a = 0.58/(math.sin(math.radians(angle))*2*d_200);\t\t\t#Size of unit cell(in Angstrom)\n",
+ "# Results\n",
+ "print 'Size of unit cell in %.2f Angstrom'%a\n",
+ "\n",
+ "# book answer is wrong."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.27 Page No : 114"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Bragg angle(in degree) = 7.527\n"
+ ]
+ }
+ ],
+ "source": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "#Miller indices of plane\n",
+ "h = 1.;\n",
+ "k = 1.;\n",
+ "l = 1.;\n",
+ "wavelength = 0.54;\t\t\t#in angstrom\n",
+ "a = 3.57;\t\t\t#size of a cube\n",
+ "n = 1;\n",
+ "\n",
+ "# Calculation\n",
+ "d_111 = a/(h**2+k**2+l**2)**(1./2);\t\t\t#interplanar spacing(in Angstrom)\n",
+ "sinangle = (n*wavelength)/(2*d_111)\n",
+ "angle = math.degrees(math.asin(sinangle))\n",
+ "\n",
+ "# Results\n",
+ "print 'Bragg angle(in degree) = %.3f'%angle\n",
+ "\n",
+ "# rounding off error"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.28 Page No : 114"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Bragg reflection index for BCC crystal = 1.53\n"
+ ]
+ }
+ ],
+ "source": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "d = 1.181;\t\t\t #A\n",
+ "wavelength = 1.540;\t #in angstrom\n",
+ "angle = 90;\t\t\t #in degrees\n",
+ "\n",
+ "# Calculation\n",
+ "n = 2*d*math.sin(math.radians(angle))/(wavelength);\t\t\t#the bragg reflection index\n",
+ "\n",
+ "# Results\n",
+ "print 'Bragg reflection index for BCC crystal = %.2f'%n\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.29 Page No : 114"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "3rd order reflection angle = 31.40\n"
+ ]
+ }
+ ],
+ "source": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "n_1 = 1;\t\t\t#1st order reflection index\n",
+ "angle_1 = 10;\t\t\t#1st order reflection angle\n",
+ "n_3 = 3;\t\t\t#3rd order reflection index\n",
+ "\n",
+ "# Calculation\n",
+ "#math.math.sin(math.radians(angle_1)/math.math.sin(math.radians(angle_3) = n_1/n_3\n",
+ "sinangle_3 = n_3 * math.sin(math.radians(angle_1)/n_1);\t\t\t#\n",
+ "angle_3 = math.degrees(math.asin(sinangle_3))\n",
+ "\n",
+ "# Results\n",
+ "print '3rd order reflection angle = %.2f'%angle_3\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.30 Page No : 115"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "interplanar spacing of reflection plane 2.22 A\n",
+ "miller indices of the reflection plane 2.0\n",
+ "((110),(101),(011))\n"
+ ]
+ }
+ ],
+ "source": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "angle = 20.3;\t\t\t#in degree\n",
+ "wavelength = 1.54;\t\t\t#in angstrom\n",
+ "n = 1;\n",
+ "a = 3.16;\t\t\t#lattice parameter in angstrom\n",
+ "\n",
+ "# Calculation\n",
+ "d = n*wavelength/(2*math.sin(math.radians(angle)));\t\t\t#interplanar spacing\n",
+ "M_indices = a**2/(d**2);\n",
+ "\n",
+ "# Results\n",
+ "print 'interplanar spacing of reflection plane %.2f A'%d\n",
+ "print 'miller indices of the reflection plane',floor(M_indices)\n",
+ "print \"((110),(101),(011))\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.31 Page No : 115"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "interatomic spacing(in angstrom) = 3.46\n"
+ ]
+ }
+ ],
+ "source": [
+ "\t\t\t\n",
+ "\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "#Miller indices of plane\n",
+ "n = 1;\n",
+ "h = 1;\n",
+ "k = 1;\n",
+ "l = 1;\n",
+ "angle = 30;\t\t\t#in degree\n",
+ "wavelength = 2;\t\t\t#in angstrom\n",
+ "\n",
+ "# Calculation\n",
+ "d = n*wavelength/(2*math.sin(math.radians(angle)));\t\t\t#interplanar spacing\n",
+ "a = d*(h**2+k**2+l**2)**(1./2);\t\t\t#interatomic spacing\n",
+ "\n",
+ "# Results\n",
+ "print 'interatomic spacing(in angstrom) = %.2f'%a\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Material_Science_by_S._L._Kakani_and_A._Kakani/ch4.ipynb b/Material_Science_by_S._L._Kakani_and_A._Kakani/ch4.ipynb
new file mode 100644
index 00000000..0ac988cf
--- /dev/null
+++ b/Material_Science_by_S._L._Kakani_and_A._Kakani/ch4.ipynb
@@ -0,0 +1,285 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:10485c06d3141b9088340f19ea6a7420664af7ae170cac60ae1844a81a9e618f"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 4 :\n",
+ "Bonds in solid"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.1 Page No : 137"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "r_o = 2.8\t\t\t#interatomic distance in \u00c5\n",
+ "R_o = 2.8*10**(-10);#interatomic distance in m\n",
+ "u_o = 8.;\t\t\t#released energy in eV\n",
+ "e = 1.6*10**(-19);\t#charge of electron in C\n",
+ "U_o = 8.*e\t\t\t#released energy in Joule\n",
+ "\n",
+ "# Calculation\n",
+ "A = (5./4)*U_o*(R_o**2);\t\t\t#proportionality constant for attraction in J-m2\n",
+ "B = A*(R_o**8)/5;\t\t\t#proportionality constant for repulsion in J-m2\n",
+ "r_c = (110*B/(6*A))**(1./8);\t\t\t#interatomic distance at which the dissociation occurs in m\n",
+ "F = -(2/r_c**3)*(A-5*B/(r_c**8));\t\t\t#the force required to dissociate the molecule in N\n",
+ "\n",
+ "# Results\n",
+ "print 'proportionality constant for attraction = %.2e J-m2'%A\n",
+ "print 'proportionality constant for repulsion = %.2e J-m2'%B\n",
+ "print 'interatomic distance at which the dissociation occurs = %.2e m'%r_c\n",
+ "print 'the force required to dissociate the molecule = %.2e N'%F\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "proportionality constant for attraction = 1.25e-37 J-m2\n",
+ "proportionality constant for repulsion = 9.48e-115 J-m2\n",
+ "interatomic distance at which the dissociation occurs = 3.29e-10 m\n",
+ "the force required to dissociate the molecule = -5.11e-09 N\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.2 Page No : 138"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "r_o = 3.14;\t\t\t#nearest neighbour equilibrium distance in \u00c5\n",
+ "R_o = 3.14*10**(-10);\t\t\t#nearest neighbour equilibrium distance in m\n",
+ "K = 5.747*10**(-11);\t\t\t#compressibility of KCl in m2/N\n",
+ "M = 1.748;\t\t\t#Madelung constant\n",
+ "pi = 22./7;\n",
+ "\n",
+ "# Calculation\n",
+ "E_o = 8.854*10**(-12);\n",
+ "q = 1.6*10**(-19);\t\t\t#electron charge\n",
+ "n = 1+18*(R_o**4)*4*pi*E_o/(K*M*q**2);\n",
+ "\n",
+ "# Results\n",
+ "print 'repulsive exponent n = %.1f'%n\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "repulsive exponent n = 8.6\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.3 Page No : 139"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "F_1 = 3.02*10**(-9);\t\t\t#force of attraction b/w ions of Na+ and Cl-\n",
+ "Z_1 = +1;\n",
+ "Z_2 = -1;\n",
+ "e = 1.6*10**(-19);\n",
+ "E_o = 8.854*10**-12;\n",
+ "pi = 22./7;\n",
+ "r_Na = 0.95;\t\t\t#ionic radius of Na+ ion\n",
+ "\n",
+ "# Calculation\n",
+ "r = (-Z_1*Z_2*e**2/(4*pi*E_o*F_1))**(1./2);\t\t\t#Radius of ion in meter\n",
+ "R = r/10**(-10);\t\t\t#Radius of ion in Angstrom\n",
+ "r_Cl = (R-r_Na);\t\t\t#Radius of Cl- ion in Angstrom\n",
+ "\n",
+ "# Results\n",
+ "print 'Ionic Radius of Cl- ion in = %.2f Angstrom'%r_Cl\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Ionic Radius of Cl- ion in = 1.81 Angstrom\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.4 Page No : 139"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "Z_1 = +2;\n",
+ "Z_2 = -2;\n",
+ "r_Mg = 0.65;\t\t\t#radius of Mg++ ion\n",
+ "r_S = 1.84;\t\t\t#radius of S-- ion\n",
+ "r = r_Mg+r_S;\t\t\t#net radius(in Angstrom)\n",
+ "\n",
+ "# Calculation\n",
+ "R = r*10**(-10);\t\t\t#net radius(in meter)\n",
+ "e = 1.6*10**(-19);\n",
+ "E_o = 8.854*10**-12;\n",
+ "pi = 22./7;\n",
+ "F = -Z_1*Z_2*e**2/(4*pi*E_o*R**2);\t\t\t#force of attraction between ions(in Newton)\n",
+ "\n",
+ "# Results\n",
+ "print 'force of attraction between ions in = %.1e Newton'%F\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "force of attraction between ions in = 1.5e-08 Newton\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.5 Page No : 150"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "#Na atom requires +5.14 eV of energy. When this electron is transferred to a vacant position,it gives back \u20134.02 eV of energy\n",
+ "E_1 = +5.14;\t\t\t#in eV\n",
+ "E_2 = -4.02;\t\t\t#in eV\n",
+ "\n",
+ "# Calculation\n",
+ "NET_energy = E_1+E_2;\t\t\t#in eV\n",
+ "\n",
+ "# Results\n",
+ "print 'Net spent energy in whole process in = %.2f eV'%NET_energy\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Net spent energy in whole process in = 1.12 eV\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.6 Page No : 150"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "Enthalpy = 6.02;\t\t\t#enthalpy of fusion of ice is 6.02 kJ/mol\n",
+ "E_h = 20.5;\t\t\t#Hydrogen bond energy (in kJ/mol)\n",
+ "#There are two moles of hydrogen bonds per mole of H2O in ice.\n",
+ "\n",
+ "# Calculation\n",
+ "H_b = Enthalpy/(2*E_h);\t\t\t#the fraction of hydrogen bonds that are broken when ice melts\n",
+ "\n",
+ "# Results\n",
+ "print 'fraction of hydrogen bonds that are broken when ice melts = %.2f'%H_b\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "fraction of hydrogen bonds that are broken when ice melts = 0.15\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Material_Science_by_S._L._Kakani_and_A._Kakani/ch5.ipynb b/Material_Science_by_S._L._Kakani_and_A._Kakani/ch5.ipynb
new file mode 100644
index 00000000..fcdb72de
--- /dev/null
+++ b/Material_Science_by_S._L._Kakani_and_A._Kakani/ch5.ipynb
@@ -0,0 +1,465 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:b05ef4cea534c7f22454c6c7a4371d685f8afba36752efd7c83922caa2a73609"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 5 :\n",
+ "Electron Theory of Metals"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.1 Page No : 169"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math \n",
+ "\n",
+ "\n",
+ "# Variables\n",
+ "#The probability that a particular quantum state at energy E is filled, is given by\n",
+ "#f(E) = 1/(1+exp(E-E_f)/kT)\n",
+ "e = 1.6*10**(-19);\t\t\t#charge on the electron\n",
+ "dE = 0.5*e;\t\t\t#E-E_f in joule\n",
+ "\n",
+ "# Calculation\n",
+ "#0.01 = 1/(1+exp(x))\n",
+ "#1+exp(x) = 100\n",
+ "x = math.log(99);\n",
+ "k = 1.38*10**(-23);\t\t\t#consmath.tant\n",
+ "T = dE/(x*k);\t\t\t#temperature\n",
+ "\n",
+ "# Results\n",
+ "print 'temperature at which there is one per cent probability that a state with an energy\\\n",
+ " 0.5 eV above the Fermi energy will be \\noccupied by an electron in = %.0f K'%round(T)\n",
+ "\n",
+ "# rounding off error"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "temperature at which there is one per cent probability that a state with an energy 0.5 eV above the Fermi energy will be \n",
+ "occupied by an electron in = 1262 K\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.2 Page No : 169"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "n = 10**19;\t\t\t#electrons per m**3\n",
+ "V = 0.017;\t\t\t#applied voltage \n",
+ "d = 0.27*10**-2;\t\t\t#dismath.tance with material\n",
+ "e = 1.602*10**-19;\t\t\t#in coulomb\n",
+ "m = 9.1*10**-31;\t\t\t#mass of an electron(in kg)\n",
+ "\n",
+ "# Calculation\n",
+ "conductivity = 0.01;\t\t\t#in mho.m**-1)\n",
+ "E = V/d;\t\t\t#Electric field(in V/m)\n",
+ "v = (conductivity*E/(n*e))*10**2;\t\t\t#drift velocity of carriers(in meter/sec)\n",
+ "\n",
+ "# Results\n",
+ "print 'drift velocity of carriers in = %.2f m/s'%v\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "drift velocity of carriers in = 3.93 m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.3 Page No : 170"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "T = 300;\t\t\t#Temperature(in Kelevin)\n",
+ "t = 2*10**-14;\t\t\t#time(in sec)\n",
+ "V_c = 8.9;\t\t\t#volume of 63.54gm of copper(in cc)\n",
+ "Aw_c = 63.54;\t\t\t#Atomic weight of copper(in a.m.u)\n",
+ "e = 1.6*10**(-19);\n",
+ "m = 9.1*10**-31;\n",
+ "N_a = 6.023*10**23;\t\t\t#avogadro's number\n",
+ "\n",
+ "# Calculation\n",
+ "n = (N_a/(Aw_c/V_c))*10**6;\t\t\t#Number of electrons per m**3\n",
+ "conductivity = (e**2)*n*t/m;\t\t\t#conductivity of copper at 300K(in mho/m)\n",
+ "\n",
+ "# Results\n",
+ "print 'conductivity of copper at 300K in = %.2e mho/m'%conductivity\n",
+ "\n",
+ "# note : answer in book is wrong.\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "conductivity of copper at 300K in = 4.75e+07 mho/m\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.4 Page No : 170"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "t = 10**(-14);\t\t\t#mean free time between the collisions(in second)\n",
+ "e = 1.6*10**-19;\n",
+ "m = 9.1*10**-31;\n",
+ "\n",
+ "# Calculation\n",
+ "Mobility = e*t/m;\t\t\t#in m**2/V-s\n",
+ "\n",
+ "# Results\n",
+ "print 'mobility of condution electron in = %.2e m**2/V-s'%Mobility\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "mobility of condution electron in = 1.76e-03 m**2/V-s\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.5 Page No : 170"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "n = 6.*10**23;\t\t\t#conduction electron per m**3\n",
+ "conductivity = 6.5*10**7;\t\t\t#in mho/m\n",
+ "E = 1.;\t\t\t#electric field intensity (in V/m)\n",
+ "e = 1.602*10**-19;\n",
+ "m = 9.1*10**-31;\n",
+ "\n",
+ "# Calculation\n",
+ "Mobility = conductivity/(n*e);\t\t\t#in m**2/V-s\n",
+ "v = Mobility*E;\t\t\t#drift velocity(in m/sec)\n",
+ "\n",
+ "# Results\n",
+ "print 'mobility of condution electron in = %.2e m**2/V-s'%Mobility\n",
+ "print 'drift velocity in = %.2e m/sec'%v\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "mobility of condution electron in = 6.76e+02 m**2/V-s\n",
+ "drift velocity in = 6.76e+02 m/sec\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.6 Page No : 171"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\t\t\n",
+ "\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "d = 10.5;\t\t\t#density of silver(in gm/cc)\n",
+ "At_w = 107.9; #atomic weight\n",
+ "e = 1.6*10**-19;\n",
+ "conductivity = 6.8*10**5;\t\t\t#in mho/centimeter\n",
+ "\n",
+ "# Calculation\n",
+ "N = 6.023*10**23;\n",
+ "n = N*d/At_w;\t\t\t#number of free electrons\n",
+ "Mobility = conductivity/(n*e);\t\t\t#mobility of electrons(in cm**2/V-s);\n",
+ "\n",
+ "# Results\n",
+ "print 'number of free electrons = %.2e'%n\n",
+ "print 'mobility of electrons in = %.2f cm**2/V-s'%Mobility\n",
+ "\n",
+ "# rounding off error"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "number of free electrons = 5.86e+22\n",
+ "mobility of electrons in = 72.51 cm**2/V-s\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.7 Page No : 172"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "E_f = 3.75;\t\t\t#Fermi energy(in eV)\n",
+ "e = 1.602*10**-19;\n",
+ "W_f = e*E_f;\t\t\t#fermi energy in joules\n",
+ "t = 10**-14;\t\t\t#mean free time between the collisions(in second)\n",
+ "\n",
+ "# Calculation\n",
+ "m = 9.1*10**-31;\t\t\t#mass of electron\n",
+ "v_f = ((2*W_f)/m)**(1./2);\t\t\t#maximum velocity of an electron in a metal(in m/s)\n",
+ "mobility = e*t/m;\t\t\t#mobility of electrons(in m**2/V-s)\n",
+ "\n",
+ "# Results\n",
+ "print 'maximum velocity of an electron in a metal in = %.2e m/s'%v_f\n",
+ "print 'mobility of electrons in = %.2e m**2/V-s'%mobility\n",
+ "\n",
+ "# incorrect answer in the textbook"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "maximum velocity of an electron in a metal in = 1.15e+06 m/s\n",
+ "mobility of electrons in = 1.76e-03 m**2/V-s\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.8 Page No : 172"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\t\t\n",
+ "\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "E_f = 2.1;\t\t\t#fermi energy(in eV)\n",
+ "e = 1.602*10**-19;\n",
+ "m = 9.1*10**-31;\n",
+ "\n",
+ "# Calculation\n",
+ "W_f = e*E_f;\t\t\t#fermi energy in joules\n",
+ "v_f = (2*W_f/m)**(1./2);\t\t\t#velocity of an electrons at fermi level(in m/sec)\n",
+ "\n",
+ "# Results\n",
+ "print 'velocity of an electrons at fermi level in = %.1e m/sec'%v_f\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "velocity of an electrons at fermi level in = 8.6e+05 m/sec\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.9 Page No : 172"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "t = 10**-9;\t\t\t#collision time(in seconds)\n",
+ "E_f = 7;\t\t\t#fermi energy(in eV)\n",
+ "e = 1.6*10**-19;\n",
+ "m = 9.1*10**-31;\n",
+ "\n",
+ "# Calculation\n",
+ "W_f = E_f*e;\t\t\t#fermi energy(in joules)\n",
+ "v_f = (2*W_f/m)**(1./2);\t\t\t#velocity of an electrons at fermi level(in m/sec)\n",
+ "P = v_f*t;\t\t\t#Mean free path(in meter)\n",
+ "\n",
+ "# Results\n",
+ "print 'Mean free path in = %.2e m'%P\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Mean free path in = 1.57e-03 meter\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.10 Page No : 173"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "N_a = 6.023*10**23;\n",
+ "V_c = 8.9;\t\t\t#volume of 63.54gm of copper(in cc)\n",
+ "Aw_c = 63.54;\t\t\t#Atomic weight of copper(in a.m.u)\n",
+ "\n",
+ "# Calculation\n",
+ "n = (N_a/(Aw_c/V_c))*10**6;\t\t\t#Number of electrons per m**3\n",
+ "e = 1.6*10**-19;\n",
+ "m = 9.1*10**-31;\n",
+ "t = 2*10**-14;\t\t\t#collision time\n",
+ "conductivity = n*(e**2)*t/m;\t\t\t#conductivity of copper\n",
+ "\n",
+ "# Results\n",
+ "print 'conductivity of copper in = %.1e ohm**-1/m'%conductivity\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "conductivity of copper in = 4.7e+07 ohm**-1/m\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Material_Science_by_S._L._Kakani_and_A._Kakani/ch6.ipynb b/Material_Science_by_S._L._Kakani_and_A._Kakani/ch6.ipynb
new file mode 100644
index 00000000..5cb066fa
--- /dev/null
+++ b/Material_Science_by_S._L._Kakani_and_A._Kakani/ch6.ipynb
@@ -0,0 +1,328 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:c0c85d5a39a8e445759e5cb8d2f67d6ba3787632cdef1705d098045c10def4f6"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 6 :\n",
+ "Photoelectric Effect"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.1 Page No : 191"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "h = 6.62*10**-34; #Planck's constant(in m2*kg/s)\n",
+ "c = 3*10**8; #speed of light (in m/s)\n",
+ "e = 1.6*10**-19; #electron charge(in coulomb)\n",
+ "Wavelength_1 = 2300*10**-10;\n",
+ "Wavelength_2 = 1800*10**-10;\n",
+ "\n",
+ "# Calculation\n",
+ "W = h*c/Wavelength_1;\t\t\t#Work function\n",
+ "E_in = h*c/Wavelength_2;\n",
+ "E = E_in-W;\t\t\t#kinetic energy of the ejected electron(in Joules)\n",
+ "E_1 = E/e;\t\t\t#kinetic energy of the ejected electron(in eV)\n",
+ "\n",
+ "# Results\n",
+ "print 'kinetic energy of the ejected electron in = %.1f eV'%E_1\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "kinetic energy of the ejected electron in = 1.5 eV\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.2 Page No : 191"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "h = 6.625*(10**(-34));\t#Planck's constant(in m2*kg/s)\n",
+ "c = 3*10**8;\t\t\t#speed of light (in m/s)\n",
+ "e = 1.602*10**-19;\t\t#electron charge(in coulomb)\n",
+ "W = 2.3;\t\t\t #work (in eV)\n",
+ "\n",
+ "# Calculation\n",
+ "W_1 = W*e;\t\t\t#work (in joules)\n",
+ "v_o = W_1/h;\t\t\t#threshold frequency(in Hz)\n",
+ "Wavelength = (h*c/W_1)/10**(-10);\t\t\t#Wavelength in Angstrom\n",
+ "\n",
+ "# Results\n",
+ "print 'threshold frequency(Hz) = %.2e'%v_o\n",
+ "print 'Wavelength in %.0f Angstrom'%(round(Wavelength,-1))\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "threshold frequency(Hz) = 5.56e+14\n",
+ "Wavelength in 5390 Angstrom\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.3 Page No : 192"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\t\t\n",
+ "\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "h = 6.625*(10**(-34));\t\t\t#Planck's constant(in m2*kg/s)\n",
+ "c = 3*10**8;\t\t\t#speed of light (in m/s)\n",
+ "e = 1.602*10**-19;\t\t\t#electron charge(in coulomb)\n",
+ "\n",
+ "# Calculation\n",
+ "wavelength = 6800*10**-10;\t\t\t#wavelength of radiation\n",
+ "v_o = c/wavelength;\t\t\t#frequency\n",
+ "W = h*v_o;\t\t\t#Work function\n",
+ "\n",
+ "# Results\n",
+ "print 'threshold frequency in = %.2e Hz'%v_o\n",
+ "print 'work function of metal in = %.2e joule'%W\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "threshold frequency in = 4.41e+14 Hz\n",
+ "work function of metal in = 2.92e-19 joule\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.4 Page No : 192"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "h = 6.625*(10**(-34));\t\t\t#Planck's constant(in m2*kg/s)\n",
+ "c = 3.*10**8;\t\t\t#speed of light (in m/s)\n",
+ "\n",
+ "# Calculation\n",
+ "L_r = 150*8./100;\t\t\t#Lamp rating(in joule)\n",
+ "wavelength = 4500.*10**-10;\t\t\t#in meter\n",
+ "W = h*c/wavelength;\t\t\t#work function\n",
+ "N = L_r/W;\t\t\t#number of photons emitted by lamp per second\n",
+ "\n",
+ "# Results\n",
+ "print 'number of photons emitted by lamp per second = %.1e'%N\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "number of photons emitted by lamp per second = 2.7e+19\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.5 Page No : 193"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "h = 6.6*(10**(-34));\t\t\t#Planck's constant(in m2*kg/s)\n",
+ "c = 3*10**8;\t\t\t#speed of light (in m/s)\n",
+ "e = 1.6*10**-19;\t\t\t#electron charge(in coulomb)\n",
+ "W = 2.24;\t\t\t#work function(in eV)\n",
+ "\n",
+ "# Calculation\n",
+ "W_1 = W*e;\t\t\t#work function(in joule)\n",
+ "v = (W_1/h)*10**-10;\t\t\t#frequency\n",
+ "wavelength = c/v;\t\t\t#region of electrons spectrum is less than(in angstrom)\n",
+ "\n",
+ "# Results\n",
+ "print 'region of electrons spectrum is less than %d angstrom'%round(wavelength,-1)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "region of electrons spectrum is less than 5520 angstrom\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.6 Page No : 193"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "h = 6.625*(10**(-34));\t\t\t#Planck's constant(in m2*kg/s)\n",
+ "c = 3*10**8;\t\t\t#speed of light (in m/s)\n",
+ "P_o = 10*10**3;\t\t\t#Power of radio receiver (in Watt)\n",
+ "\n",
+ "# Calculation\n",
+ "v = 440*10**3;\t\t\t#Operating frequency\n",
+ "E = h*v;\t\t\t#Energy of each electron\n",
+ "N = P_o/E;\t\t\t#Number of photons emitted/sec\n",
+ "\n",
+ "# Results\n",
+ "print 'Number of photons emitted/sec by radio receiver = %.1e'%N\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Number of photons emitted/sec by radio receiver = 3.4e+31\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.7 Page No : 193"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\t\t\n",
+ "\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "W_t = 4.52;\t\t\t#Work function for tungesten(in eV)\n",
+ "W_b = 2.5;\t\t\t#Work function for barrium(in eV)\n",
+ "h = 6.62*(10**(-34));\t\t\t#Planck's constant(in m2*kg/s)\n",
+ "c = 3*10**8;\t\t\t#speed of light (in m/s)\n",
+ "\n",
+ "# Calculation\n",
+ "e = 1.6*10**-19;\t\t\t#electron charge(in coulomb)\n",
+ "W_T = W_t*e;\t\t\t#Work function for tungesten(in Joule)\n",
+ "W_B = W_b*e;\t\t\t#Work function for barrium(in Joule)\n",
+ "Wavelength_T = (h*c/W_T)*10**10;\t\t\t#wavelength of light which can just eject electron from tungsten\n",
+ "Wavelength_B = (h*c/W_B)*10**10;\t\t\t#wavelength of light which can just eject electron from barrium\n",
+ "\n",
+ "# Results\n",
+ "print 'wavelength of light which can just eject electron from tungsten in = %.0f Angstrom'%Wavelength_T\n",
+ "print 'wavelength of light which can just eject electron from barrium in = %.0f Angstrom'%Wavelength_B\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "wavelength of light which can just eject electron from tungsten in = 2746 Angstrom\n",
+ "wavelength of light which can just eject electron from barrium in = 4965 Angstrom\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Material_Science_by_S._L._Kakani_and_A._Kakani/ch7.ipynb b/Material_Science_by_S._L._Kakani_and_A._Kakani/ch7.ipynb
new file mode 100644
index 00000000..f9d4c4b4
--- /dev/null
+++ b/Material_Science_by_S._L._Kakani_and_A._Kakani/ch7.ipynb
@@ -0,0 +1,209 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 7 : Diffusion in Solids"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.1 Page No : 207"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "time required for carburization in 142.8 min\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "import math \n",
+ "from scipy.special import erfinv\n",
+ "\n",
+ "# Variables\n",
+ "D = 1.28*10**(-11);\t\t\t#diffusion coefficient of carbon in given steel in m2/s\n",
+ "c_s = 0.9;\t\t\t#Surface concentration of diffusion element in the surface\n",
+ "c_o = 0.2;\t\t\t#Initial uniform concentration of the element in the solid\n",
+ "c_x = 0.4;\t\t\t#Concentration of the diffusing element at a distance x from thesurface\n",
+ "x = 0.5*10**(-3);\t\t\t#depth from the surface in m\n",
+ "\n",
+ "# Calculation\n",
+ "#(c_s-c_x)/(c_s-c_o) = erf(x/(2*(D*t)**(1/2)))\n",
+ "t = (x/(2*erfinv((c_s-c_x)/(c_s-c_o))*D**(1./2)))**2;\t\t\t#time required for carburization(in sec)\n",
+ "\n",
+ "# Results\n",
+ "print 'time required for carburization in %.1f min'%(t/60)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.2 Page No : 208"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " C1 = 0.0\n",
+ "time required to get a boron content of 1023 atoms per m3 at a depth of 2 micro meter is = 3845 sec\n"
+ ]
+ }
+ ],
+ "source": [
+ "\t\t\t\n",
+ "import math \n",
+ "from scipy.special import erfinv\n",
+ "\n",
+ "# Variables\n",
+ "D = 4*10**(-17);\t\t\t#diffusion coefficient of carbon in given steel in m2/s\n",
+ "c_s = 3*10**26;\t\t\t#Surface concentration of boron atoms in the surface\n",
+ "c_1 = 0;\t\t\t#Initial uniform concentration of the element in the solid\n",
+ "c_x = 10**23;\t\t\t#Concentration of the diffusing element at a distance x from thesurface\n",
+ "x = 2*10**(-6);\t\t\t#depth from the surface in m\n",
+ "\n",
+ "# Calculation and Results\n",
+ "#(c_s-c_x)/(c_s-c_1) = erf(x/(2*(D*t)**(1/2)))\n",
+ "a = (erfinv((c_s-c_x)/(c_s-c_1)));\n",
+ "print ' C1 = ',a\n",
+ "t = (x**2/(D*4*(2.55)**2));\t\t\t#time required to get a boron content of 1023 atoms per m3 at a depth of 2 micro meter\n",
+ "print 'time required to get a boron content of 1023 atoms per m3 at a depth of 2 micro meter is = %.0f sec'%t\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.3 Page No : 208"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "activation energy = 2.93e-19 J\n",
+ "constant of the equation = 2.68e-04 m2/s\n",
+ "diffusion coefficient at 500°C = 3.27e-16 m2/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "t_1 = 736.;\t\t\t#Temperature in °C\n",
+ "t_2 = 782.;\t\t\t#Temperature in °C\n",
+ "T_1 = t_1+273;\t\t\t#Temperature in K\n",
+ "T_2 = t_2+273;\t\t\t#Temperature in K\n",
+ "D_1 = 2.*10**(-13);\t\t\t#Coefficient of diffusion at T_1 (in m2/s)\n",
+ "D_2 = 5.*10**(-13);\t\t\t#Coefficient of diffusion at T_2 (in m2/s)\n",
+ "k = 1.38*10**(-23);\t\t\t#in J/K\n",
+ "\n",
+ "# Calculation and Results\n",
+ "#math.log(d_1) = math.log(d_o)-E/(k*T_1)\n",
+ "#math.log(d_2) = math.log(d_o)-E/(k*T_2)\n",
+ "E = (math.log(D_1)-math.log(D_2))/((1/(k*T_1))-(1/(k*T_2)));\t\t\t#\n",
+ "print 'activation energy = %.2e J'%-E\n",
+ "D_o = 2.*10**(-13)/math.exp(E/(k*T_1));\n",
+ "print 'constant of the equation = %.2e m2/s'%D_o\n",
+ "t_4 = 500.;\t\t\t#Temperature in °C\n",
+ "T_4 = t_4+273;\t\t\t#Temperature in °K\n",
+ "D_4 = D_o*math.exp(E/(k*T_4));\t\t\t#diffusion coefficient at 500°C\n",
+ "print 'diffusion coefficient at 500°C = %.2e m2/s'%D_4\n",
+ "\n",
+ "# rounding off error"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.4 Page No : 210"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Time at 500*C that will produce the same diffusion as in 600*C in 110.4 Hours\n"
+ ]
+ }
+ ],
+ "source": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "D_500 = 4.8*10**(-14);\t\t\t#Diffusion coefficient for copper in aluminimum at 500*C(in m**2/s)\n",
+ "D_600 = 5.3*10**(-13);\t\t\t#Diffusion coefficient for copper in aluminimum at 600*C(in m**2/s)\n",
+ "t_600 = 10;\t\t\t#time of diffussion at 600*C(in Hours)\n",
+ "\n",
+ "# Calculation\n",
+ "#D_500*t_500 = D_600*t_600\n",
+ "t_500 = D_600*t_600/D_500;\t\t\t#time of diffussion at 500*C\n",
+ "\n",
+ "# Results\n",
+ "print 'Time at 500*C that will produce the same diffusion as in 600*C in %.1f Hours'%t_500\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Material_Science_by_S._L._Kakani_and_A._Kakani/ch8.ipynb b/Material_Science_by_S._L._Kakani_and_A._Kakani/ch8.ipynb
new file mode 100644
index 00000000..403c2c76
--- /dev/null
+++ b/Material_Science_by_S._L._Kakani_and_A._Kakani/ch8.ipynb
@@ -0,0 +1,241 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:8d9d7c620087dc26d3b736b06237bc35091ff6c91c27f59b3c7ac61a9f3126bd"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 8 :\n",
+ "Mechanical Properties of\n",
+ "Materials and Mechanical Tests"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8.1 Page No : 269"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "Y = 180*10**9;\t\t\t#Young's modulus of a certain material(in N/m**2)\n",
+ "E = 1.8;\t\t\t#true surface energy (in J/m**2)\n",
+ "c = (5./2)*10**-6;\t\t\t#Crack (in meter)\n",
+ "\n",
+ "# Calculation\n",
+ "F_strength = math.sqrt((2*Y*E/(math.pi*c)))\n",
+ "p = 1000*math.pi*c/(2*Y) - 1.8\n",
+ "\n",
+ "# Results\n",
+ "print 'fracture strength = %.2f MN/m**2'%(F_strength*10**-6)\n",
+ "print \"plastic work required to propogate the crack : %.1f \"%p\n",
+ "\n",
+ "# book answer is wrong\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "fracture strength = 287.24 MN/m**2\n",
+ "plastic work required to propogate the crack : -1.8 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8.2 Page No : 270"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "d_o = 12.7;\t\t\t#tensile test specimen diameter (in mm)\n",
+ "d = 12;\t\t\t#tensile test specimen diameter after load (in mm)\n",
+ "P = 76*10**3;\t\t\t#load(in N)\n",
+ "pi = 22./7;\n",
+ "A_o = (pi/4)*(d_o**2);\t\t\t#Initial area of cross section(in mm**2)\n",
+ "A = (pi/4)*(d**2);\t\t\t#area of cross section after load of 76 kN\n",
+ "\n",
+ "# Calculation\n",
+ "E_stress = P/A_o;\t\t\t#engineering stress\n",
+ "T_stress = P/A;\t\t\t#true stress\n",
+ "T_strain = math.log(A_o/A);\t\t\t#true strain\n",
+ "E_strain = math.exp(T_strain)-1;\t\t\t#engineering strain\n",
+ "\n",
+ "# Results\n",
+ "print 'engineering stress in = %.f N/mm**2'%E_stress\n",
+ "print 'true stress in = %.2f N/mm**2'%T_stress\n",
+ "print 'engineering strain = %.2f'%E_strain\n",
+ "print 'true strain = %.2f'%T_strain\n",
+ "\n",
+ "# rounding off error"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "engineering stress in = 600 N/mm**2\n",
+ "true stress in = 671.72 N/mm**2\n",
+ "engineering strain = 0.12\n",
+ "true strain = 0.11\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8.3 Page No : 271"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "Y = 210.*10**9;\t\t\t#Young's modulus of a certain material(in N/m**2)\n",
+ "E = 10.;\t\t\t#true surface energy (in J/m**2)\n",
+ "c = (100./2)*10**-6;\t\t\t#Crack (in meter)\n",
+ "pi = 3.14;\n",
+ "\n",
+ "# Calculation\n",
+ "F_strength = (2*Y*E/(pi*c))**(1/2.);\n",
+ "\n",
+ "# Results\n",
+ "print 'fracture strength in %.1e Newton/m**2'%F_strength\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "fracture strength in 1.6e+08 Newton/m**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8.4 Page No : 271"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "l_o = 305.*10**-3;\t\t\t#length of copper piece(in meter)\n",
+ "E = 110.*10**9;\t\t\t#surface energy\n",
+ "stress = 276.*10**6;\t\t\t#in Pa\n",
+ "\n",
+ "# Calculation\n",
+ "dl = stress*l_o/E;\t\t\t#resultant elongation(in meter)\n",
+ "\n",
+ "# Results\n",
+ "print 'resultant elongation in = %.2f mm'%(dl*10**3)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "resultant elongation in = 0.77 mm\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8.5 Page No : 271"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "T_stress = 415.;\t\t\t#True stress (in Megapascal)\n",
+ "T_strain = 0.10;\t\t\t#True strain \n",
+ "K = 1035.;\t\t\t#(in Megapascal)\n",
+ "\n",
+ "# Calculation\n",
+ "n = (math.log(T_stress)-math.log(K))/math.log(T_strain);\t\t\t#\n",
+ "\n",
+ "# Results\n",
+ "print 'Strain hardening exponent for an alloy = %.2f'%n\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Strain hardening exponent for an alloy = 0.40\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Material_Science_by_S._L._Kakani_and_A._Kakani/ch9.ipynb b/Material_Science_by_S._L._Kakani_and_A._Kakani/ch9.ipynb
new file mode 100644
index 00000000..a7247f31
--- /dev/null
+++ b/Material_Science_by_S._L._Kakani_and_A._Kakani/ch9.ipynb
@@ -0,0 +1,155 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:c6e5e1c4294a719070d1412094c85ff6cd99718ea66c74abcd23864bb9db9fd5"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 9 :\n",
+ "Alloys Systems Phase Diagrams\n",
+ "and Phase Transformations"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.1 Page No : 317"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Calculation\n",
+ "#Fulcrum is at 0.5% carbon\n",
+ "#from lever rule\n",
+ "Pro_f = ((0.80-0.5)/(0.80-0.0))*100;\t\t\t# % Proeutectoid ferrite\n",
+ "Pea_f = 100-Pro_f;\t\t\t# % Pearlite ferrite\n",
+ "\n",
+ "# Results\n",
+ "print 'Proeutectoid ferrite = %.1f %%'%Pro_f\n",
+ "print 'Pearlite ferrite = %.1f %%'%Pea_f\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Proeutectoid ferrite = 37.5 %\n",
+ "Pearlite ferrite = 62.5 %\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.2 Page No : 317"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "N = 2;\n",
+ "C = 2;\n",
+ "\t\t\t#F = C-P+N\n",
+ "P_1 = 1;\n",
+ "P_2 = 2;\n",
+ "P_3 = 3;\n",
+ "P_4 = 4;\n",
+ "\n",
+ "# Calculation\n",
+ "F_1 = C-P_1+N;\n",
+ "F_2 = C-P_2+N;\n",
+ "F_3 = C-P_3+N;\n",
+ "F_4 = C-P_4+N;\n",
+ "\n",
+ "# Results\n",
+ "print 'Degrees of freedom for 1 phase = ',F_1\n",
+ "print 'Degrees of freedom for 2 phases = ',F_2\n",
+ "print 'Degrees of freedom for 3 phases = ',F_3\n",
+ "print 'Degrees of freedom for 4 phases = ',F_4\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Degrees of freedom for 1 phase = 3\n",
+ "Degrees of freedom for 2 phases = 2\n",
+ "Degrees of freedom for 3 phases = 1\n",
+ "Degrees of freedom for 4 phases = 0\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.3 Page No : 318"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\t\t\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "P = 4;\t\t\t#Number of phases exhibit by a material\n",
+ "F = 0;\t\t\t#Minimum degrees of freedom\n",
+ "\n",
+ "# Calculation\n",
+ "#modified form of the phase rule F = C-P+1\n",
+ "C = F+P-1;\t\t\t#minimum number of components in the system\n",
+ "\n",
+ "# Results\n",
+ "print 'the minimum number of components in the system = ',C\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the minimum number of components in the system = 3\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Material_Science_by_S._L._Kakani_and_A._Kakani/screenshots/10.png b/Material_Science_by_S._L._Kakani_and_A._Kakani/screenshots/10.png
new file mode 100644
index 00000000..e23d6998
--- /dev/null
+++ b/Material_Science_by_S._L._Kakani_and_A._Kakani/screenshots/10.png
Binary files differ
diff --git a/Material_Science_by_S._L._Kakani_and_A._Kakani/screenshots/16.png b/Material_Science_by_S._L._Kakani_and_A._Kakani/screenshots/16.png
new file mode 100644
index 00000000..ddf5c27d
--- /dev/null
+++ b/Material_Science_by_S._L._Kakani_and_A._Kakani/screenshots/16.png
Binary files differ
diff --git a/Material_Science_by_S._L._Kakani_and_A._Kakani/screenshots/7.png b/Material_Science_by_S._L._Kakani_and_A._Kakani/screenshots/7.png
new file mode 100644
index 00000000..ec00abfc
--- /dev/null
+++ b/Material_Science_by_S._L._Kakani_and_A._Kakani/screenshots/7.png
Binary files differ