diff options
author | Trupti Kini | 2016-08-26 23:30:24 +0600 |
---|---|---|
committer | Trupti Kini | 2016-08-26 23:30:24 +0600 |
commit | e05977ece06f8cd61b53adcff9febb2e443de861 (patch) | |
tree | 032a1bd0616e6338797e6ce9abd2e08f6b51319e /Material_Science_by_S._L._Kakani_and_A._Kakani | |
parent | 189c5cc9de1ac8d3e79f23c42ce8fe462e151825 (diff) | |
download | Python-Textbook-Companions-e05977ece06f8cd61b53adcff9febb2e443de861.tar.gz Python-Textbook-Companions-e05977ece06f8cd61b53adcff9febb2e443de861.tar.bz2 Python-Textbook-Companions-e05977ece06f8cd61b53adcff9febb2e443de861.zip |
Added(A)/Deleted(D) following books
A Introduction_to_Thermal_Systems_Engineering:_Thermodynamics,_Fluid_Mechanics,_and_Heat_Transfe_by_Moran,_Shapiro,_Munson,_Dewitt/README.txt
A Material_Science_by_S._L._Kakani_and_A._Kakani/README.txt
A Material_Science_by_S._L._Kakani_and_A._Kakani/ch10.ipynb
A Material_Science_by_S._L._Kakani_and_A._Kakani/ch11.ipynb
A Material_Science_by_S._L._Kakani_and_A._Kakani/ch12.ipynb
A Material_Science_by_S._L._Kakani_and_A._Kakani/ch13.ipynb
A Material_Science_by_S._L._Kakani_and_A._Kakani/ch14.ipynb
A Material_Science_by_S._L._Kakani_and_A._Kakani/ch15.ipynb
A Material_Science_by_S._L._Kakani_and_A._Kakani/ch16.ipynb
A Material_Science_by_S._L._Kakani_and_A._Kakani/ch18.ipynb
A Material_Science_by_S._L._Kakani_and_A._Kakani/ch2.ipynb
A Material_Science_by_S._L._Kakani_and_A._Kakani/ch3.ipynb
A Material_Science_by_S._L._Kakani_and_A._Kakani/ch4.ipynb
A Material_Science_by_S._L._Kakani_and_A._Kakani/ch5.ipynb
A Material_Science_by_S._L._Kakani_and_A._Kakani/ch6.ipynb
A Material_Science_by_S._L._Kakani_and_A._Kakani/ch7.ipynb
A Material_Science_by_S._L._Kakani_and_A._Kakani/ch8.ipynb
A Material_Science_by_S._L._Kakani_and_A._Kakani/ch9.ipynb
A Material_Science_by_S._L._Kakani_and_A._Kakani/screenshots/10.png
A Material_Science_by_S._L._Kakani_and_A._Kakani/screenshots/16.png
A Material_Science_by_S._L._Kakani_and_A._Kakani/screenshots/7.png
A Thermodynamics_by_K._M._Gupta/README.txt
A Thermodynamics_by_K._M._Gupta/ch1.ipynb
A Thermodynamics_by_K._M._Gupta/ch10.ipynb
A Thermodynamics_by_K._M._Gupta/ch11.ipynb
A Thermodynamics_by_K._M._Gupta/ch2.ipynb
A Thermodynamics_by_K._M._Gupta/ch3.ipynb
A Thermodynamics_by_K._M._Gupta/ch4.ipynb
A Thermodynamics_by_K._M._Gupta/ch5.ipynb
A Thermodynamics_by_K._M._Gupta/ch6.ipynb
A Thermodynamics_by_K._M._Gupta/ch7.ipynb
A Thermodynamics_by_K._M._Gupta/ch8.ipynb
A Thermodynamics_by_K._M._Gupta/ch9.ipynb
A Thermodynamics_by_K._M._Gupta/screenshots/1.png
A Thermodynamics_by_K._M._Gupta/screenshots/2.png
A Thermodynamics_by_K._M._Gupta/screenshots/3.png
Diffstat (limited to 'Material_Science_by_S._L._Kakani_and_A._Kakani')
20 files changed, 4304 insertions, 0 deletions
diff --git a/Material_Science_by_S._L._Kakani_and_A._Kakani/README.txt b/Material_Science_by_S._L._Kakani_and_A._Kakani/README.txt new file mode 100644 index 00000000..21e02a20 --- /dev/null +++ b/Material_Science_by_S._L._Kakani_and_A._Kakani/README.txt @@ -0,0 +1,10 @@ +Contributed By: Girish Vora +Course: btech +College/Institute/Organization: abbccus technology, Ahmedabad +Department/Designation: Developer +Book Title: Material Science +Author: S. L. Kakani and A. Kakani +Publisher: New Age International Publishers, New Delhi +Year of publication: 2005 +Isbn: 81-224-1528-8 +Edition: 1
\ No newline at end of file diff --git a/Material_Science_by_S._L._Kakani_and_A._Kakani/ch10.ipynb b/Material_Science_by_S._L._Kakani_and_A._Kakani/ch10.ipynb new file mode 100644 index 00000000..a954cb7d --- /dev/null +++ b/Material_Science_by_S._L._Kakani_and_A._Kakani/ch10.ipynb @@ -0,0 +1,65 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:8423f8dd8cef07dd1b306293d3f89231a94157a35ba4e1f68dddcd1c471e99b2" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 10 :\n", + "Heat Treatment" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 10.1 Page No : 343" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables\n", + "N = 8;\t\t\t#ASTM grain size number\n", + "n = 2**(N-1);\t\t\t#Number of grains per inch square at a magnification\n", + "N_1 = n*100.*100;\t\t\t#Number of grains per inch square without magnification\n", + "\n", + "# Calculation\n", + "N_2 = N_1/(25.4)**2;\t\t\t#Number of grains per mm square without magnification\n", + "A_a = 1./(N_2);\t\t\t#Average area of each grain(in mm**2)\n", + "D = (A_a)**(1./2);\t\t\t#Average grain diameter(in mm)\n", + "\n", + "# Results\n", + "print 'Average grain diameter = %.3f mm'%D\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Average grain diameter = 0.022 mm\n" + ] + } + ], + "prompt_number": 1 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Material_Science_by_S._L._Kakani_and_A._Kakani/ch11.ipynb b/Material_Science_by_S._L._Kakani_and_A._Kakani/ch11.ipynb new file mode 100644 index 00000000..cf7a4c6a --- /dev/null +++ b/Material_Science_by_S._L._Kakani_and_A._Kakani/ch11.ipynb @@ -0,0 +1,163 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:ccc34ac1a23df3ea87c02161eb6957101119525a84db5440299d3d3e0c490bb9" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 11 :\n", + "Deformation of Materials" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 11.1 Page No : 369" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables\n", + "h_1 = 1;\n", + "k_1 = 1;\n", + "l_1 = 1;\n", + "#Miller indices of slip plane\n", + "h_2 = 1;\n", + "k_2 = -1;\n", + "l_2 = 1;\n", + "#Miller indices of stress plane\n", + "h_3 = 1;\n", + "k_3 = 1;\n", + "l_3 = 0;\n", + "\n", + "# Calculation\n", + "#Miller indices of slip direction\n", + "A = (h_1*h_2+k_1*k_2+l_1*l_2)/(((h_1**2+k_1**2+l_1**2)**(1./2))*((h_2**2+k_2**2+l_2**2)**(1./2)));\t\t\t#Value of math.cos(x) where x = angle between slip plane and stress plane\n", + "B = (h_1*h_3+k_1*k_3+l_1*l_3)/(((h_1**2+k_1**2+l_1**2)**(1./2))*((h_3**2+k_3**2+l_3**2)**(1./2)));\t\t\t#Value of math.cos(y) where y = angle between slip direction and stress direction\n", + "C = (1-A**2)**(1./2);\t\t\t#Value of math.sin(x)\n", + "stress = 3.5;\t\t\t#Applied Stress in Mpa\n", + "T_cr = stress*A*B*C;\t\t\t#Critical resolved shear stress(in MPa)\n", + "\n", + "# Results\n", + "print 'Critical resolved shear stress in = %.3f MPa'%T_cr\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Critical resolved shear stress in = 0.898 MPa\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 11.3 Page No : 370" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables\n", + "D = 0.022;\t\t\t#Grain diameter(in mm)\n", + "d = D*10**(-3);\t\t\t#Grain diameter(in m)\n", + "K = 0.63;\t\t\t#Constant(in MNm**(-3/2))\n", + "\n", + "# Calculation\n", + "sigma_i = 80;\t\t\t#in MNm**-2\n", + "sigma_y = sigma_i+K*d**(-1./2);\t\t\t#Yield stress for a polycrystalline alloy\n", + "\n", + "# Results\n", + "print 'Yield stress for a polycrystalline alloy in = %.2f MN/m**2'%sigma_y\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Yield stress for a polycrystalline alloy in = 214.32 MN/m**2\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 11.4 Page No : 370" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables\n", + "sigma_y1 = 120;\t\t\t#primary yield strength of polycrystalline material(in MN*m**-2)\n", + "sigma_y2 = 220;\t\t\t#increased yield strength of polycrystalline material(in MN*m**-2)\n", + "d_1 = 0.04*10**(-3);\t\t\t#primary grain diameter(in meter)\n", + "d_2 = 0.01*10**(-3);\t\t\t#grain diameter after decreasing(in meter)\n", + "\n", + "# Calculation\n", + "#sigma_y1 = sigma_i+K*(d_1)**(-1/2)\n", + "#sigma_y2 = sigma_i+K*(d_2)**(-1/2)\n", + "#putting the values and solving the equation\n", + "K = (220-120)/((d_2**(-1./2))-((d_1**(-1./2))));\t\t\t#consmath.tant(in MN*m(-3/2))\n", + "sigma_i = sigma_y1-K*(d_1)**(-1./2);\t\t\t#in MN*m**-2\n", + "d = 1./((10**4)*(256./645))**(1./2);\t\t\t#grain diameter for grain size ASTM 9(in mm)\n", + "D = d*10**(-3);\t\t\t #grain diameter for grain size ASTM 9(in meter)\n", + "sigma_y = sigma_i+K*(D)**(-1./2);\t\t\t#Yield stress for a polycrystalline alloy for grain size ASTM 9(in MN*m**-2)\n", + "\n", + "# Results\n", + "print 'Yield stress for a polycrystalline alloy for grain size ASTM 9 in = %.0f MN*m**-2'%round(sigma_y)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Yield stress for a polycrystalline alloy for grain size ASTM 9 in = 179 MN*m**-2\n" + ] + } + ], + "prompt_number": 3 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Material_Science_by_S._L._Kakani_and_A._Kakani/ch12.ipynb b/Material_Science_by_S._L._Kakani_and_A._Kakani/ch12.ipynb new file mode 100644 index 00000000..025ece08 --- /dev/null +++ b/Material_Science_by_S._L._Kakani_and_A._Kakani/ch12.ipynb @@ -0,0 +1,105 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:030c93395768b2f42836485175665cce8f1a2b5170495494504b4c018dda5636" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 12 :\n", + "Oxidation and Corrosion" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 12.1 Page No : 395" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables\n", + "D = 320*10**-3;\t\t\t#in meter\n", + "L = 1;\t\t\t#in meter\n", + "\n", + "# Calculation\n", + "A = math.pi*D*L;\t\t\t#Surface area in meter**2\n", + "l = (200/A);\n", + "\n", + "# Results\n", + "print 'the distance at which magnisium anode capable of giving 2MA = %.0f meters'%l\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "the distance at which magnisium anode capable of giving 2MA = 199 meters\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 12.2 Page No : 396" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables\n", + "W = 0.0243;\t\t\t#1 mole of magnesium weight(in Kg)\n", + "C = 2*96490;\t\t\t#used charge (in A-s)\n", + "A = 15*10**(-3);\t\t\t#current density (in A/metre2)\n", + "t = 10;\t\t\t#time (in years)\n", + "T = 10*365*24*3600;\t\t\t#time (in sec)\n", + "\n", + "# Calculation\n", + "#amount of magnesium required = charge required per m2 of hull surface for a design life of 10 years/(used charge for anode)\n", + "Mg_required = W*A*T/C;\t\t\t#magnesium required per square meter of the hull surface for a design life of 10 years\n", + "\n", + "# Results\n", + "print 'magnesium required per square meter of the hull surface for a design life of 10 years = %.1f Kg/m2'%Mg_required\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "magnesium required per square meter of the hull surface for a design life of 10 years = 0.6 Kg/m2\n" + ] + } + ], + "prompt_number": 2 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Material_Science_by_S._L._Kakani_and_A._Kakani/ch13.ipynb b/Material_Science_by_S._L._Kakani_and_A._Kakani/ch13.ipynb new file mode 100644 index 00000000..8e0b482d --- /dev/null +++ b/Material_Science_by_S._L._Kakani_and_A._Kakani/ch13.ipynb @@ -0,0 +1,65 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:b68069a86d982f0fbb7f292544735818ed7473431281a6c20f1e7336e739e90b" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 13 :\n", + "Thermal and Optical\n", + "Properties of Materials" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 13.1 Page No : 417" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables \n", + "alpha = 20*10**(-6);\t\t\t#linear coefficient of thermal expansion per\u00b0C\n", + "Sigma = -(172);\t\t\t#compressive stress MPa\n", + "T = 20;\t\t\t#Temprature at which rod is stress free(in \u00b0C)\n", + "\n", + "# Calculation\n", + "E = 100*10**3;\t\t\t#modulus of elasticity (in MPa)\n", + "T_f = T-(Sigma/(alpha*E));\t\t\t#maximum temperature the rod may be heated without exceeding a compressive stress of 172 MPa\n", + "\n", + "# Results\n", + "print 'maximum temperature(in \u00b0C) the rod may be heated without exceeding a compressive stress of 172 MPa = %.0f \u00b0C'%T_f\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "maximum temperature(in \u00b0C) the rod may be heated without exceeding a compressive stress of 172 MPa = 106 \u00b0C\n" + ] + } + ], + "prompt_number": 3 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Material_Science_by_S._L._Kakani_and_A._Kakani/ch14.ipynb b/Material_Science_by_S._L._Kakani_and_A._Kakani/ch14.ipynb new file mode 100644 index 00000000..caa4b3ba --- /dev/null +++ b/Material_Science_by_S._L._Kakani_and_A._Kakani/ch14.ipynb @@ -0,0 +1,403 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:c3307fcf5401111c18823817fd228cc6b9116793515454b94be6aa8bf3b80a0e" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 14 :\n", + "Electrical and Magnetic\n", + "Properties of Materials" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 14.1 Page No : 443" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables\n", + "l = 100;\t\t\t#length of wire\n", + "p = 2.66*10**(-8);\t\t\t#resistivity\n", + "\n", + "# Calculation\n", + "A = 3*10**(-6);\t\t\t#cross sectional area\n", + "R = p*l/A;\t\t\t#resismath.tance of an aluminium wire\n", + "\n", + "# Results\n", + "print 'resistance of an aluminium wire = %.3e Ohm'%R\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resistance of an aluminium wire = 8.867e-01 Ohm\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 14.2 Page No : 443" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables\n", + "R_Cu = 1.56;\t\t\t#Resistivity of pure copper(in micro-ohm-cm)\n", + "R_CuNi = 4.06;\t\t\t#Resistivity of Cu containing two atomic percent (in micro-ohm-cm)\n", + "R_Ni = (R_CuNi-R_Cu)/2;\t\t\t#Increase in resistivity due to one atomic % Ni\n", + "\n", + "# Calculation\n", + "R_CuAg = 1.7;\t\t\t#resistivity of copper, containing one atomic percent silver (in micro-ohm-cm)\n", + "R_Ag = R_CuAg-R_Cu;\t\t\t#Increase in resistivity due to one atomic % Ag\n", + "R_CuNiAg = R_Cu+R_Ni+3*R_Ag;\t\t\t#Resistivity of copper alloy containing one atomic percent Ni and 3 atomic percent Ag\n", + "\n", + "# Results\n", + "print 'Resistivity of copper alloy containing one atomic percent Ni and 3 atomic percent Ag = %.2f micro-ohm-cm'%R_CuNiAg\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Resistivity of copper alloy containing one atomic percent Ni and 3 atomic percent Ag = 3.23 micro-ohm-cm\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 14.3 Page No : 443" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables\n", + "R_Cu = 1.8*10**(-8);\t\t\t#resistivity of pure copper at room temperature \n", + "R_CuNi = 7*10**(-8);\t\t\t#resistivity of Cu 4% Ni alloy at room temperature \n", + "\n", + "# Calculation\n", + "R_Ni = (R_CuNi-R_Cu)/4;\t\t\t#resistivity due to Impurity scattering per % of Ni\n", + "\n", + "# Results\n", + "print 'resistivity due to impurity scattering per percent of Ni in the Cu lattice = %.1e ohm-meter'%R_Ni\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resistivity due to impurity scattering per percent of Ni in the Cu lattice = 1.3e-08 ohm-meter\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 14.4 Page No : 455" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables\n", + "C = 10**(-9);\t\t\t#capacitance(in F)\n", + "d = 2*10**(-3);\t\t\t#distance of separation in a parallel plate condenser\n", + "E_o = 8.854*10**(-12);\t\t\t#dielectric consmath.tant\n", + "\n", + "# Calculation\n", + "A = (10*10**(-3))*(10*10**(-3));\t\t\t#area of parallel plate condenser\n", + "#C = E_o*E_r*A/d\n", + "E_r = C*d/(E_o*A);\t\t\t#Relative dielectric constant\n", + "\n", + "# Results\n", + "print 'Relative dielectric constant of a barium titanate crystal %.0f'%(E_r)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Relative dielectric constant of a barium titanate crystal 2259\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 14.5 Page No : 456" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables\n", + "q = 1.6*10**(-19);\t\t\t#charge (in C)\n", + "d_1 = 0.06\t\t\t#shift of the titanium ion from the body centre (in \u00c5)\n", + "d_2 = 0.08\t\t\t#shift of the oxygen anions of the side faces (in \u00c5)\n", + "d_3 = 0.06\t\t\t#shift of the oxygen anions of the top and bottom face (in \u00c5) \n", + "\n", + "# Calculation\n", + "D_1 = d_1*10**(-10);\t\t\t#shift of the titanium ion from the body centre (in m)\n", + "D_2 = d_2*10**(-10);\t\t\t#shift of the oxygen anions of the side faces (in m)\n", + "D_3 = d_3*10**(-10);\t\t\t#shift of the oxygen anions of the top and bottom face (in m)\n", + "U_1 = 4*q*D_1;\t\t\t#dipole moment due to two O2\u2013 ions on the four side faces(in C-m)\n", + "U_2 = 2*q*D_2;\t\t\t#dipole moment due to one O2\u2013 on top and bottom(in C-m)\n", + "U_3 = 4*q*D_3;\t\t\t#dipole moment due to one Ti4+ ion at body centre(in C-m)\n", + "U = U_1+U_2+U_3;\t\t\t#Total dipole moment(in C-m)\n", + "V = 4.03*((3.98)**2)*10**(-30);\t\t\t#volume(in m3)\n", + "P = U/V;\t\t\t#polarization the total dipole moments per unit volume\n", + "\n", + "# Results\n", + "print 'polarization = %.2f C/m**2'%P\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "polarization = 0.16 C/m**2\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 14.6 Page No : 478" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables\n", + "V = ((2.87)**3)*10**(-30)\t\t\t#Volume of unit cell of BCC iron (in m**3)\n", + "N = 2.\t\t\t#Number of atoms in the unit cell\n", + "\n", + "# Calculation\n", + "M = 1750.*10**3;\t\t\t#saturation magnetization of BCC Iron A/m\n", + "M_Net = V*M*(1./N)\t\t\t#net magnetic moment per atom\n", + "Bohr_magneton = 9.273*10**(-24);\t\t\t#Bohr_magneton (magnetic moment) in A/m2\n", + "M_moment = M_Net/Bohr_magneton;\t\t\t#The magnetic moment (in units of U_B)\n", + "\n", + "# Results\n", + "print 'The magnetic moment (in units of U_B) = %.1f'%M_moment\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The magnetic moment (in units of U_B) = 2.2\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 14.7 Page No : 479" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables\n", + "p = 8.90*10**6;\t\t\t#density of nickel in gm/m3. \n", + "N_A = 6.023*10**23;\t\t\t#Avogadro\u2019s number atoms/mol\n", + "At_w = 58.71;\t\t\t#Atomic weight of Ni in gm/mol\n", + "\n", + "# Calculation\n", + "N = p*N_A/At_w;\t\t\t#number of atoms/m3\n", + "U_B = 9.273*10**(-24);\t\t\t#Bohr_magneton\n", + "M_s = 0.60*U_B*N;\t\t\t#saturation magnetization\n", + "pi = 22./7;\n", + "U_o = 4*pi*10**(-7);\t\t\t#magnetic consmath.tant\n", + "B_s = U_o*M_s;\t\t\t#Saturation flux density\n", + "\n", + "# Results\n", + "print 'the saturation magnetization = %.1e'%M_s\n", + "print 'Saturation flux density = %.2f'%B_s\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "the saturation magnetization = 5.1e+05\n", + "Saturation flux density = 0.64\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 14.8 Page No : 479" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables\n", + "#Each cubic unit cell of ferrous ferric oxide contains 8 Fe2+ and 16 Fe3+ ions and\n", + "n_b = 32;\t\t\t#\n", + "U_B = 9.273*10**(-24);\t\t\t#Bohr_magneton\n", + "\n", + "# Calculation\n", + "a = 0.839*10**(-9);\t\t\t#the unit cell edge length in m\n", + "V = a**3;\t\t\t#volume(in m3)\n", + "M_s = n_b*U_B/V;\t\t\t#the saturation magnetization\n", + "\n", + "# Results\n", + "print 'the saturation magnetization = %.0e A/m'%M_s\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "the saturation magnetization = 5e+05 A/m\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 14.9 Page No : 479" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "import math \n", + "\n", + "\n", + "# Variables\n", + "#hysteresis loss (Ph) and the induced emf loss (Pe) are proportional to the frequency\n", + "#Pe is proportional to the square of the induced emf (Pe)\n", + "#Pe + Ph = 750 W (at 25 Hz)\n", + "#4Pe + 2Ph = 2300 W(at 50Hz)\n", + "#solving equation\n", + "P_e = 800./2;\t\t\t#induced emf loss \n", + "\n", + "# Calculation\n", + "I_d = 4*P_e;\t\t\t#The eddy current loss at the normal voltage and frequency\n", + "\n", + "# Results\n", + "print 'The eddy current loss at the normal voltage and frequency = %.0f W'%I_d\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The eddy current loss at the normal voltage and frequency = 1600 W\n" + ] + } + ], + "prompt_number": 1 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Material_Science_by_S._L._Kakani_and_A._Kakani/ch15.ipynb b/Material_Science_by_S._L._Kakani_and_A._Kakani/ch15.ipynb new file mode 100644 index 00000000..80dc931f --- /dev/null +++ b/Material_Science_by_S._L._Kakani_and_A._Kakani/ch15.ipynb @@ -0,0 +1,197 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:ba1924948de9c5df666fb8372fa076fb175eef8afac1d23c28cb6aaf92d05c98" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 15 :\n", + "Semiconductors" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 15.1 Page No : 520" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables\n", + "U_n = 1350.\t\t\t#mobility of electron in cm2/volt-sec \n", + "U_h = 480.\t\t\t#hole mobility in cm2/volt-sec\n", + "\n", + "# Calculation\n", + "Sigma = 1.072*10**10\t\t\t#density of electron hole pair per cc at 300\u00b0K for a pure silicon crystal\n", + "e = 1.6*10**(-19);\t\t\t#charge on the electron in C\n", + "Sigma_i = Sigma*e*(U_n+U_h);\t\t\t#Conductivity of pure silicon crystal\n", + "p_i = 1/(Sigma_i);\t\t\t#Resistivity of silicon crystal in Ohm-cm\n", + "P_i = p_i*10**(-2);\t\t\t#Resistivity of silicon crystal in Ohm-m\n", + "\n", + "# Results\n", + "print 'Conductivity of pure silicon crystal = %.2e mho/cm'%Sigma_i\n", + "print 'Resistivity of silicon crystal = %.2e Ohm-m'%P_i\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Conductivity of pure silicon crystal = 3.14e-06 mho/cm\n", + "Resistivity of silicon crystal = 3.19e+03 Ohm-m\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 15.2 Page No : 521" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables\n", + "U = 1200;\t\t\t#electron mobility in cm2/Volt-sec\n", + "e = 1.6*10**(-19);\t\t\t#charge on the electron in C\n", + "\n", + "# Calculation\n", + "n = 10**13;\t\t\t#concentration of phosphorus\n", + "sigma = U*e*n;\t\t\t#conductivity of crystal in mho/cm\n", + "p_i = 1/sigma;\t\t\t#resistivity of silicon wafer if all donor atom are active\n", + "\n", + "# Results\n", + "print 'resistivity of silicon wafer if all donor atom are active is %.1e ohm-cm'%p_i\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resistivity of silicon wafer if all donor atom are active is 5.2e+02 ohm-cm\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 15.3 Page No : 521" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables\n", + "U_n = 3900\t\t\t#mobility of electron in cm2/volt-sec \n", + "U_h = 1900\t\t\t#hole mobility in cm2/volt-sec\n", + "n_i = 2.5*10**13;\t\t\t#concentration of electron\n", + "u_n = U_n*10**(-4);\t\t\t#mobility of electron in m2/volt-sec \n", + "u_h = U_h*10**(-4);\t\t\t#hole mobility in m2/volt-sec\n", + "e = 1.6*10**(-19);\t\t\t#charge on the electron in C\n", + "\n", + "# Calculation\n", + "Sigma_i = n_i*e*(u_n+u_h)*10**6;\t\t\t#Conductivity\n", + "p_i = 1/(Sigma_i);\t\t\t#resistivity of intrinsic germanium rod\n", + "l = 1*10**(-2);\t\t\t#length of germanium rod in m\n", + "w = 1*10**(-3);\t\t\t#width of germanium rod in m\n", + "t = 1*10**(-3);\t\t\t#thick of germanium rod in m\n", + "A = w*t;\t\t\t#Area of cross section in m2\n", + "R = p_i*l/A;\t\t\t#Resistance of an intrinsic germanium rod in Ohm\n", + "\n", + "# Results\n", + "print 'Resistance of an intrinsic germanium rod is %.2f K-Ohm'%(R/10**3)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Resistance of an intrinsic germanium rod is 4.31 K-Ohm\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 15.4 Page No : 521" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables\n", + "N_a = 1.1*10**20;\t\t\t#acceptor density in atoms/m3\n", + "n_i = 2.5*10**19;\t\t\t#concentration of majority carrier per m3 \n", + "\n", + "# Calculation\n", + "n_p = (n_i**2)/N_a;\t\t\t#intrinsic density \n", + "R = n_p/n_i;\t\t\t#Ratio of n_p and n_i\n", + "\n", + "# Results\n", + "print 'n_p/n_i = %.2f'%R\n", + "\n", + "# rounding off error" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "n_p/n_i = 0.23\n" + ] + } + ], + "prompt_number": 1 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Material_Science_by_S._L._Kakani_and_A._Kakani/ch16.ipynb b/Material_Science_by_S._L._Kakani_and_A._Kakani/ch16.ipynb new file mode 100644 index 00000000..3588418c --- /dev/null +++ b/Material_Science_by_S._L._Kakani_and_A._Kakani/ch16.ipynb @@ -0,0 +1,70 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:56faf14394c3ea1277cb1f85c7bc70faefc404ada370b067ab1e7cf4d70ea9ba" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 16 :\n", + "Superconductivity and\n", + "Superconducting Materials" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 16.1 Page No : 551" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables\n", + "T_c = 4.2;\t\t\t#critical temperature of mercury\n", + "k = 1.4*10**(-23);\t\t\t#\n", + "e = 1.6*10**(-19);\t\t\t#charge on the electron \n", + "\n", + "# Calculation\n", + "E_g = 3*k*T_c;\t\t\t#energy gap (in Joule)\n", + "E = E_g/e;\t\t\t#energy gap (in electron volt)\n", + "h = 6.6*10**(-34)\t\t\t# in J-s\n", + "c = 3*10**8;\t\t\t#in m/s\n", + "wavelength = h*c/E_g;\t\t\t#wavelength of a photon (in m)\n", + "\n", + "# Results\n", + "print 'energy gap = %.1e ev'%E\n", + "print 'wavelength of a photon = %.1e m'%wavelength\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "energy gap = 1.1e-03 ev\n", + "wavelength of a photon = 1.1e-03 m\n" + ] + } + ], + "prompt_number": 1 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Material_Science_by_S._L._Kakani_and_A._Kakani/ch18.ipynb b/Material_Science_by_S._L._Kakani_and_A._Kakani/ch18.ipynb new file mode 100644 index 00000000..304b44ec --- /dev/null +++ b/Material_Science_by_S._L._Kakani_and_A._Kakani/ch18.ipynb @@ -0,0 +1,104 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:c178e1bd9fc41dc391bdd628b47b12bf3cc848e75815d75ccf67815a215adacd" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 18 :\n", + "Composites" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 18.1 Page No : 610" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables\n", + "E_f = 69;\t\t\t#modulus of elasticity in GPa\n", + "V_f = 40./100;\t\t\t#Volume of glass fibres %\n", + "E_m = 3.4;\t\t\t#modulus (in GPa)\n", + "V_m = 60./100;\t\t\t#Volume of polyester remath.sin %\n", + "\n", + "# Calculation\n", + "E_cl = E_m*V_m+E_f*V_f;\t\t\t#modulus of elasticity (in Gpa)\n", + "\n", + "# Results\n", + "print 'Modulus of elasticity is %.0f Gpa'%(E_cl)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Modulus of elasticity is 30 Gpa\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 18.2 Page No : 611" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables\n", + "E_f = 69;\t\t\t#modulus of elasticity in GPa\n", + "V_f = 40./100;\t\t\t#Volume of glass fibres %\n", + "E_m = 3.4;\t\t\t#modulus (in GPa)\n", + "V_m = 60./100;\t\t\t#Volume of polyester remath.sin %\n", + "\n", + "# Calculation\n", + "E_cl = E_m*E_f/(E_m*V_f+E_f*V_m);\t\t\t#modulus of elasticity when the stress is applied perpendicular to the direction of the fibre alignment(in Gpa)\n", + "\n", + "# Results\n", + "print 'modulus of elasticity when the stress is applied perpendicular to the direction of the fibre alignment = %.1f Gpa'%E_cl\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "modulus of elasticity when the stress is applied perpendicular to the direction of the fibre alignment = 5.5 Gpa\n" + ] + } + ], + "prompt_number": 1 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Material_Science_by_S._L._Kakani_and_A._Kakani/ch2.ipynb b/Material_Science_by_S._L._Kakani_and_A._Kakani/ch2.ipynb new file mode 100644 index 00000000..4478311a --- /dev/null +++ b/Material_Science_by_S._L._Kakani_and_A._Kakani/ch2.ipynb @@ -0,0 +1,516 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 2 : Atomic structure and electronic configuration" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.1 Page No : 32" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "distance of the closest approach alpha particles from the copper nucleus(in meter) = 1.668e-14\n" + ] + } + ], + "source": [ + "import math\n", + "\n", + "# Variables\n", + "Eg_k = 5.; #kinetic energy of alpha particles(in MeV)\n", + "Eg_K = 5.*(10**6)*1.6*(10**-19); #kinetic energy of alpha particles(in J)\n", + "mv2 = 2.*Eg_K;\n", + "pi = 22./7;\n", + "phi = 180.; #firing angle\n", + "Z = 29.; #Atomic number\n", + "\n", + "# Calculation\n", + "e = 1.6*(10**-19);\t\t\t#electron charge(in C)\n", + "Eo = 8.85*10**-12;\t\t\t#permittivity of free space\n", + "d = (Z*e**2/(2*pi*Eo*mv2))*(1+1)\t\t\t#;\n", + "\n", + "# Results\n", + "print 'distance of the closest approach alpha particles from the copper nucleus(in meter) = %.3e'%d\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.2 Page No : 33" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "first orbit radius of hydrogen atom(in m) = 5.3077e-11\n", + "Orbital frequency of electron(in Hz) = 6.5407e+15\n" + ] + } + ], + "source": [ + "\n", + "import math \n", + "\n", + "# Variables\n", + "e = 1.6*10**(-19);\t\t\t#electron charge(in C)\n", + "m = 9.1*10**(-31);\t\t\t#mass of electron(in Kg)\n", + "E_o = 8.854*10**(-12);\t\t\t#permittivity of free space\n", + "h = 6.625*10**(-34);\t\t\t#Planck constant\n", + "n = 1;\t\t\t#Orbit number\n", + "Z = 1;\t\t\t#atomic number\n", + "pi = 22./7;\n", + "\n", + "# Calculation and Results\n", + "r_1 = (E_o*n**2*h**2)/(pi*m*Z**2*e**2);\t\t\t#first orbit radius of hydrogen atom\n", + "print 'first orbit radius of hydrogen atom(in m) = %.4e'%r_1\n", + "Freq = m*(Z**2)*(e**4)/(4*(E_o**2)*(n**3)*h**3);\t\t\t#\n", + "print 'Orbital frequency of electron(in Hz) = %.4e'%Freq\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.3 Page No : 33" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "radius of the second bohr orbit in a math.singly ionized helium atom(in A) = 1.058\n" + ] + } + ], + "source": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables\n", + "Z_1 = 1;\t\t\t#atomic number for hydrogen\n", + "n_1 = 1;\t\t\t#first orbit\n", + "r_1 = 0.529;\t\t\t#radius of first orbit of electron for hydrogen \n", + "Z_2 = 2;\t\t\t#atomic number for helium\n", + "n_2 = 2;\t\t\t#second orbit\n", + "\n", + "# Calculation\n", + "k = r_1*Z_1/n_1;\n", + "r_2 = k*((n_2)**2)/Z_2;\t\t\t#radius of first orbit of electron for helium\n", + "\n", + "# Results\n", + "print 'radius of the second bohr orbit in a math.singly ionized helium atom(in A) = ',r_2\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.4 Page No : 33" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ratio of energy released = 1.1852\n" + ] + } + ], + "source": [ + "\n", + "import math \n", + "\n", + "# Variables\n", + "n_1 = 1;\t\t\t#first orbit\n", + "n_2 = 2;\t\t\t#second orbit\n", + "n_3 = 3;\t\t\t#third orbit\n", + "\n", + "# Calculation\n", + "#E_1 = -13.6*(Z**2)/(1**2);\n", + "#E_2 = -13.6*(Z**2)/(2**2);\n", + "#E_3 = -13.6*(Z**2)/(3**2);\n", + "#E_3-E_1 = -13.6*(Z**2)*(-8/9);\n", + "#E_2-E_1 = -13.6*(Z**2)*(-3/4);\n", + "E_1 = -13.6/(1**2);\t\t\t#energy of electron in the first bohr orbit of an atom\n", + "E_2 = -13.6/(2**2);\t\t\t#energy of electron in the second bohr orbit of an atom\n", + "E_3 = -13.6/(3**2);\t\t\t#energy of electron in the third bohr orbit of an atom\n", + "\n", + "# Results\n", + "print 'ratio of energy released = %.4f'%((E_3-E_1)/(E_2-E_1))\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.5 Page No : 34" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "revolutions per second of an electron in the bohr orbit of hydrogen atom = 7.516e+15\n" + ] + } + ], + "source": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables\n", + "m = 9.1*10**(-31);\t\t\t#electron mass (in Kg)\n", + "Z = 1;\t\t\t#atomic number\n", + "e = 1.6*10**(-19);\t\t\t#electron charge(in C)\n", + "E_o = 8.25*10**(-12);\t\t\t#permittivity of free space\n", + "n = 1;\t\t\t#first bohr orbit\n", + "\n", + "# Calculation\n", + "h = 6.63*10**(-34);\t\t\t#planck consmath.tant\n", + "R_ps = m*(e**4)/(4*(E_o**2)*(h**3));\t\t\t#number of revolutions per second\n", + "\n", + "# Results\n", + "print 'revolutions per second of an electron in the bohr orbit of hydrogen atom = %.3e'%R_ps\n", + "\n", + "# rounding off error" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.6 Page No : 35" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "orbital frequency of an electron in the first bohr orbit in a hydrogen atom(in Hz) = 6.532e+15\n" + ] + } + ], + "source": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables\n", + "n = 1.;\t\t\t#first bohr orbit\n", + "Z = 1.;\t\t\t#atomic number\n", + "\n", + "# Calculation\n", + "m = 9.1*10**(-31);\t\t\t#electron mass in Kg.\n", + "e = 1.6*10**(-19);\t\t\t#electron charge(in C)\n", + "E_o = 8.85*10**(-12);\t\t\t#permittivity of free space\n", + "h = 6.63*10**(-34);\t\t\t#planck constant\n", + "v_n = m*(Z**2)*(e**4)/(4*(E_o**2)*(h**3)*(n**3));\t\t\t#orbital frequency of an electron in the first bohr orbit in a hydrogen atom\n", + "\n", + "# Results\n", + "print 'orbital frequency of an electron in the first bohr orbit in a hydrogen atom(in Hz) = %.3e'%v_n\n", + "\n", + "# rounding off error" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.7 Page No : 35" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Total energy in = -13.6 eV\n", + "kinetic energy in = 13.6 eV\n", + "potential energy in = -27.2 eV\n" + ] + } + ], + "source": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables\n", + "m = 9.11*10**-31;\t\t\t#mass of electron(in Kg)\n", + "Z = 1; \t\t\t#atomic number\n", + "n = 1;\t\t\t #first bohr orbit\n", + "\n", + "# Calculation\n", + "E_o = 8.854*10**-12;\t\t\t#permittivity of free space\n", + "h = 6.625*10**-34;\t\t\t#planck consmath.tant\n", + "e = 1.6*10**-19;\t\t\t#electron charge(in C)\n", + "E_k = (m*(Z**2)*(e**4))/(8*(E_o**2)*(n**2)*(h**2));\t\t\t#Kinetic energy(in joule)\n", + "E = E_k/e;\t\t\t#Kinetic energy(in eV)\n", + "E_t = -13.6*(Z**2/n**2);\t\t\t#Total Energy(in eV)\n", + "E_p = E_t-E;\t\t\t#Potential energy(in eV)\n", + "\n", + "# Results\n", + "print 'Total energy in = %.1f eV'%E_t\n", + "print 'kinetic energy in = %.1f eV'%E\n", + "print 'potential energy in = %.1f eV'%E_p\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.8 Page No : 35" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "velocity of electron in hydrogen atom in bohr first orbit(in meter/sec) = 2.189e+06\n" + ] + } + ], + "source": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables\n", + "h = 6.626*10**-34;\t\t\t#planck consmath.tant\n", + "E_o = 8.825*10**-12;\t\t\t#permittivity of free space\n", + "e = 1.6*10**-19;\t\t\t#electron charge(in C)\n", + "n = 1;\t\t\t#first bohr orbit\n", + "Z = 1;\t\t\t#atomic number\n", + "\n", + "# Calculation\n", + "v = Z*(e**2)/(2*E_o*n*h);\t\t\t#velocity of electron in hydrogen atom in bohr first orbit\n", + "\n", + "# Results\n", + "print 'velocity of electron in hydrogen atom in bohr first orbit(in meter/sec) = %.3e'%v\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.9 Page No : 35" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "principal quntum number when 10.2 eV energy excites electron = 2\n", + "wavelength of radiation when 10.2 eV energy excites electron(in A) = 1216\n", + "principal quntum number when 12.09 eV energy excites electron = 3\n", + "wavelength of radiation when 12.09 eV energy excites electron in = 1026 A\n" + ] + } + ], + "source": [ + "\n", + "\n", + "import math \n", + "\n", + "\n", + "# Variables\n", + "n_1 = 1.;\t\t\t#electron excited from ground state\n", + "h = 6.62*10**-34;\t\t\t#Planck consmath.tant\n", + "c = 3.*10**8;\t\t\t#speed of light\n", + "E_o = 8.825*10**-12;\t\t\t#permittivity of free space\n", + "e = 1.6*10**-19;\t\t\t#electron charge(in C)\n", + "m = 9.11*10**-31;\t\t\t#mass of electron(in Kg)\n", + "E_1 = 10.2;\t\t\t#energy excites the hydrogen from ground level(in eV)\n", + "\n", + "# Calculation and Results\n", + "K = m*e**4/(8*(E_o**2)*(h**2))\t\t\t#in joule\n", + "K_e = K/e;\t\t\t#in eV\n", + "#E_1 = K_e*((1/n_1**2)-(1/n**2))\n", + "#1/(n**2) = 1/(n_1**2)-E_1/K_e\n", + "#n**2 = 1/(1/(n_1**2)-E_1/K_e)\n", + "n = (1/(1/(n_1**2)-E_1/K_e))**(1./2);\t\t\t#principal quntum number when 10.2 eV energy excites electron\n", + "print 'principal quntum number when 10.2 eV energy excites electron = %.f'%(n)\n", + "\n", + "W_1 = h*c/(E_1*e)*10**10;\t\t\t#wavelength of radiation when 10.2 eV energy excites electron\n", + "print 'wavelength of radiation when 10.2 eV energy excites electron(in A) = %d'%W_1\n", + "\n", + "E_2 = 12.09;\t\t\t#energy excites the hydrogen from ground level(in eV)\n", + "n_2 = (1./(1./(n_1**2)-E_2/K_e))**(1./2);\t\t\t#principal quntum number when 12.09 eV energy excites electron\n", + "W_2 = h*c/(E_2*e)*10**10;\t\t\t#wavelength of radiation when 12.09 eV energy excites electron\n", + "print 'principal quntum number when 12.09 eV energy excites electron = %.f'%(n_2)\n", + "print 'wavelength of radiation when 12.09 eV energy excites electron in = %d A'%W_2\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.13 Page No : 58" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "weight of one atom in 1.055e-22 gm\n", + "weight of one proton in 1.675e-24 gm\n" + ] + } + ], + "source": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables\n", + "At_w = 63.54;\t\t\t#atomic weight of copper\n", + "N = 6.023*10**23;\t\t\t#avogadro's number\n", + "\n", + "# Calculation\n", + "W_a = At_w/N;\t\t\t#weight of one atom(in gm)\n", + "W_p = W_a/63;\t\t\t#weight of one proton(in gm)\n", + "\n", + "# Results\n", + "print 'weight of one atom in %.3e gm'%W_a\n", + "print 'weight of one proton in %.3e gm'%W_p\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.15 Page No : 59" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "percentage of Si in Copper silicide Cu_5_Si is = 8.12 %\n" + ] + } + ], + "source": [ + "\n", + "import math \n", + "\n", + "# Variables\n", + "Atw_Cu = 63.54;\t\t\t#atomic weight of copper\n", + "Atw_Si = 28.09;\t\t\t#atomic weight of silicon\n", + "\n", + "# Calculation\n", + "# 5 atoms of copper working in Cu_5_Si\n", + "Tw_Cu = 5*Atw_Cu;\t\t\t#total weight of copper used in copper silicide\n", + "Tw_Si = Atw_Si;\t\t\t#total weight of silicon used in copper silicide\n", + "Percentage = (Tw_Si/(Tw_Cu+Tw_Si))*100;\t\t\t#percentage of Si in Copper silicide\n", + "\n", + "# Results\n", + "print 'percentage of Si in Copper silicide Cu_5_Si is = %.2f %%'%Percentage\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.6" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Material_Science_by_S._L._Kakani_and_A._Kakani/ch3.ipynb b/Material_Science_by_S._L._Kakani_and_A._Kakani/ch3.ipynb new file mode 100644 index 00000000..e5b64fc1 --- /dev/null +++ b/Material_Science_by_S._L._Kakani_and_A._Kakani/ch3.ipynb @@ -0,0 +1,923 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 3 : Crystal Geometry Structure and Defects" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.10 Page No : 91" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "angle Between normals to the planes (111) and (121)(in degrees) = 19.47\n" + ] + } + ], + "source": [ + "\t\t\t\n", + "from numpy import degrees, arccos\n", + "\n", + "# Variables\n", + "#Miller indices of plane\n", + "h_1 = 1.;\n", + "k_1 = 1.;\n", + "l_1 = 1.;\n", + "h_2 = 1.;\n", + "k_2 = 2.;\n", + "l_2 = 1.;\n", + "\n", + "# Calculation\n", + "angle = degrees(arccos((h_1*h_2+k_1*k_2+l_1*l_2)/(((h_1**2+k_1**2+l_1**2)**(1./2))*((h_2**2+k_2**2+l_2**2)**(1./2)))))\n", + "\n", + "# Results\n", + "print 'angle Between normals to the planes (111) and (121)(in degrees) = %.2f'%angle\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.11 Page No : 91" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Packing efficiency of sodium chloride in = 66.3 %\n", + "density of sodium chloride in = 2233 Kg/m3\n" + ] + } + ], + "source": [ + "\t\t\t\n", + "\n", + "import math \n", + "\n", + "# Variables\n", + "r_Na = 0.98;\t\t\t#Radius of Na+(in A)\n", + "r_Cl = 1.81;\t\t\t#Radius of Cl-(in A)\n", + "a = 2*(r_Na+r_Cl);\t\t\t#Lattice parameter (in A)\n", + "\n", + "# Calculation\n", + "pi = 22./7;\n", + "V_i = 4*(4./3)*pi*((r_Na**3)+(r_Cl**3));\t\t\t#Volume of ions present in unit cell\n", + "V_u = a**3;\t\t\t#Volume of unit cell\n", + "Apf = V_i/V_u;\t\t\t#Atomic packing fraction\n", + "Ef_p = (Apf)*100;\t\t\t#Packing efficiency(in %)\n", + "AM_sodium = 22.99;\t\t\t#Atomic mass of sodium(in amu)\n", + "AM_chlorine = 35.45;\t\t\t#Atomic mass of chlorine(in amu)\n", + "M_1 = 4*(AM_sodium+AM_chlorine)*1.66*10**(-27);\t\t\t#Mass of the unit cell\n", + "a_1 = a*10**(-10);\t\t\t#Lattice parameter (in meter)\n", + "V_u1 = (a_1)**3;\n", + "Density = M_1/V_u1;\n", + "\n", + "# Results\n", + "print 'Packing efficiency of sodium chloride in = %.1f %%'%Ef_p\n", + "print 'density of sodium chloride in = %.0f Kg/m3'%Density\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.12 Page No : 91" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "radius in = 4.049 A\n", + "Diameter in 2.86 A\n" + ] + } + ], + "source": [ + "\t\t\t\n", + "\n", + "import math \n", + "\n", + "# Variables\n", + "Density = 2.7;\t\t\t#(in g/cm**3)\n", + "n = 4;\n", + "m = 26.98;\t\t\t#atomic weight of Al\n", + "\n", + "# Calculation and Results\n", + "N_a = 6.023*10**(23);\t\t\t #avogadro number\n", + "a = ((n*m/(Density*N_a))**(1./3));\t\t\t#Lattice parameter(in Cm)\n", + "A = a*10**(8);\t\t\t #Lattice parameter(in A)\n", + "print 'radius in = %.3f A'%A\n", + "r = A/(2*1.414);\t\t\t#radius for fcp structure\n", + "print 'Diameter in %.2f A'%(2*r)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.13 Page No : 92" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "interplaner distance of (200) plane of nickel crystal in = 1.76 A\n", + "interplaner distance of (111) plane of nickel crystal in = 2.03 A\n" + ] + } + ], + "source": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables\n", + "r = 1.245;\t\t\t#radius of nickel (in A)\n", + "a = 4*r/(2)**(1./2);\t\t\t#Lattice consmath.tant(in A)\n", + "#Miller indices of plane 200\n", + "h_1 = 2;\n", + "k_1 = 0;\n", + "l_1 = 0;\n", + "#Miller indices of plane 111\n", + "h_2 = 1;\n", + "k_2 = 1;\n", + "l_2 = 1;\n", + "\n", + "# Calculation\n", + "d_200 = a/((h_1**2)+(k_1**2)+(l_1**2))**(1./2);\n", + "d_111 = a/((h_2**2)+(k_2**2)+(l_2**2))**(1./2);\n", + "\n", + "# Results\n", + "print 'interplaner distance of (200) plane of nickel crystal in = %.2f A'%d_200\n", + "print 'interplaner distance of (111) plane of nickel crystal in = %.2f A'%d_111\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.14 Page No : 92" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of atoms in the (100) plane of a simple cubic structure(in per mm**2) = 1.09e+13\n", + "Number of atoms in the (110) plane of a simple cubic structure(in per mm**2) = 7.7e+12\n", + "Number of atoms in the (111) plane of a simple cubic structure(in per mm**2) = 6.3e+12\n" + ] + } + ], + "source": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables\n", + "a = 3.03*10**(-7);\t\t\t#lattice consmath.tant(in mm)\n", + "\n", + "# Calculation\n", + "N_100 = 1/(a**2);\t\t\t#Number of atoms in the (100) plane of a simple cubic structure\n", + "N_110 = 0.707/(a**2);\t\t\t#Number of atoms in the (110) plane of a simple cubic structure\n", + "N_111 = 0.58/(a**2);\t\t\t#Number of atoms in the (111) plane of a simple cubic structure\n", + "\n", + "# Results\n", + "print 'Number of atoms in the (100) plane of a simple cubic structure(in per mm**2) = %.2e'%N_100\n", + "print 'Number of atoms in the (110) plane of a simple cubic structure(in per mm**2) = %.1e'%N_110\n", + "print 'Number of atoms in the (111) plane of a simple cubic structure(in per mm**2) = %.1e'%N_111\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.15 Page No : 92" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "the planer density of Ni (in atoms per mm**2) = 1.6e+13\n" + ] + } + ], + "source": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables\n", + "r = 1.245*10**(-7);\t\t\t#Radius of the Ni atom(in mm)\n", + "\n", + "# Calculation\n", + "NA_100 = 1+(1./4)*4;\t\t\t#Numbers of atom in (100) plane\n", + "a = 4*r/(2)**(1./2);\t\t\t#Lattice consmath.tant(in mm)\n", + "Area = a**2;\n", + "P_density = NA_100/Area;\n", + "\n", + "# Results\n", + "print 'the planer density of Ni (in atoms per mm**2) = %.1e'%P_density\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.16 Page No : 93" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Planar density of plane 100(in atoms/mm**2) = 8.2e+12\n", + "Planar density of plane 110(in atoms/mm**2) = 5.8e+12\n", + "Planar density of plane 111(in atoms/mm**2) = 9.4e+12\n" + ] + } + ], + "source": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables\n", + "N_a1 = 4*(1./4)+1;\t\t\t#Number of atoms contained in (100) plane\n", + "r = 1.75*10**(-7);\t\t\t#radius of lead atom (in mm)\n", + "a_1 = 2*2**(1./2)*r;\t\t\t#edge of unit cell in case of (100) plane\n", + "PD_100 = N_a1/(a_1**2);\t\t\t#Planar density of plane (100)\n", + "\n", + "# Calculation\n", + "N_a2 = 4*(1./4)+2*(1./2);\t\t\t#Number of atoms contained in (110) plane\n", + "a_21 = 4*r;\t\t\t#top edge of the plane (110)\n", + "a_22 = 2*2**(1./2)*r;\t\t\t#vertical edge of the plane (110)\n", + "PD_110 = N_a2/(a_21*a_22);\t\t\t#Planar density of plane (110)\n", + "N_a3 = 3*(1./6)+3./2;\t\t\t#Number of atom contained in (111) plane\n", + "Ar_111 = 4*(3**(1./2))*r**2;\t\t\t#area of (111) plane\n", + "PD_111 = N_a3/Ar_111;\t\t\t#Planar density of plane (111)\n", + "\n", + "# Results\n", + "print 'Planar density of plane 100(in atoms/mm**2) = %.1e'%PD_100\n", + "print 'Planar density of plane 110(in atoms/mm**2) = %.1e'%PD_110\n", + "print 'Planar density of plane 111(in atoms/mm**2) = %.1e'%PD_111\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.17 Page No : 94" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "linear atomic density along (110) of copper crystal lattice in = 3.92e+06 atoms/mm\n", + "linear atomic density along (111) of copper crystal lattice in = 1.60e+06 atoms/mm\n" + ] + } + ], + "source": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables\n", + "N_a1 = (1./2)+1+(1./2);\t\t\t#Number of diameters of atom along (110) direction\n", + "a = 3.61*10**(-7);\t\t\t#lattice consmath.tant of copper in mm\n", + "\n", + "# Calculation\n", + "L_d1 = 2**(1./2)*a;\t\t\t#length of the face diagonal in case of (110) direction\n", + "p_110 = N_a1/L_d1;\t\t\t#linear atomic density along (110) of copper crystal lattice(in atoms/mm)\n", + "N_a2 = (1./2)+(1./2);\t\t\t#Number of diameters of atom along (111) direction\n", + "L_d2 = 3**(1./2)*a;\t\t\t#length of the face diagonal in case of (111) direction\n", + "p_111 = N_a2/L_d2;\t\t\t#linear atomic density along (110) of copper crystal lattice(in atoms/mm)\n", + "\n", + "# Results\n", + "print 'linear atomic density along (110) of copper crystal lattice in = %.2e atoms/mm'%p_110\n", + "print 'linear atomic density along (111) of copper crystal lattice in = %.2e atoms/mm'%p_111\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.18 Page No : 95" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Value of lattice constant in = 2.867 A\n" + ] + } + ], + "source": [ + "\t\t\t\n", + "\n", + "import math \n", + "\n", + "# Variables\n", + "A = 55.8;\t\t\t#atomic weight of Fe\n", + "n = 2;\t\t\t#number of atoms per unit cell\n", + "\n", + "# Calculation\n", + "N = 6.02*10**(26);\t\t\t#Avogadro's number\n", + "p = 7.87*10**3;\t\t\t#density of Fe(in kg/m**3)\n", + "a = ((A*n/(N*p))**(1./3))*10**10;\t\t\t#Value of lattice consmath.tant\n", + "\n", + "# Results\n", + "print 'Value of lattice constant in = %.3f A'%a\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.19 Page No : 95" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Numbers of atoms per unit cell = 2.0\n" + ] + } + ], + "source": [ + "\t\t\t\n", + "import math \n", + "\n", + "\n", + "# Variables\n", + "a = 2.9*10**(-10);\t\t\t#lattice parameter(in m)\n", + "A = 55.8;\t\t\t#atomic weight of Fe\n", + "\n", + "# Calculation\n", + "N = 6.02*10**(26);\t\t\t#Avogadro's number\n", + "p = 7.87*10**3;\t\t\t#density of Fe(in kg/m**3\n", + "n = (a**3)*N*p/A;\t\t\t#Numbers of atoms per unit cell\n", + "\n", + "# Results\n", + "print 'Numbers of atoms per unit cell = ',floor(n)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.20 Page No : 109" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "line energy of disslocation in = 2.47e-09 J/m\n" + ] + } + ], + "source": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables\n", + "a = 2.87*10**(-10);\t\t\t#lattice parameter for bcc iron\n", + "b = a*(3**(1./2))/2;\t\t\t#Magnitude of burgers vector\n", + "\n", + "# Calculation\n", + "u = 80*10**9;\t\t\t#shear modulus\n", + "E = (1./2)*u*b**2;\t\t\t#line energy of disslocation\n", + "\n", + "# Results\n", + "print 'line energy of disslocation in = %.2e J/m'%E\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.22 Page No : 109" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "number of vacancies created during heating in = 6.54e+23 m**-3\n" + ] + } + ], + "source": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables\n", + "N = 6.023*10**23;\t\t\t#avogadro number\n", + "T = 1000.;\t\t\t#absolute temperature\n", + "R = 8.314;\t\t\t#consmath.tant\n", + "\n", + "# Calculation\n", + "H_f = 100*1000;\t\t\t#enthalpy of formation of vacancies(in J/mol)\n", + "n = N*math.exp(-(H_f)/(R*T));\t\t\t#number of vacancies created during heating(in per mol)\n", + "V = 5.5*10**(-6);\t\t\t#volume of 1 mole of the crystal in m**3\n", + "n_1 = n/V;\t\t\t#number of vacancies created during heating(in per m**3)\n", + "\n", + "# Results\n", + "print 'number of vacancies created during heating in = %.2e m**-3'%n_1\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.23 Page No : 109" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Surface energy (enthalpy) of copper in = 2.49 J/m**2\n" + ] + } + ], + "source": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables\n", + "#bond energy per atom of copper = bond energy per bond*numbers of bond per atom*(1/2)\n", + "A = 56.4*1000;\t\t\t#\n", + "N = 6.023*10**23;\t\t\t#avogadro number\n", + "n_1 = 12.;\t\t\t#numbers of bond per atom\n", + "n_2 = 3.;\t\t\t#bonds broken at the surface\n", + "\n", + "# Calculation and Results\n", + "E = A*n_1/(2*N);\t\t\t#Energy of total bonds\n", + "E_b = E*(n_2/n_1);\t\t\t#Energy of broken bonds on surface\n", + "n_a = 1.77*10**19;\t\t\t#no. of atoms on {111} planes in copper(in m**-2)\n", + "E_c = n_a*E_b;\t\t\t#Surface energy (enthalpy) of copper\n", + "print 'Surface energy (enthalpy) of copper in = %.2f J/m**2'%E_c\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.24 Page No : 110" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "equilibrium concentration of vacancies in aluminium at 300 K = 1.44e-12\n" + ] + } + ], + "source": [ + "\n", + "import math \n", + "\n", + "# Variables\n", + "H_f = 68.*1000;\t\t\t#enthalpy of formation of vacancies(in J/mol)\n", + "T_1 = 0;\t\t\t#temp (in K)\n", + "T_2 = 300.;\t\t\t#temp (in K)\n", + "R = 8.314;\t\t\t#consmath.tant\n", + "\n", + "# Calculation\n", + "\n", + "n = math.exp(-H_f/(R*T_2));\t\t\t#equilibrium concentration of vacancies in aluminium at 300 K\n", + "\n", + "# Results\n", + "print 'equilibrium concentration of vacancies in aluminium at 300 K = %.2e'%n\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.25 Page No : 113" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "the interplanar spacing between atomic plane in = 2.22 A\n" + ] + } + ], + "source": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables\n", + "Wavelength = 1.54*10**(-10);\t\t\t#in meter\n", + "Angle = 20.3;\t\t\t#in degree\n", + "n = 1;\t\t\t#First order\n", + "\n", + "# Calculation\n", + "d = Wavelength*n/(2*math.sin(math.radians(Angle)));\t\t\t#the interplanar spacing(in Meter)\n", + "\n", + "# Results\n", + "print 'the interplanar spacing between atomic plane in = %.2f A'%(d/(10**-10))\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.26 Page No : 113" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Size of unit cell in 3.51 Angstrom\n" + ] + } + ], + "source": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables\n", + "wavelength = 0.58;\t\t\t#in Angstrom\n", + "angle = 9.5;\t\t\t#in degree\n", + "n = 1;\t\t\t#First order\n", + "\n", + "# Calculation\n", + "#d_200 = wavelength*n/(2*math.sin(math.radians(angle)));\t\t\t#interplanar spacing(in Angstrom)\n", + "d_200 = n/math.sqrt(2**2+0**2+0**2)\n", + "#Miller indices of plane\n", + "h = 2;\n", + "k = 0;\n", + "l = 0;\n", + "a = 0.58/(math.sin(math.radians(angle))*2*d_200);\t\t\t#Size of unit cell(in Angstrom)\n", + "# Results\n", + "print 'Size of unit cell in %.2f Angstrom'%a\n", + "\n", + "# book answer is wrong." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.27 Page No : 114" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Bragg angle(in degree) = 7.527\n" + ] + } + ], + "source": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables\n", + "#Miller indices of plane\n", + "h = 1.;\n", + "k = 1.;\n", + "l = 1.;\n", + "wavelength = 0.54;\t\t\t#in angstrom\n", + "a = 3.57;\t\t\t#size of a cube\n", + "n = 1;\n", + "\n", + "# Calculation\n", + "d_111 = a/(h**2+k**2+l**2)**(1./2);\t\t\t#interplanar spacing(in Angstrom)\n", + "sinangle = (n*wavelength)/(2*d_111)\n", + "angle = math.degrees(math.asin(sinangle))\n", + "\n", + "# Results\n", + "print 'Bragg angle(in degree) = %.3f'%angle\n", + "\n", + "# rounding off error" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.28 Page No : 114" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Bragg reflection index for BCC crystal = 1.53\n" + ] + } + ], + "source": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables\n", + "d = 1.181;\t\t\t #A\n", + "wavelength = 1.540;\t #in angstrom\n", + "angle = 90;\t\t\t #in degrees\n", + "\n", + "# Calculation\n", + "n = 2*d*math.sin(math.radians(angle))/(wavelength);\t\t\t#the bragg reflection index\n", + "\n", + "# Results\n", + "print 'Bragg reflection index for BCC crystal = %.2f'%n\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.29 Page No : 114" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "3rd order reflection angle = 31.40\n" + ] + } + ], + "source": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables\n", + "n_1 = 1;\t\t\t#1st order reflection index\n", + "angle_1 = 10;\t\t\t#1st order reflection angle\n", + "n_3 = 3;\t\t\t#3rd order reflection index\n", + "\n", + "# Calculation\n", + "#math.math.sin(math.radians(angle_1)/math.math.sin(math.radians(angle_3) = n_1/n_3\n", + "sinangle_3 = n_3 * math.sin(math.radians(angle_1)/n_1);\t\t\t#\n", + "angle_3 = math.degrees(math.asin(sinangle_3))\n", + "\n", + "# Results\n", + "print '3rd order reflection angle = %.2f'%angle_3\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.30 Page No : 115" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "interplanar spacing of reflection plane 2.22 A\n", + "miller indices of the reflection plane 2.0\n", + "((110),(101),(011))\n" + ] + } + ], + "source": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables\n", + "angle = 20.3;\t\t\t#in degree\n", + "wavelength = 1.54;\t\t\t#in angstrom\n", + "n = 1;\n", + "a = 3.16;\t\t\t#lattice parameter in angstrom\n", + "\n", + "# Calculation\n", + "d = n*wavelength/(2*math.sin(math.radians(angle)));\t\t\t#interplanar spacing\n", + "M_indices = a**2/(d**2);\n", + "\n", + "# Results\n", + "print 'interplanar spacing of reflection plane %.2f A'%d\n", + "print 'miller indices of the reflection plane',floor(M_indices)\n", + "print \"((110),(101),(011))\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.31 Page No : 115" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "interatomic spacing(in angstrom) = 3.46\n" + ] + } + ], + "source": [ + "\t\t\t\n", + "\n", + "import math \n", + "\n", + "# Variables\n", + "#Miller indices of plane\n", + "n = 1;\n", + "h = 1;\n", + "k = 1;\n", + "l = 1;\n", + "angle = 30;\t\t\t#in degree\n", + "wavelength = 2;\t\t\t#in angstrom\n", + "\n", + "# Calculation\n", + "d = n*wavelength/(2*math.sin(math.radians(angle)));\t\t\t#interplanar spacing\n", + "a = d*(h**2+k**2+l**2)**(1./2);\t\t\t#interatomic spacing\n", + "\n", + "# Results\n", + "print 'interatomic spacing(in angstrom) = %.2f'%a\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.6" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Material_Science_by_S._L._Kakani_and_A._Kakani/ch4.ipynb b/Material_Science_by_S._L._Kakani_and_A._Kakani/ch4.ipynb new file mode 100644 index 00000000..0ac988cf --- /dev/null +++ b/Material_Science_by_S._L._Kakani_and_A._Kakani/ch4.ipynb @@ -0,0 +1,285 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:10485c06d3141b9088340f19ea6a7420664af7ae170cac60ae1844a81a9e618f" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 4 :\n", + "Bonds in solid" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.1 Page No : 137" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables\n", + "r_o = 2.8\t\t\t#interatomic distance in \u00c5\n", + "R_o = 2.8*10**(-10);#interatomic distance in m\n", + "u_o = 8.;\t\t\t#released energy in eV\n", + "e = 1.6*10**(-19);\t#charge of electron in C\n", + "U_o = 8.*e\t\t\t#released energy in Joule\n", + "\n", + "# Calculation\n", + "A = (5./4)*U_o*(R_o**2);\t\t\t#proportionality constant for attraction in J-m2\n", + "B = A*(R_o**8)/5;\t\t\t#proportionality constant for repulsion in J-m2\n", + "r_c = (110*B/(6*A))**(1./8);\t\t\t#interatomic distance at which the dissociation occurs in m\n", + "F = -(2/r_c**3)*(A-5*B/(r_c**8));\t\t\t#the force required to dissociate the molecule in N\n", + "\n", + "# Results\n", + "print 'proportionality constant for attraction = %.2e J-m2'%A\n", + "print 'proportionality constant for repulsion = %.2e J-m2'%B\n", + "print 'interatomic distance at which the dissociation occurs = %.2e m'%r_c\n", + "print 'the force required to dissociate the molecule = %.2e N'%F\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "proportionality constant for attraction = 1.25e-37 J-m2\n", + "proportionality constant for repulsion = 9.48e-115 J-m2\n", + "interatomic distance at which the dissociation occurs = 3.29e-10 m\n", + "the force required to dissociate the molecule = -5.11e-09 N\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.2 Page No : 138" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables\n", + "r_o = 3.14;\t\t\t#nearest neighbour equilibrium distance in \u00c5\n", + "R_o = 3.14*10**(-10);\t\t\t#nearest neighbour equilibrium distance in m\n", + "K = 5.747*10**(-11);\t\t\t#compressibility of KCl in m2/N\n", + "M = 1.748;\t\t\t#Madelung constant\n", + "pi = 22./7;\n", + "\n", + "# Calculation\n", + "E_o = 8.854*10**(-12);\n", + "q = 1.6*10**(-19);\t\t\t#electron charge\n", + "n = 1+18*(R_o**4)*4*pi*E_o/(K*M*q**2);\n", + "\n", + "# Results\n", + "print 'repulsive exponent n = %.1f'%n\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "repulsive exponent n = 8.6\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.3 Page No : 139" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables\n", + "F_1 = 3.02*10**(-9);\t\t\t#force of attraction b/w ions of Na+ and Cl-\n", + "Z_1 = +1;\n", + "Z_2 = -1;\n", + "e = 1.6*10**(-19);\n", + "E_o = 8.854*10**-12;\n", + "pi = 22./7;\n", + "r_Na = 0.95;\t\t\t#ionic radius of Na+ ion\n", + "\n", + "# Calculation\n", + "r = (-Z_1*Z_2*e**2/(4*pi*E_o*F_1))**(1./2);\t\t\t#Radius of ion in meter\n", + "R = r/10**(-10);\t\t\t#Radius of ion in Angstrom\n", + "r_Cl = (R-r_Na);\t\t\t#Radius of Cl- ion in Angstrom\n", + "\n", + "# Results\n", + "print 'Ionic Radius of Cl- ion in = %.2f Angstrom'%r_Cl\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Ionic Radius of Cl- ion in = 1.81 Angstrom\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.4 Page No : 139" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables\n", + "Z_1 = +2;\n", + "Z_2 = -2;\n", + "r_Mg = 0.65;\t\t\t#radius of Mg++ ion\n", + "r_S = 1.84;\t\t\t#radius of S-- ion\n", + "r = r_Mg+r_S;\t\t\t#net radius(in Angstrom)\n", + "\n", + "# Calculation\n", + "R = r*10**(-10);\t\t\t#net radius(in meter)\n", + "e = 1.6*10**(-19);\n", + "E_o = 8.854*10**-12;\n", + "pi = 22./7;\n", + "F = -Z_1*Z_2*e**2/(4*pi*E_o*R**2);\t\t\t#force of attraction between ions(in Newton)\n", + "\n", + "# Results\n", + "print 'force of attraction between ions in = %.1e Newton'%F\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "force of attraction between ions in = 1.5e-08 Newton\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.5 Page No : 150" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables\n", + "#Na atom requires +5.14 eV of energy. When this electron is transferred to a vacant position,it gives back \u20134.02 eV of energy\n", + "E_1 = +5.14;\t\t\t#in eV\n", + "E_2 = -4.02;\t\t\t#in eV\n", + "\n", + "# Calculation\n", + "NET_energy = E_1+E_2;\t\t\t#in eV\n", + "\n", + "# Results\n", + "print 'Net spent energy in whole process in = %.2f eV'%NET_energy\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Net spent energy in whole process in = 1.12 eV\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.6 Page No : 150" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables\n", + "Enthalpy = 6.02;\t\t\t#enthalpy of fusion of ice is 6.02 kJ/mol\n", + "E_h = 20.5;\t\t\t#Hydrogen bond energy (in kJ/mol)\n", + "#There are two moles of hydrogen bonds per mole of H2O in ice.\n", + "\n", + "# Calculation\n", + "H_b = Enthalpy/(2*E_h);\t\t\t#the fraction of hydrogen bonds that are broken when ice melts\n", + "\n", + "# Results\n", + "print 'fraction of hydrogen bonds that are broken when ice melts = %.2f'%H_b\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "fraction of hydrogen bonds that are broken when ice melts = 0.15\n" + ] + } + ], + "prompt_number": 8 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Material_Science_by_S._L._Kakani_and_A._Kakani/ch5.ipynb b/Material_Science_by_S._L._Kakani_and_A._Kakani/ch5.ipynb new file mode 100644 index 00000000..fcdb72de --- /dev/null +++ b/Material_Science_by_S._L._Kakani_and_A._Kakani/ch5.ipynb @@ -0,0 +1,465 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:b05ef4cea534c7f22454c6c7a4371d685f8afba36752efd7c83922caa2a73609" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 5 :\n", + "Electron Theory of Metals" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 5.1 Page No : 169" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "import math \n", + "\n", + "\n", + "# Variables\n", + "#The probability that a particular quantum state at energy E is filled, is given by\n", + "#f(E) = 1/(1+exp(E-E_f)/kT)\n", + "e = 1.6*10**(-19);\t\t\t#charge on the electron\n", + "dE = 0.5*e;\t\t\t#E-E_f in joule\n", + "\n", + "# Calculation\n", + "#0.01 = 1/(1+exp(x))\n", + "#1+exp(x) = 100\n", + "x = math.log(99);\n", + "k = 1.38*10**(-23);\t\t\t#consmath.tant\n", + "T = dE/(x*k);\t\t\t#temperature\n", + "\n", + "# Results\n", + "print 'temperature at which there is one per cent probability that a state with an energy\\\n", + " 0.5 eV above the Fermi energy will be \\noccupied by an electron in = %.0f K'%round(T)\n", + "\n", + "# rounding off error" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "temperature at which there is one per cent probability that a state with an energy 0.5 eV above the Fermi energy will be \n", + "occupied by an electron in = 1262 K\n" + ] + } + ], + "prompt_number": 13 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 5.2 Page No : 169" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables\n", + "n = 10**19;\t\t\t#electrons per m**3\n", + "V = 0.017;\t\t\t#applied voltage \n", + "d = 0.27*10**-2;\t\t\t#dismath.tance with material\n", + "e = 1.602*10**-19;\t\t\t#in coulomb\n", + "m = 9.1*10**-31;\t\t\t#mass of an electron(in kg)\n", + "\n", + "# Calculation\n", + "conductivity = 0.01;\t\t\t#in mho.m**-1)\n", + "E = V/d;\t\t\t#Electric field(in V/m)\n", + "v = (conductivity*E/(n*e))*10**2;\t\t\t#drift velocity of carriers(in meter/sec)\n", + "\n", + "# Results\n", + "print 'drift velocity of carriers in = %.2f m/s'%v\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "drift velocity of carriers in = 3.93 m/s\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 5.3 Page No : 170" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables\n", + "T = 300;\t\t\t#Temperature(in Kelevin)\n", + "t = 2*10**-14;\t\t\t#time(in sec)\n", + "V_c = 8.9;\t\t\t#volume of 63.54gm of copper(in cc)\n", + "Aw_c = 63.54;\t\t\t#Atomic weight of copper(in a.m.u)\n", + "e = 1.6*10**(-19);\n", + "m = 9.1*10**-31;\n", + "N_a = 6.023*10**23;\t\t\t#avogadro's number\n", + "\n", + "# Calculation\n", + "n = (N_a/(Aw_c/V_c))*10**6;\t\t\t#Number of electrons per m**3\n", + "conductivity = (e**2)*n*t/m;\t\t\t#conductivity of copper at 300K(in mho/m)\n", + "\n", + "# Results\n", + "print 'conductivity of copper at 300K in = %.2e mho/m'%conductivity\n", + "\n", + "# note : answer in book is wrong.\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "conductivity of copper at 300K in = 4.75e+07 mho/m\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 5.4 Page No : 170" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables\n", + "t = 10**(-14);\t\t\t#mean free time between the collisions(in second)\n", + "e = 1.6*10**-19;\n", + "m = 9.1*10**-31;\n", + "\n", + "# Calculation\n", + "Mobility = e*t/m;\t\t\t#in m**2/V-s\n", + "\n", + "# Results\n", + "print 'mobility of condution electron in = %.2e m**2/V-s'%Mobility\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "mobility of condution electron in = 1.76e-03 m**2/V-s\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 5.5 Page No : 170" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables\n", + "n = 6.*10**23;\t\t\t#conduction electron per m**3\n", + "conductivity = 6.5*10**7;\t\t\t#in mho/m\n", + "E = 1.;\t\t\t#electric field intensity (in V/m)\n", + "e = 1.602*10**-19;\n", + "m = 9.1*10**-31;\n", + "\n", + "# Calculation\n", + "Mobility = conductivity/(n*e);\t\t\t#in m**2/V-s\n", + "v = Mobility*E;\t\t\t#drift velocity(in m/sec)\n", + "\n", + "# Results\n", + "print 'mobility of condution electron in = %.2e m**2/V-s'%Mobility\n", + "print 'drift velocity in = %.2e m/sec'%v\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "mobility of condution electron in = 6.76e+02 m**2/V-s\n", + "drift velocity in = 6.76e+02 m/sec\n" + ] + } + ], + "prompt_number": 14 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 5.6 Page No : 171" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\t\t\t\n", + "\n", + "import math \n", + "\n", + "# Variables\n", + "d = 10.5;\t\t\t#density of silver(in gm/cc)\n", + "At_w = 107.9; #atomic weight\n", + "e = 1.6*10**-19;\n", + "conductivity = 6.8*10**5;\t\t\t#in mho/centimeter\n", + "\n", + "# Calculation\n", + "N = 6.023*10**23;\n", + "n = N*d/At_w;\t\t\t#number of free electrons\n", + "Mobility = conductivity/(n*e);\t\t\t#mobility of electrons(in cm**2/V-s);\n", + "\n", + "# Results\n", + "print 'number of free electrons = %.2e'%n\n", + "print 'mobility of electrons in = %.2f cm**2/V-s'%Mobility\n", + "\n", + "# rounding off error" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "number of free electrons = 5.86e+22\n", + "mobility of electrons in = 72.51 cm**2/V-s\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 5.7 Page No : 172" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "import math \n", + "\n", + "# Variables\n", + "E_f = 3.75;\t\t\t#Fermi energy(in eV)\n", + "e = 1.602*10**-19;\n", + "W_f = e*E_f;\t\t\t#fermi energy in joules\n", + "t = 10**-14;\t\t\t#mean free time between the collisions(in second)\n", + "\n", + "# Calculation\n", + "m = 9.1*10**-31;\t\t\t#mass of electron\n", + "v_f = ((2*W_f)/m)**(1./2);\t\t\t#maximum velocity of an electron in a metal(in m/s)\n", + "mobility = e*t/m;\t\t\t#mobility of electrons(in m**2/V-s)\n", + "\n", + "# Results\n", + "print 'maximum velocity of an electron in a metal in = %.2e m/s'%v_f\n", + "print 'mobility of electrons in = %.2e m**2/V-s'%mobility\n", + "\n", + "# incorrect answer in the textbook" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "maximum velocity of an electron in a metal in = 1.15e+06 m/s\n", + "mobility of electrons in = 1.76e-03 m**2/V-s\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 5.8 Page No : 172" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\t\t\t\n", + "\n", + "import math \n", + "\n", + "# Variables\n", + "E_f = 2.1;\t\t\t#fermi energy(in eV)\n", + "e = 1.602*10**-19;\n", + "m = 9.1*10**-31;\n", + "\n", + "# Calculation\n", + "W_f = e*E_f;\t\t\t#fermi energy in joules\n", + "v_f = (2*W_f/m)**(1./2);\t\t\t#velocity of an electrons at fermi level(in m/sec)\n", + "\n", + "# Results\n", + "print 'velocity of an electrons at fermi level in = %.1e m/sec'%v_f\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "velocity of an electrons at fermi level in = 8.6e+05 m/sec\n" + ] + } + ], + "prompt_number": 12 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 5.9 Page No : 172" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables\n", + "t = 10**-9;\t\t\t#collision time(in seconds)\n", + "E_f = 7;\t\t\t#fermi energy(in eV)\n", + "e = 1.6*10**-19;\n", + "m = 9.1*10**-31;\n", + "\n", + "# Calculation\n", + "W_f = E_f*e;\t\t\t#fermi energy(in joules)\n", + "v_f = (2*W_f/m)**(1./2);\t\t\t#velocity of an electrons at fermi level(in m/sec)\n", + "P = v_f*t;\t\t\t#Mean free path(in meter)\n", + "\n", + "# Results\n", + "print 'Mean free path in = %.2e m'%P\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Mean free path in = 1.57e-03 meter\n" + ] + } + ], + "prompt_number": 16 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 5.10 Page No : 173" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables\n", + "N_a = 6.023*10**23;\n", + "V_c = 8.9;\t\t\t#volume of 63.54gm of copper(in cc)\n", + "Aw_c = 63.54;\t\t\t#Atomic weight of copper(in a.m.u)\n", + "\n", + "# Calculation\n", + "n = (N_a/(Aw_c/V_c))*10**6;\t\t\t#Number of electrons per m**3\n", + "e = 1.6*10**-19;\n", + "m = 9.1*10**-31;\n", + "t = 2*10**-14;\t\t\t#collision time\n", + "conductivity = n*(e**2)*t/m;\t\t\t#conductivity of copper\n", + "\n", + "# Results\n", + "print 'conductivity of copper in = %.1e ohm**-1/m'%conductivity\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "conductivity of copper in = 4.7e+07 ohm**-1/m\n" + ] + } + ], + "prompt_number": 17 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Material_Science_by_S._L._Kakani_and_A._Kakani/ch6.ipynb b/Material_Science_by_S._L._Kakani_and_A._Kakani/ch6.ipynb new file mode 100644 index 00000000..5cb066fa --- /dev/null +++ b/Material_Science_by_S._L._Kakani_and_A._Kakani/ch6.ipynb @@ -0,0 +1,328 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:c0c85d5a39a8e445759e5cb8d2f67d6ba3787632cdef1705d098045c10def4f6" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 6 :\n", + "Photoelectric Effect" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 6.1 Page No : 191" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables\n", + "h = 6.62*10**-34; #Planck's constant(in m2*kg/s)\n", + "c = 3*10**8; #speed of light (in m/s)\n", + "e = 1.6*10**-19; #electron charge(in coulomb)\n", + "Wavelength_1 = 2300*10**-10;\n", + "Wavelength_2 = 1800*10**-10;\n", + "\n", + "# Calculation\n", + "W = h*c/Wavelength_1;\t\t\t#Work function\n", + "E_in = h*c/Wavelength_2;\n", + "E = E_in-W;\t\t\t#kinetic energy of the ejected electron(in Joules)\n", + "E_1 = E/e;\t\t\t#kinetic energy of the ejected electron(in eV)\n", + "\n", + "# Results\n", + "print 'kinetic energy of the ejected electron in = %.1f eV'%E_1\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "kinetic energy of the ejected electron in = 1.5 eV\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 6.2 Page No : 191" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables\n", + "h = 6.625*(10**(-34));\t#Planck's constant(in m2*kg/s)\n", + "c = 3*10**8;\t\t\t#speed of light (in m/s)\n", + "e = 1.602*10**-19;\t\t#electron charge(in coulomb)\n", + "W = 2.3;\t\t\t #work (in eV)\n", + "\n", + "# Calculation\n", + "W_1 = W*e;\t\t\t#work (in joules)\n", + "v_o = W_1/h;\t\t\t#threshold frequency(in Hz)\n", + "Wavelength = (h*c/W_1)/10**(-10);\t\t\t#Wavelength in Angstrom\n", + "\n", + "# Results\n", + "print 'threshold frequency(Hz) = %.2e'%v_o\n", + "print 'Wavelength in %.0f Angstrom'%(round(Wavelength,-1))\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "threshold frequency(Hz) = 5.56e+14\n", + "Wavelength in 5390 Angstrom\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 6.3 Page No : 192" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\t\t\t\n", + "\n", + "import math \n", + "\n", + "# Variables\n", + "h = 6.625*(10**(-34));\t\t\t#Planck's constant(in m2*kg/s)\n", + "c = 3*10**8;\t\t\t#speed of light (in m/s)\n", + "e = 1.602*10**-19;\t\t\t#electron charge(in coulomb)\n", + "\n", + "# Calculation\n", + "wavelength = 6800*10**-10;\t\t\t#wavelength of radiation\n", + "v_o = c/wavelength;\t\t\t#frequency\n", + "W = h*v_o;\t\t\t#Work function\n", + "\n", + "# Results\n", + "print 'threshold frequency in = %.2e Hz'%v_o\n", + "print 'work function of metal in = %.2e joule'%W\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "threshold frequency in = 4.41e+14 Hz\n", + "work function of metal in = 2.92e-19 joule\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 6.4 Page No : 192" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables\n", + "h = 6.625*(10**(-34));\t\t\t#Planck's constant(in m2*kg/s)\n", + "c = 3.*10**8;\t\t\t#speed of light (in m/s)\n", + "\n", + "# Calculation\n", + "L_r = 150*8./100;\t\t\t#Lamp rating(in joule)\n", + "wavelength = 4500.*10**-10;\t\t\t#in meter\n", + "W = h*c/wavelength;\t\t\t#work function\n", + "N = L_r/W;\t\t\t#number of photons emitted by lamp per second\n", + "\n", + "# Results\n", + "print 'number of photons emitted by lamp per second = %.1e'%N\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "number of photons emitted by lamp per second = 2.7e+19\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 6.5 Page No : 193" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables\n", + "h = 6.6*(10**(-34));\t\t\t#Planck's constant(in m2*kg/s)\n", + "c = 3*10**8;\t\t\t#speed of light (in m/s)\n", + "e = 1.6*10**-19;\t\t\t#electron charge(in coulomb)\n", + "W = 2.24;\t\t\t#work function(in eV)\n", + "\n", + "# Calculation\n", + "W_1 = W*e;\t\t\t#work function(in joule)\n", + "v = (W_1/h)*10**-10;\t\t\t#frequency\n", + "wavelength = c/v;\t\t\t#region of electrons spectrum is less than(in angstrom)\n", + "\n", + "# Results\n", + "print 'region of electrons spectrum is less than %d angstrom'%round(wavelength,-1)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "region of electrons spectrum is less than 5520 angstrom\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 6.6 Page No : 193" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables\n", + "h = 6.625*(10**(-34));\t\t\t#Planck's constant(in m2*kg/s)\n", + "c = 3*10**8;\t\t\t#speed of light (in m/s)\n", + "P_o = 10*10**3;\t\t\t#Power of radio receiver (in Watt)\n", + "\n", + "# Calculation\n", + "v = 440*10**3;\t\t\t#Operating frequency\n", + "E = h*v;\t\t\t#Energy of each electron\n", + "N = P_o/E;\t\t\t#Number of photons emitted/sec\n", + "\n", + "# Results\n", + "print 'Number of photons emitted/sec by radio receiver = %.1e'%N\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Number of photons emitted/sec by radio receiver = 3.4e+31\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 6.7 Page No : 193" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\t\t\t\n", + "\n", + "import math \n", + "\n", + "# Variables\n", + "W_t = 4.52;\t\t\t#Work function for tungesten(in eV)\n", + "W_b = 2.5;\t\t\t#Work function for barrium(in eV)\n", + "h = 6.62*(10**(-34));\t\t\t#Planck's constant(in m2*kg/s)\n", + "c = 3*10**8;\t\t\t#speed of light (in m/s)\n", + "\n", + "# Calculation\n", + "e = 1.6*10**-19;\t\t\t#electron charge(in coulomb)\n", + "W_T = W_t*e;\t\t\t#Work function for tungesten(in Joule)\n", + "W_B = W_b*e;\t\t\t#Work function for barrium(in Joule)\n", + "Wavelength_T = (h*c/W_T)*10**10;\t\t\t#wavelength of light which can just eject electron from tungsten\n", + "Wavelength_B = (h*c/W_B)*10**10;\t\t\t#wavelength of light which can just eject electron from barrium\n", + "\n", + "# Results\n", + "print 'wavelength of light which can just eject electron from tungsten in = %.0f Angstrom'%Wavelength_T\n", + "print 'wavelength of light which can just eject electron from barrium in = %.0f Angstrom'%Wavelength_B\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "wavelength of light which can just eject electron from tungsten in = 2746 Angstrom\n", + "wavelength of light which can just eject electron from barrium in = 4965 Angstrom\n" + ] + } + ], + "prompt_number": 12 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Material_Science_by_S._L._Kakani_and_A._Kakani/ch7.ipynb b/Material_Science_by_S._L._Kakani_and_A._Kakani/ch7.ipynb new file mode 100644 index 00000000..f9d4c4b4 --- /dev/null +++ b/Material_Science_by_S._L._Kakani_and_A._Kakani/ch7.ipynb @@ -0,0 +1,209 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 7 : Diffusion in Solids" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.1 Page No : 207" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "time required for carburization in 142.8 min\n" + ] + } + ], + "source": [ + "\n", + "import math \n", + "from scipy.special import erfinv\n", + "\n", + "# Variables\n", + "D = 1.28*10**(-11);\t\t\t#diffusion coefficient of carbon in given steel in m2/s\n", + "c_s = 0.9;\t\t\t#Surface concentration of diffusion element in the surface\n", + "c_o = 0.2;\t\t\t#Initial uniform concentration of the element in the solid\n", + "c_x = 0.4;\t\t\t#Concentration of the diffusing element at a distance x from thesurface\n", + "x = 0.5*10**(-3);\t\t\t#depth from the surface in m\n", + "\n", + "# Calculation\n", + "#(c_s-c_x)/(c_s-c_o) = erf(x/(2*(D*t)**(1/2)))\n", + "t = (x/(2*erfinv((c_s-c_x)/(c_s-c_o))*D**(1./2)))**2;\t\t\t#time required for carburization(in sec)\n", + "\n", + "# Results\n", + "print 'time required for carburization in %.1f min'%(t/60)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.2 Page No : 208" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " C1 = 0.0\n", + "time required to get a boron content of 1023 atoms per m3 at a depth of 2 micro meter is = 3845 sec\n" + ] + } + ], + "source": [ + "\t\t\t\n", + "import math \n", + "from scipy.special import erfinv\n", + "\n", + "# Variables\n", + "D = 4*10**(-17);\t\t\t#diffusion coefficient of carbon in given steel in m2/s\n", + "c_s = 3*10**26;\t\t\t#Surface concentration of boron atoms in the surface\n", + "c_1 = 0;\t\t\t#Initial uniform concentration of the element in the solid\n", + "c_x = 10**23;\t\t\t#Concentration of the diffusing element at a distance x from thesurface\n", + "x = 2*10**(-6);\t\t\t#depth from the surface in m\n", + "\n", + "# Calculation and Results\n", + "#(c_s-c_x)/(c_s-c_1) = erf(x/(2*(D*t)**(1/2)))\n", + "a = (erfinv((c_s-c_x)/(c_s-c_1)));\n", + "print ' C1 = ',a\n", + "t = (x**2/(D*4*(2.55)**2));\t\t\t#time required to get a boron content of 1023 atoms per m3 at a depth of 2 micro meter\n", + "print 'time required to get a boron content of 1023 atoms per m3 at a depth of 2 micro meter is = %.0f sec'%t\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.3 Page No : 208" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "activation energy = 2.93e-19 J\n", + "constant of the equation = 2.68e-04 m2/s\n", + "diffusion coefficient at 500°C = 3.27e-16 m2/s\n" + ] + } + ], + "source": [ + "\n", + "import math \n", + "\n", + "# Variables\n", + "t_1 = 736.;\t\t\t#Temperature in °C\n", + "t_2 = 782.;\t\t\t#Temperature in °C\n", + "T_1 = t_1+273;\t\t\t#Temperature in K\n", + "T_2 = t_2+273;\t\t\t#Temperature in K\n", + "D_1 = 2.*10**(-13);\t\t\t#Coefficient of diffusion at T_1 (in m2/s)\n", + "D_2 = 5.*10**(-13);\t\t\t#Coefficient of diffusion at T_2 (in m2/s)\n", + "k = 1.38*10**(-23);\t\t\t#in J/K\n", + "\n", + "# Calculation and Results\n", + "#math.log(d_1) = math.log(d_o)-E/(k*T_1)\n", + "#math.log(d_2) = math.log(d_o)-E/(k*T_2)\n", + "E = (math.log(D_1)-math.log(D_2))/((1/(k*T_1))-(1/(k*T_2)));\t\t\t#\n", + "print 'activation energy = %.2e J'%-E\n", + "D_o = 2.*10**(-13)/math.exp(E/(k*T_1));\n", + "print 'constant of the equation = %.2e m2/s'%D_o\n", + "t_4 = 500.;\t\t\t#Temperature in °C\n", + "T_4 = t_4+273;\t\t\t#Temperature in °K\n", + "D_4 = D_o*math.exp(E/(k*T_4));\t\t\t#diffusion coefficient at 500°C\n", + "print 'diffusion coefficient at 500°C = %.2e m2/s'%D_4\n", + "\n", + "# rounding off error" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.4 Page No : 210" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Time at 500*C that will produce the same diffusion as in 600*C in 110.4 Hours\n" + ] + } + ], + "source": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables\n", + "D_500 = 4.8*10**(-14);\t\t\t#Diffusion coefficient for copper in aluminimum at 500*C(in m**2/s)\n", + "D_600 = 5.3*10**(-13);\t\t\t#Diffusion coefficient for copper in aluminimum at 600*C(in m**2/s)\n", + "t_600 = 10;\t\t\t#time of diffussion at 600*C(in Hours)\n", + "\n", + "# Calculation\n", + "#D_500*t_500 = D_600*t_600\n", + "t_500 = D_600*t_600/D_500;\t\t\t#time of diffussion at 500*C\n", + "\n", + "# Results\n", + "print 'Time at 500*C that will produce the same diffusion as in 600*C in %.1f Hours'%t_500\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.6" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Material_Science_by_S._L._Kakani_and_A._Kakani/ch8.ipynb b/Material_Science_by_S._L._Kakani_and_A._Kakani/ch8.ipynb new file mode 100644 index 00000000..403c2c76 --- /dev/null +++ b/Material_Science_by_S._L._Kakani_and_A._Kakani/ch8.ipynb @@ -0,0 +1,241 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:8d9d7c620087dc26d3b736b06237bc35091ff6c91c27f59b3c7ac61a9f3126bd" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 8 :\n", + "Mechanical Properties of\n", + "Materials and Mechanical Tests" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.1 Page No : 269" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "import math \n", + "\n", + "# Variables\n", + "Y = 180*10**9;\t\t\t#Young's modulus of a certain material(in N/m**2)\n", + "E = 1.8;\t\t\t#true surface energy (in J/m**2)\n", + "c = (5./2)*10**-6;\t\t\t#Crack (in meter)\n", + "\n", + "# Calculation\n", + "F_strength = math.sqrt((2*Y*E/(math.pi*c)))\n", + "p = 1000*math.pi*c/(2*Y) - 1.8\n", + "\n", + "# Results\n", + "print 'fracture strength = %.2f MN/m**2'%(F_strength*10**-6)\n", + "print \"plastic work required to propogate the crack : %.1f \"%p\n", + "\n", + "# book answer is wrong\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "fracture strength = 287.24 MN/m**2\n", + "plastic work required to propogate the crack : -1.8 \n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.2 Page No : 270" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "import math \n", + "\n", + "# Variables\n", + "d_o = 12.7;\t\t\t#tensile test specimen diameter (in mm)\n", + "d = 12;\t\t\t#tensile test specimen diameter after load (in mm)\n", + "P = 76*10**3;\t\t\t#load(in N)\n", + "pi = 22./7;\n", + "A_o = (pi/4)*(d_o**2);\t\t\t#Initial area of cross section(in mm**2)\n", + "A = (pi/4)*(d**2);\t\t\t#area of cross section after load of 76 kN\n", + "\n", + "# Calculation\n", + "E_stress = P/A_o;\t\t\t#engineering stress\n", + "T_stress = P/A;\t\t\t#true stress\n", + "T_strain = math.log(A_o/A);\t\t\t#true strain\n", + "E_strain = math.exp(T_strain)-1;\t\t\t#engineering strain\n", + "\n", + "# Results\n", + "print 'engineering stress in = %.f N/mm**2'%E_stress\n", + "print 'true stress in = %.2f N/mm**2'%T_stress\n", + "print 'engineering strain = %.2f'%E_strain\n", + "print 'true strain = %.2f'%T_strain\n", + "\n", + "# rounding off error" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "engineering stress in = 600 N/mm**2\n", + "true stress in = 671.72 N/mm**2\n", + "engineering strain = 0.12\n", + "true strain = 0.11\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.3 Page No : 271" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables\n", + "Y = 210.*10**9;\t\t\t#Young's modulus of a certain material(in N/m**2)\n", + "E = 10.;\t\t\t#true surface energy (in J/m**2)\n", + "c = (100./2)*10**-6;\t\t\t#Crack (in meter)\n", + "pi = 3.14;\n", + "\n", + "# Calculation\n", + "F_strength = (2*Y*E/(pi*c))**(1/2.);\n", + "\n", + "# Results\n", + "print 'fracture strength in %.1e Newton/m**2'%F_strength\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "fracture strength in 1.6e+08 Newton/m**2\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.4 Page No : 271" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables\n", + "l_o = 305.*10**-3;\t\t\t#length of copper piece(in meter)\n", + "E = 110.*10**9;\t\t\t#surface energy\n", + "stress = 276.*10**6;\t\t\t#in Pa\n", + "\n", + "# Calculation\n", + "dl = stress*l_o/E;\t\t\t#resultant elongation(in meter)\n", + "\n", + "# Results\n", + "print 'resultant elongation in = %.2f mm'%(dl*10**3)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resultant elongation in = 0.77 mm\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.5 Page No : 271" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables\n", + "T_stress = 415.;\t\t\t#True stress (in Megapascal)\n", + "T_strain = 0.10;\t\t\t#True strain \n", + "K = 1035.;\t\t\t#(in Megapascal)\n", + "\n", + "# Calculation\n", + "n = (math.log(T_stress)-math.log(K))/math.log(T_strain);\t\t\t#\n", + "\n", + "# Results\n", + "print 'Strain hardening exponent for an alloy = %.2f'%n\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Strain hardening exponent for an alloy = 0.40\n" + ] + } + ], + "prompt_number": 7 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Material_Science_by_S._L._Kakani_and_A._Kakani/ch9.ipynb b/Material_Science_by_S._L._Kakani_and_A._Kakani/ch9.ipynb new file mode 100644 index 00000000..a7247f31 --- /dev/null +++ b/Material_Science_by_S._L._Kakani_and_A._Kakani/ch9.ipynb @@ -0,0 +1,155 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:c6e5e1c4294a719070d1412094c85ff6cd99718ea66c74abcd23864bb9db9fd5" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 9 :\n", + "Alloys Systems Phase Diagrams\n", + "and Phase Transformations" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 9.1 Page No : 317" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Calculation\n", + "#Fulcrum is at 0.5% carbon\n", + "#from lever rule\n", + "Pro_f = ((0.80-0.5)/(0.80-0.0))*100;\t\t\t# % Proeutectoid ferrite\n", + "Pea_f = 100-Pro_f;\t\t\t# % Pearlite ferrite\n", + "\n", + "# Results\n", + "print 'Proeutectoid ferrite = %.1f %%'%Pro_f\n", + "print 'Pearlite ferrite = %.1f %%'%Pea_f\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Proeutectoid ferrite = 37.5 %\n", + "Pearlite ferrite = 62.5 %\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 9.2 Page No : 317" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables\n", + "N = 2;\n", + "C = 2;\n", + "\t\t\t#F = C-P+N\n", + "P_1 = 1;\n", + "P_2 = 2;\n", + "P_3 = 3;\n", + "P_4 = 4;\n", + "\n", + "# Calculation\n", + "F_1 = C-P_1+N;\n", + "F_2 = C-P_2+N;\n", + "F_3 = C-P_3+N;\n", + "F_4 = C-P_4+N;\n", + "\n", + "# Results\n", + "print 'Degrees of freedom for 1 phase = ',F_1\n", + "print 'Degrees of freedom for 2 phases = ',F_2\n", + "print 'Degrees of freedom for 3 phases = ',F_3\n", + "print 'Degrees of freedom for 4 phases = ',F_4\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Degrees of freedom for 1 phase = 3\n", + "Degrees of freedom for 2 phases = 2\n", + "Degrees of freedom for 3 phases = 1\n", + "Degrees of freedom for 4 phases = 0\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 9.3 Page No : 318" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\t\t\t\n", + "import math \n", + "\n", + "# Variables\n", + "P = 4;\t\t\t#Number of phases exhibit by a material\n", + "F = 0;\t\t\t#Minimum degrees of freedom\n", + "\n", + "# Calculation\n", + "#modified form of the phase rule F = C-P+1\n", + "C = F+P-1;\t\t\t#minimum number of components in the system\n", + "\n", + "# Results\n", + "print 'the minimum number of components in the system = ',C\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "the minimum number of components in the system = 3\n" + ] + } + ], + "prompt_number": 3 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Material_Science_by_S._L._Kakani_and_A._Kakani/screenshots/10.png b/Material_Science_by_S._L._Kakani_and_A._Kakani/screenshots/10.png Binary files differnew file mode 100644 index 00000000..e23d6998 --- /dev/null +++ b/Material_Science_by_S._L._Kakani_and_A._Kakani/screenshots/10.png diff --git a/Material_Science_by_S._L._Kakani_and_A._Kakani/screenshots/16.png b/Material_Science_by_S._L._Kakani_and_A._Kakani/screenshots/16.png Binary files differnew file mode 100644 index 00000000..ddf5c27d --- /dev/null +++ b/Material_Science_by_S._L._Kakani_and_A._Kakani/screenshots/16.png diff --git a/Material_Science_by_S._L._Kakani_and_A._Kakani/screenshots/7.png b/Material_Science_by_S._L._Kakani_and_A._Kakani/screenshots/7.png Binary files differnew file mode 100644 index 00000000..ec00abfc --- /dev/null +++ b/Material_Science_by_S._L._Kakani_and_A._Kakani/screenshots/7.png |