summaryrefslogtreecommitdiff
path: root/Material_Science_In_Engineering/ch15.ipynb
diff options
context:
space:
mode:
authorhardythe12014-07-28 14:01:58 +0530
committerhardythe12014-07-28 14:01:58 +0530
commit73b0bffc1781c6cf1eec459813767508da507c33 (patch)
tree81c5dc85e69261df791d26c88dca60dbf765970b /Material_Science_In_Engineering/ch15.ipynb
parent5571c8f5bda1334edf8ef9d8c69928d46cc9f163 (diff)
downloadPython-Textbook-Companions-73b0bffc1781c6cf1eec459813767508da507c33.tar.gz
Python-Textbook-Companions-73b0bffc1781c6cf1eec459813767508da507c33.tar.bz2
Python-Textbook-Companions-73b0bffc1781c6cf1eec459813767508da507c33.zip
adding book
Diffstat (limited to 'Material_Science_In_Engineering/ch15.ipynb')
-rwxr-xr-xMaterial_Science_In_Engineering/ch15.ipynb489
1 files changed, 489 insertions, 0 deletions
diff --git a/Material_Science_In_Engineering/ch15.ipynb b/Material_Science_In_Engineering/ch15.ipynb
new file mode 100755
index 00000000..ef9c8eba
--- /dev/null
+++ b/Material_Science_In_Engineering/ch15.ipynb
@@ -0,0 +1,489 @@
+{
+ "metadata": {
+ "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 15 : Electric Properties"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 15.1 pageno : 391"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Variables\n",
+ "v = 230.;\t\t\t#in volts\n",
+ "d = 0.005;\t\t\t#in m\n",
+ "\n",
+ "# Calculations\n",
+ "E = -v/d;\t\t\t#in V/m\n",
+ "\n",
+ "# Results\n",
+ "print \"Electric field between pair of conducting plates (in V/m) = \",E\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Electric field between pair of conducting plates (in V/m) = -46000.0\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 15.2 pageno : 391"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Variables\n",
+ "n = 10.**19;\t\t\t#no. of electrons per unit volume\n",
+ "e = 1.602*10**-19;\t\t\t#charge of an electron in C\n",
+ "a = 0.018;\t\t\t#conductivity in ohm/m\n",
+ "m = 9.1*10**-31;\t\t\t#mass of an electron in kg\n",
+ "v = 0.16;\t\t\t#in volts\n",
+ "t = 0.29;\t\t\t#thickness in mm\n",
+ "\n",
+ "# Calculations\n",
+ "efg = v/t;\t\t\t#electric field gradient in V/m\n",
+ "vd = a*efg/(n*e);\n",
+ "vd1 = 10**3*vd;\t\t\t#in m/s\n",
+ "\n",
+ "# Results\n",
+ "print \"Drift Velocity (in m/sec) = %.3f m/s\"%vd1\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Drift Velocity (in m/sec) = 6.199 m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 15.3 pageno : 399"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Variables\n",
+ "l = 200.; \t \t\t#in m\n",
+ "r = 21.;\t \t \t#in ohm\n",
+ "d = 0.44*10**-3;\t\t\t#in m\n",
+ "\n",
+ "# Calculations\n",
+ "a = 3.14*(d/2)**2;\t\t\t#area in sq m\n",
+ "p = r*a/l;\t\t\t#in ohm-m\n",
+ "\n",
+ "# Results\n",
+ "print \"Specific Resistance (in ohm-m) = %.3e ohm-m\"%p\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Specific Resistance (in ohm-m) = 1.596e-08 ohm-m\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 15.4 pageno : 400"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Variables\n",
+ "p_cu = 0.015*10**-6;\t\t\t#resistivity of copper in ohm-m\n",
+ "p_ni = 0.012*10**-6;\t\t\t#resistivity of nickel in ohm-m\n",
+ "p_ag = 0.016*10**-6;\t\t\t#resistivity of silver in ohm-m\n",
+ "c1 = 0.25;\t\t\t#atomic % of nickel\n",
+ "c2 = 0.4;\t\t\t#atomic % of silver\n",
+ "\n",
+ "# Calculations\n",
+ "p = p_cu+(c1*p_ni)+(c2*p_ag);\n",
+ "\n",
+ "# Results\n",
+ "print \"Resistivity of Cu-Ni-Ag alloy at 300 K (in ohm-m) = %.2e ohm m\"%p\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Resistivity of Cu-Ni-Ag alloy at 300 K (in ohm-m) = 2.44e-08 ohm m\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 15.5 pageno : 407"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Variables\n",
+ "m = 0.14;\t\t\t#mobility of electron\n",
+ "u_h = 0.05;\t\t\t#mobility of holes\n",
+ "p = 3000.;\t\t\t#resistivity in ohm-m\n",
+ "\n",
+ "# Calculations\n",
+ "e = 1.602*10**-19;\t\t\t#charge of an electron in C\n",
+ "a = 1./p;\t\t\t#conductivity \n",
+ "n = a/(e*(m+u_h));\n",
+ "\n",
+ "# Results\n",
+ "print \"Intrinsic Carrier density in pure silicon (in per cu m) = %.3e m**3\"%n\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Intrinsic Carrier density in pure silicon (in per cu m) = 1.095e+16 m**3\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 15.6 pageno : 410"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Variables\n",
+ "id = 1000.;\t\t\t#in A/sqm\n",
+ "p = 0.05;\t\t\t#resistivity in ohm-m\n",
+ "l = 100.*10**-6;\t\t\t#in m\n",
+ "m_e = 0.4;\t\t\t#in sqm/Vsec\n",
+ "e = 1.602*10**-19;\t\t\t#charge of electron in C\n",
+ "\n",
+ "# Calculations\n",
+ "a = 1./p;\t\t\t#conductivity\n",
+ "n_e = a/(e*m_e);\t\t\t#in per cubic m\n",
+ "v_d = id/(n_e*e);\t\t\t#in m/s\n",
+ "t = l/v_d;\t\t\t#in sec\n",
+ "t1 = t*10**6;\t\t\t#in msec\n",
+ "\n",
+ "# Results\n",
+ "print \"Drift Velocity (in m/s) = %.f m/s\"%v_d\n",
+ "print \"Time taken by electrons (in msec) = %.f ms\"%t1\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Drift Velocity (in m/s) = 20 m/s\n",
+ "Time taken by electrons (in msec) = 5 ms\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 15.7 pageno : 410"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Variables\n",
+ "d = 1.*10**-3;\t \t\t#diameter in m\n",
+ "a = 3.14*(d/2)**2;\t\t\t#area of cross section of rod in sq m\n",
+ "r = 100.;\t\t\t #in ohm\n",
+ "\n",
+ "# Calculations\n",
+ "l = 10.*10**-3;\t\t\t #in m\n",
+ "p = a*r/l;\t\t\t #in ohm-m\n",
+ "c = 1./p;\t \t\t#conductivity\n",
+ "e = 1.602*10**-19;\t\t\t#charge of electron in C\n",
+ "u_h = 0.19;\t\t\t #mobility of holes in sqm/Vsec\n",
+ "n_h = c/(e*u_h);\n",
+ "\n",
+ "# Results\n",
+ "print \"Impurity concentration in rod (in per cubic m) = %.2e m**3\"%n_h\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Impurity concentration in rod (in per cubic m) = 4.19e+21 m**3\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 15.8 pageno : 413"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Variables\n",
+ "ni = 1.5*10**16;\t\t\t#intrinsic carrier concentration per cu. m\n",
+ "n = 10**19;\t\t\t#no. of conduction electrons in per cu. m\n",
+ "\n",
+ "# Calculations\n",
+ "p = ni**2/n;\t\t\t#in per cu.m\n",
+ "\n",
+ "# Results\n",
+ "print \"Conduction electron and hole density (per cubic m) = %.2e m**3\"%p\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Conduction electron and hole density (per cubic m) = 2.25e+13 m**3\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 15.9 pageno : 413"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "nd = 10.**17;\t\t\t#in per cu cm\n",
+ "ni = 1.5*10**10;\t\t\t#in cu cm\n",
+ "t = 300;\t\t\t#in K\n",
+ "\n",
+ "# Calculations\n",
+ "ne = nd;\t\t\t#nd>>ni\n",
+ "nh = ni**2/ne;\n",
+ "e = 0.0259*math.log(ne/ni);\t\t\t#in eV\n",
+ "\n",
+ "# Results\n",
+ "print \"Hole concentration (in per cubic cm) = %.2e /cm**3\"%nh\n",
+ "print \"Location of Fermi Level (in eV) = %.3f eV\"%e\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Hole concentration (in per cubic cm) = 2.25e+03 /cm**3\n",
+ "Location of Fermi Level (in eV) = 0.407 eV\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 15.10 pageno : 423"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Variables\n",
+ "d = 40000.;\t\t\t #dielectric strength in V/mm\n",
+ "v = 33*10.**3;\t\t\t#in volts\n",
+ "\n",
+ "# Calculations\n",
+ "t = v/d;\t\t\t#in mm\n",
+ "\n",
+ "# Results\n",
+ "print \"thickness of insulation (in mm) = %.3f m m\"%t\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "thickness of insulation (in mm) = 0.825 m m\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 15.14 page no : 424"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Calculation\n",
+ "\n",
+ "T = 0.0464*10**5/2.9444\n",
+ "\n",
+ "# Result\n",
+ "print \"Temperature T = %.1f K\"%T"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Temperature T = 1575.9 K\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 15.16 pageno : 425"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Variables\n",
+ "c = 2.99*10**8;\t\t \t#speed of light in m/s\n",
+ "h = 6.62*10**-24;\t\t\t#planck's constant\n",
+ "l = 1.771*10**-6 #wavelength in m\n",
+ "\n",
+ "# Calculations\n",
+ "eg = (h*c)/l;\t \t\t#in J\n",
+ "\n",
+ "# Results\n",
+ "print \"Band gap energy (in J) = %.2e Joules\"%eg\n",
+ "#Incorrect answer int the textbook. Please calculate manually"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Band gap energy (in J) = 1.12e-09 Joules\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file