summaryrefslogtreecommitdiff
path: root/MECHANICS_OF_SOLIDS_by_S.S._Bhavikatti/Chapter5_enki9Zb.ipynb
diff options
context:
space:
mode:
authorTrupti Kini2016-12-29 23:31:36 +0600
committerTrupti Kini2016-12-29 23:31:36 +0600
commit1b8e3f3a7721cc0e1b757dd9b9225a8458ffc982 (patch)
tree7c553107e7263bbd3e34ace219cbb6c3b456c260 /MECHANICS_OF_SOLIDS_by_S.S._Bhavikatti/Chapter5_enki9Zb.ipynb
parent908ba07e328db0a7de5b6e095d237c9dd7b134c2 (diff)
downloadPython-Textbook-Companions-1b8e3f3a7721cc0e1b757dd9b9225a8458ffc982.tar.gz
Python-Textbook-Companions-1b8e3f3a7721cc0e1b757dd9b9225a8458ffc982.tar.bz2
Python-Textbook-Companions-1b8e3f3a7721cc0e1b757dd9b9225a8458ffc982.zip
Added(A)/Deleted(D) following books
A Electrical_and_Electronic_Systems_by_Neil_Storey/Chapter11_IzdUFBN.ipynb A Electrical_and_Electronic_Systems_by_Neil_Storey/Chapter12_2pkvTOi.ipynb A Electrical_and_Electronic_Systems_by_Neil_Storey/Chapter13_UcaK0rG.ipynb A Electrical_and_Electronic_Systems_by_Neil_Storey/Chapter14_7ZhEpxq.ipynb A Electrical_and_Electronic_Systems_by_Neil_Storey/Chapter15_1u5Qndu.ipynb A Electrical_and_Electronic_Systems_by_Neil_Storey/Chapter16_Z1IANWB.ipynb A Electrical_and_Electronic_Systems_by_Neil_Storey/Chapter18_64Lv3wy.ipynb A Electrical_and_Electronic_Systems_by_Neil_Storey/Chapter19_mSxDpin.ipynb A Electrical_and_Electronic_Systems_by_Neil_Storey/Chapter20_afHh1Ul.ipynb A Electrical_and_Electronic_Systems_by_Neil_Storey/Chapter21_gzzeK4K.ipynb A Electrical_and_Electronic_Systems_by_Neil_Storey/Chapter22_vCvUGaR.ipynb A Electrical_and_Electronic_Systems_by_Neil_Storey/Chapter23_6pRykcG.ipynb A Electrical_and_Electronic_Systems_by_Neil_Storey/Chapter2_a5yV2Qr.ipynb A Electrical_and_Electronic_Systems_by_Neil_Storey/Chapter5_wnZtP1O.ipynb A Electrical_and_Electronic_Systems_by_Neil_Storey/Chapter6_IHeGb5U.ipynb A Electrical_and_Electronic_Systems_by_Neil_Storey/Chapter8_IbkU2sr.ipynb A Electrical_and_Electronic_Systems_by_Neil_Storey/Chapter9_MBMuv9e.ipynb A Electrical_and_Electronic_Systems_by_Neil_Storey/screenshots/1.png A Electrical_and_Electronic_Systems_by_Neil_Storey/screenshots/2.png A Electrical_and_Electronic_Systems_by_Neil_Storey/screenshots/3.png A MECHANICS_OF_SOLIDS_by_S.S._Bhavikatti/Chapter10_ndNKnai.ipynb A MECHANICS_OF_SOLIDS_by_S.S._Bhavikatti/Chapter11_G92bOqJ.ipynb A MECHANICS_OF_SOLIDS_by_S.S._Bhavikatti/Chapter11_N0K1mlo.ipynb A MECHANICS_OF_SOLIDS_by_S.S._Bhavikatti/Chapter1_M2InnXG.ipynb A MECHANICS_OF_SOLIDS_by_S.S._Bhavikatti/Chapter2_JPopPWa.ipynb A MECHANICS_OF_SOLIDS_by_S.S._Bhavikatti/Chapter3_cKdxsUa.ipynb A MECHANICS_OF_SOLIDS_by_S.S._Bhavikatti/Chapter4_m3lhY5f.ipynb A MECHANICS_OF_SOLIDS_by_S.S._Bhavikatti/Chapter5_enki9Zb.ipynb A MECHANICS_OF_SOLIDS_by_S.S._Bhavikatti/Chapter6_OBixdB4.ipynb A MECHANICS_OF_SOLIDS_by_S.S._Bhavikatti/Chapter8_3bWeJYh.ipynb A MECHANICS_OF_SOLIDS_by_S.S._Bhavikatti/Chapter9_ywK155l.ipynb A MECHANICS_OF_SOLIDS_by_S.S._Bhavikatti/screenshots/ch1_QxuPWeV.png A MECHANICS_OF_SOLIDS_by_S.S._Bhavikatti/screenshots/ch_9_4RN5UYF.png A MECHANICS_OF_SOLIDS_by_S.S._Bhavikatti/screenshots/ch_F1MI2Sb.png A Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/README.txt A RCC_Theory_and_Design_by_M._G._Shah_and_C._M._Kale/README.txt
Diffstat (limited to 'MECHANICS_OF_SOLIDS_by_S.S._Bhavikatti/Chapter5_enki9Zb.ipynb')
-rw-r--r--MECHANICS_OF_SOLIDS_by_S.S._Bhavikatti/Chapter5_enki9Zb.ipynb774
1 files changed, 774 insertions, 0 deletions
diff --git a/MECHANICS_OF_SOLIDS_by_S.S._Bhavikatti/Chapter5_enki9Zb.ipynb b/MECHANICS_OF_SOLIDS_by_S.S._Bhavikatti/Chapter5_enki9Zb.ipynb
new file mode 100644
index 00000000..87ac24ec
--- /dev/null
+++ b/MECHANICS_OF_SOLIDS_by_S.S._Bhavikatti/Chapter5_enki9Zb.ipynb
@@ -0,0 +1,774 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter5-FRICTION"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 5.1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "P= 1250.0 N\n",
+ "P= 1210.36288071 N\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "Wa=1000.0 #weight of block a\n",
+ "Wb=2000.0 #weight of block b\n",
+ "uab=1.0/4.0 #coefficient of friction between A and B\n",
+ "ubg=1.0/3.0 #coefficient of friction between ground and B\n",
+ "#When P is horizontal\n",
+ "#considering equilibrium of block A\n",
+ "N1=Wa #Normal Reaction on block A from block B\n",
+ "F1=uab*N1 #limiting Friction between A and B\n",
+ "T=F1 #tension\n",
+ "#considering equilibrium of block B\n",
+ "N2=N1+ Wb #Normal Reaction on block B from Ground\n",
+ "F2=ubg*N2 #limiting Friction between A and ground\n",
+ "P=F1+F2\n",
+ "print \"P=\",P,\"N\"\n",
+ "#When P is inclined at angle o\n",
+ "o=30.0*3.14/180.0\n",
+ "#considering equilibrium of block A\n",
+ "N1=Wa #Normal Reaction on block A from block B\n",
+ "F1=uab*N1 #limiting Friction between A and B\n",
+ "T=F1 #tension\n",
+ "#considering equilibrium of block B\n",
+ "#from\n",
+ "#N2+Psin30=N1+Wb\n",
+ "#Pcos30=F1+F2\n",
+ "#F1=ubg*N2\n",
+ "N2=(N1+Wb-F1*math.tan(o))/(1+ubg*math.tan(o))\n",
+ "P=(N1+Wb-N2)/math.sin(o)\n",
+ "print \"P=\",P,\"N\"\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 5.2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "29.0693410161 °\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "Wa=300.0 #weight of upper block \n",
+ "Wb=900.0 #weight of lower block \n",
+ "u1=1.0/3.0 #coefficient of friction between upper block and lower block\n",
+ "u2=1.0/3.0 #coefficient of friction between ground and lower block\n",
+ "#using \n",
+ "#N1=Wacoso Normal Reaction\n",
+ "#F1=u1*N1 Friction\n",
+ "#N2=Wbcoso+N1\n",
+ "#F2=u2*N2\n",
+ "o=math.atan((u1*Wa+u2*Wb+u2*Wa)/Wb)*180/3.14\n",
+ "print o,\"°\"\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 5.3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Angle of inclination is 30.0152164356\n",
+ "coefficient of friction is 0.1\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "W=500.0 #weight of block\n",
+ "F1=200.0 #force up the inclined plane when block is moving down\n",
+ "F2=300.0 #force up the inclined plane when block is at rest\n",
+ "#When block starts moving down the plane\n",
+ "#sum of all forces perpendicular to the plane = 0\n",
+ "#N =Wcoso\n",
+ "#sum of all forces parallel to the plane = 0\n",
+ "#Fr+F1=Wsino\n",
+ "#sino-ucoso=F1/w 1\n",
+ "#When block starts moving up the plane\n",
+ "#sum of all forces perpendicular to the plane = 0\n",
+ "#N =Wcoso\n",
+ "#sum of all forces parallel to the plane = 0\n",
+ "#Wsino+Wucoso=F2\n",
+ "#using these equations\n",
+ "o=math.asin((F1*0.5/W)+(F2*0.5/W)) #angle of inclination\n",
+ "print \"Angle of inclination is \",(o*180/3.14)\n",
+ "#using 1\n",
+ "u=math.sin(o)-F1/W\n",
+ "print \"coefficient of friction is\",round(u,3)\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 5.4"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Angle of Inclination 21.8124674778\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "uag=0.5 #coefficient of friction between block A and the plane\n",
+ "ubg=0.2 #coefficient of friction between block B and the plane\n",
+ "Wb=500.0 #weight of block B\n",
+ "Wa=1000.0 #weight of block A\n",
+ "#Considering equilibrium of block A,\n",
+ "#sum of all forces along the plane is 0\n",
+ "#N1=Wacoso ,Fr=uagN1\n",
+ "#sum of all forces perpendicaular to the plane is 0\n",
+ "#T=uagWacoso-Wasino\n",
+ "#Considering equilibrium of block A,\n",
+ "#sum of all forces along the plane is 0\n",
+ "#N2=Wbcoso ,Fr=uagN2\n",
+ "#sum of all forces perpendicaular to the plane is 0\n",
+ "#T=Wbsino-ubgwbsino\n",
+ "o=math.atan((uag*Wa+ubg*Wb)/(Wa+Wb))*180.0/3.14\n",
+ "print \"Angle of Inclination\",o;\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 5.5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "853.305553493 N\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "Wl=750.0 #weight of lower block\n",
+ "Wu=500.0 #weight of upper block\n",
+ "o1=60.0*3.14/180.0 #angle of inclined plane\n",
+ "o2=30.0 *3.14/180.0 # anlge at which pull is applied\n",
+ "u=0.2 #coefficient of friction\n",
+ "#for 750 N block\n",
+ "#Σ Forces normal to the plane = 0 \n",
+ "N1=Wl*math.cos(o1)\n",
+ "F1=u*N1\n",
+ "#Σ Forces parallel to the plane = 0\n",
+ "T=F1+Wl*math.sin(o1)\n",
+ "#Σ Forces horizontal to the plane = 0\n",
+ "P=(T+u*Wu)/(math.cos(o2)+u*math.sin(o2))\n",
+ "print P,\"N\"\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 5.6"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Least Weight is 266.34090474 N\n",
+ "Greatest Weight is 969.473014916 N\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "o1=60.0*3.14/180.0 #angle of inclination of plane AC\n",
+ "o2=30.0*3.14/180.0 #angle of inclination of plane BC\n",
+ "Wbc=1000.0 #weight of block on plane BC\n",
+ "ubc=0.28 #coefficient of friction between the load and the plane BC \n",
+ "uac=0.20 #coefficient of friction between the load and the plane AC\n",
+ "#for least weight \n",
+ "N1=Wbc*math.cos(o2) #Normal Reaction\n",
+ "F1=ubc*N1 #frictional Force\n",
+ "T=Wbc*math.sin(o2)-F1 #Tension\n",
+ "#for block on plane AC\n",
+ "#N2=Wcoso1\n",
+ "#F2=uac*N2\n",
+ "#T=F2+W sino2\n",
+ "W=T/(uac*math.cos(o1)+math.sin(o1))\n",
+ "print \"Least Weight is\",W,\"N\"\n",
+ "#for greatest weight \n",
+ "N1=Wbc*math.cos(o2) #Normal Reaction\n",
+ "F1=ubc*N1 #frictional Force\n",
+ "T=Wbc*math.sin(o2)+F1 #Tension\n",
+ "#for block on plane AC\n",
+ "#N2=Wcoso1\n",
+ "#F2=uac*N2\n",
+ "#T=F2+W sino2\n",
+ "W=T/(-1*uac*math.cos(o1)+math.sin(o1))\n",
+ "print \"Greatest Weight is\",W,\"N\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 5.7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Weight 10498.172578 N\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "u=0.4 #The coefficient of friction on the horizontal plane\n",
+ "oi=30 #angle of inclined plane\n",
+ "o=20.0 #The limiting angle of friction for block B on the inclined plane\n",
+ "wb=5000.0 #weight of block b\n",
+ "ub=math.tan(o*3.14/180.0) #coefficcient of friction on plane\n",
+ "#for block B\n",
+ "#N1 N2 N3 are normal reaction\n",
+ "#F1 F2 are frictional forces\n",
+ "#F1=ub*N1 \n",
+ "#N1 sinoi + F1 cos oi=wb\n",
+ "N1=wb/(math.sin(oi*3.14/180.0)+ub*math.cos(oi*3.14/180.0))\n",
+ "F1=ub*N1\n",
+ "C=N1*math.cos(oi*3.14/180.0)-F1*math.sin(oi*3.14/180.0)\n",
+ "\n",
+ "#force balance on A in horizontal balance\n",
+ "F2=C\n",
+ "N2=F2/u\n",
+ "#force balance on A in vertical balance\n",
+ "W=N2\n",
+ "print \"Weight \",W,\"N\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 5.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Force = 23812.7516422 N\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "w=20000.0 #weight of upper block\n",
+ "o=15.0 #The angle of friction for all surfaces of contact\n",
+ "u=math.tan(o) #coefficient of friction\n",
+ "#R1 R2 are forces\n",
+ "Or1=15.0 #angle force R1 makes with x axis\n",
+ "Or2=35.0 #angle force R2 makes with Y axis\n",
+ "R2=w*math.sin((90-Or1)*3.14/180.0)/math.sin((90+Or1+Or2)*3.14/180.0)\n",
+ "#applyig lamis theorem on block B\n",
+ "Or1=15.0 #angle force R3 makes with Y axis\n",
+ "Or2=35.0 #angle force R2 makes with Y axis\n",
+ "P=R2*math.sin((180-Or1-Or2)*3.14/180.0)/math.sin((90+Or1)*3.14/180.0)\n",
+ "print \"Force =\",P,\"N\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 5.9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "P= 66.26 KN\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math \n",
+ "w=160.0 #weight of block,KN\n",
+ "u=0.25 #coefficient of friction\n",
+ "phi=math.atan(u)\n",
+ "\n",
+ "#The free body diagrams of wedges A, B and block C .The problem being symmetric, the reactions R1 and R2 on wedges A and B are equal. The system of forces on block C andon wedge A are shown in the form convenient for applying Lami’s theorem\n",
+ "R1=w*math.sin(math.pi-(16*math.pi/180)-phi)/math.sin(2*(phi+math.pi*16/180))\n",
+ "#consider the equillibrium of the wedge A ,Ny lamis's theorem,we get\n",
+ "P=R1*math.sin(math.pi-phi-phi-(16*math.pi/180))/math.sin((math.pi/2)+phi)\n",
+ "print\"P=\",round(P,2),\"KN\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 5.10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Force required is 62.0836173323 N\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "l=4.0 #length of ladder\n",
+ "u1=0.2 #coefficient of friction between the wall and the ladder\n",
+ "w=200.0 #weight of ladder\n",
+ "u2=0.3 #coefficient of friction between floor and the ladder\n",
+ "wm=600.0 #weight of man\n",
+ "lm=3.0 #distance of man\n",
+ "o=3.14*60.0/180.0 #angle made by ladder with floor\n",
+ "#sum of all moment about A =0\n",
+ "Nb=(w*l/2*math.cos(o)+wm*lm*math.cos(o))/(l*(math.sin(o)+u1*math.cos(o))) # normal reaction from wall\n",
+ "Fb=u1*Nb #friction from wall\n",
+ "#force balance in vertical direction\n",
+ "Na=(w+wm-Fb) # normal reaction from ground\n",
+ "Fa=u2*Na #friction from ground\n",
+ "P=Nb-Fa\n",
+ "print \"Force required is \",P,\"N\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 5.11"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Angle of inclination is 71.6013500101 degrees\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "l=6.0 #length of ladder\n",
+ "u1=0.4 #coefficient of friction between the wall and the ladder\n",
+ "w=200.0 #weight of ladder\n",
+ "u2=0.25 #coefficient of friction between floor and the ladder\n",
+ "wl=900.0 #weight of load\n",
+ "ll=5.0 #distance of load\n",
+ "#force balancing\n",
+ "#Na Nb normal reaction at A and B\n",
+ "#Fa Fb friction at A and B\n",
+ "#Fa=u2*Na \n",
+ "#Fb=u1*Nb\n",
+ "#Na+Fb=w+wl\n",
+ "#Fa=Nb\n",
+ "Nb=(wl+w)*u2/(1+u2*u1)\n",
+ "Na=Nb/u2\n",
+ "Fa=u2*Na\n",
+ "Fb=u1*Nb\n",
+ "#sum of all moments about a is =0\n",
+ "temp=((w*l*0.5)+(wl*ll)-(Fb*l))/(Nb*l)\n",
+ "o=math.atan(temp)*180/3.14\n",
+ "print \"Angle of inclination is \",o,\"degrees\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 5.12"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "length will 0.5 times\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "o=45.0*3.14/180.0 #angle of inclination \n",
+ "u=0.5 #coefficient of friction\n",
+ "r=1.5 #ratio of mans weight to ladders weight\n",
+ "o1=45.0*math.pi/180.0 #angle of inclination\n",
+ "#from law of friction\n",
+ "#Fa = μNa\n",
+ "#Fb = μNb\n",
+ "#Fa – Nb = 0 \n",
+ "#Na + Fb = W + r W\n",
+ "#ΣMA = 0\n",
+ "o=(((u*u+u)*(1+r)/((1+u)))-1.0/2.0)/r\n",
+ "print \"length will\",o,\"times\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 5.13"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Maximum weight is 6277.60420331\n",
+ "Minimum weight is 57.3467183245\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "n=1.25 #number of turns\n",
+ "o=2*3.14*n #angle of contact\n",
+ "u=0.3 #coefficient of friction\n",
+ "t=600.0 #force at the other end of the rope\n",
+ "#if the impending motion of the weight be downward.\n",
+ "W=T2=t*2.71**(u*o)\n",
+ "print \"Maximum weight is \",W\n",
+ "#if the impending motion of weight be upwards\n",
+ "W=T1=t*2.71**(-1*u*o)\n",
+ "print \"Minimum weight is \",W"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 5.14"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Weight is 136.9599857 N\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "ur=0.20 #The coefficient of friction between the rope and the fixed drum\n",
+ "uo=0.30 #The coefficient of friction between other surfaces\n",
+ "cosa=4.0/5.0 #cos of angle of inclination\n",
+ "sina=3.0/5.0 #sin of angle of inclination\n",
+ "Ww=1000.0 #weight\n",
+ "o=3.14 #angle of contact of rope with pulley\n",
+ "#for unknown weight\n",
+ "#force balance perpendicular to the plane\n",
+ "#N1 = W cos α\n",
+ "#fr=uoN1\n",
+ "#force balance along the plane\n",
+ "#T1 = F1 + W sin α\n",
+ "#for 1000 N body\n",
+ "#force balance perpendicular to the plane\n",
+ "#N2=N1+Wwcosa\n",
+ "#fr2=uoN2\n",
+ "#force balance along the plane\n",
+ "#T2= Wwsina -F1 -F2\n",
+ "#T2=T1*e^(ur*o)\n",
+ "W=(Ww*sina-uo*Ww*cosa)/(((uo*cosa+sina)*(2.71**(uo*o)))+(uo*cosa+uo*cosa))\n",
+ "print \"Weight is \",W,\"N\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 5.15"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "force P applied at the end of the brake lever 274.480678202\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "u=0.3 #coefficient of friction\n",
+ "r=250 #radius of brake drum\n",
+ "l=300 #length of lever arm\n",
+ "M=300000.0 #torque\n",
+ "o=r*3.14/180.0\n",
+ "l2=50.0\n",
+ "#using \n",
+ "#T2 = T1e^(μθ) T1 and T2 are tension\n",
+ "#(T2-T1)r=M\n",
+ "T1=M/(r*(2.71**(u*o)-1))\n",
+ "T2=(2.71**(u*o))*T1\n",
+ "#Consider the lever arm. Taking moment about the hinge\n",
+ "p=T2*l2/l #force P applied at the end of the brake lever\n",
+ "print \"force P applied at the end of the brake lever\",p\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 5.16"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Length of belt is 6972.02507534 mm\n",
+ "Power Transmitted 3252832.96438 Watt\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "d1=500.0 #diameter of a shaft\n",
+ "d2=100.0 #diameter of a shaft\n",
+ "D=3000.0 #distance between shafts in mm\n",
+ "T=1000.0 #Maximum permissible tension in the belt\n",
+ "U=0.25 #coefficient of friction between the belt and the pulley\n",
+ "R=220.0 #revlution per minute of larger shaft\n",
+ "O1=O2=3.14+2*math.asin((d1+d2)/(2*D))\n",
+ "#Length of belt = Arc length DC + Arc length FE + 2BG\n",
+ "L=(d1/2+d2/2)*O1+2*D*math.cos(math.asin((d1+d2)/(2*D)))\n",
+ "print \"Length of belt is \",L,\"mm\"\n",
+ "T1=T/(2.71**(U*O1))\n",
+ "Velocity_of_the_belt =d1/2*(R*2*3.14/60.0)\n",
+ "Power_transmitted=(T-T1)*Velocity_of_the_belt\n",
+ "print \"Power Transmitted\",Power_transmitted,\"Watt\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "# Example 5.17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Length of belt is 6955.3382782 mm\n",
+ "Power Transmitted 3035637.41075 Watt\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "d1=500.0 #diameter of a shaft\n",
+ "d2=100.0 #diameter of a shaft\n",
+ "D=3000.0 #distance between shafts in mm\n",
+ "T=1000.0 #Maximum permissible tension in the belt\n",
+ "U=0.25 #coefficient of friction between the belt and the pulley\n",
+ "R=220.0 #revlution per minute of larger shaft\n",
+ "O1=3.14+2*math.asin((d1-d2)/(2*D))\n",
+ "O2=3.14-2*math.asin((d1-d2)/(2*D))\n",
+ "#Length of belt = Arc length DC + Arc length FE + 2BG\n",
+ "L=(d1/2*O1+d2/2*O2)+2*D*math.cos(math.asin((d1-d2)/(2*D)))\n",
+ "print \"Length of belt is \",L,\"mm\"\n",
+ "T1=T/(2.71**(U*O2))\n",
+ "Velocity_of_the_belt =d1/2*(R*2*3.14/60.0)\n",
+ "Power_transmitted=(T-T1)*Velocity_of_the_belt\n",
+ "print \"Power Transmitted\",Power_transmitted,\"Watt\"\n",
+ "\n",
+ "\n",
+ "\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}