diff options
author | Thomas Stephen Lee | 2015-08-28 16:53:23 +0530 |
---|---|---|
committer | Thomas Stephen Lee | 2015-08-28 16:53:23 +0530 |
commit | 4a1f703f1c1808d390ebf80e80659fe161f69fab (patch) | |
tree | 31b43ae8895599f2d13cf19395d84164463615d9 /Linear_Integrated_Circuits_by_J._B._Gupta/chapter05.ipynb | |
parent | 9d260e6fae7328d816a514130b691fbd0e9ef81d (diff) | |
download | Python-Textbook-Companions-4a1f703f1c1808d390ebf80e80659fe161f69fab.tar.gz Python-Textbook-Companions-4a1f703f1c1808d390ebf80e80659fe161f69fab.tar.bz2 Python-Textbook-Companions-4a1f703f1c1808d390ebf80e80659fe161f69fab.zip |
add books
Diffstat (limited to 'Linear_Integrated_Circuits_by_J._B._Gupta/chapter05.ipynb')
-rw-r--r-- | Linear_Integrated_Circuits_by_J._B._Gupta/chapter05.ipynb | 498 |
1 files changed, 498 insertions, 0 deletions
diff --git a/Linear_Integrated_Circuits_by_J._B._Gupta/chapter05.ipynb b/Linear_Integrated_Circuits_by_J._B._Gupta/chapter05.ipynb new file mode 100644 index 00000000..6aae196e --- /dev/null +++ b/Linear_Integrated_Circuits_by_J._B._Gupta/chapter05.ipynb @@ -0,0 +1,498 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter-5 : General Applications Of Op-Amps" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 5.1 - Page 156" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from numpy import pi\n", + "import math\n", + "# Given data\n", + "fo= 15 # in kHz\n", + "fo= fo*10**3 # in Hz\n", + "C=0.01 # in micro F\n", + "C=C*10**-6 # in F\n", + "L= 1/(4*pi**2*fo**2*C) # in H\n", + "L=math.ceil(L*10**3) # in mH\n", + "# Let L be of 12 mH and internal resistance 30 ohm\n", + "R=30 # internal resistance in ohm\n", + "XL= 2*pi*L*10**-3*fo \n", + "Q= XL/R \n", + "R_P= Q**2*R # in ohm\n", + "# If\n", + "R1=100 # in ohm\n", + "# Formula L= R_f*R_P/(R1*(R_f+R_P)) \n", + "R_f= R1*L*R_P/(R_P-R1*L) # in ohm\n", + "R_f=R_f*10**3 # in kohm\n", + "R_f= 1.2 # in k ohm (Standard value)\n", + "print \"The values of component chosen are:-\" \n", + "print \"Value of L = %0.f mH\" %L\n", + "print \"Value of C = %0.2f micro F\" %(C*10**6)\n", + "print \"Value of R_f = %0.1f k ohm\" %R_f\n", + "print \"Value of R1 = %0.f ohm\" %R1" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The values of component chosen are:-\n", + "Value of L = 12 mH\n", + "Value of C = 0.01 micro F\n", + "Value of R_f = 1.2 k ohm\n", + "Value of R1 = 100 ohm\n" + ] + } + ], + "prompt_number": 56 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 5.2 - Page 159" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "# Given data\n", + "Rf= 12 # in k ohm\n", + "Rs1= 12 # in k ohm\n", + "Rs2= 2 # in k ohm\n", + "Rs3= 3 # in k ohm\n", + "Vi1= 9 # in volt\n", + "Vi2= -3 # in volt\n", + "Vi3= -1 # in volt\n", + "Vout= -Rf*(Vi1/Rs1+Vi2/Rs2+Vi3/Rs3) # in volt\n", + "print \"Output voltage = %0.f volt\" %Vout" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Output voltage = 13 volt\n" + ] + } + ], + "prompt_number": 57 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 5.3 - Page NO 159" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given expression Vout= -2*V1+3*V2+4*V3\n", + "# For an operational amplifier\n", + "# Vout= -Rf*[V1/R1+V2/R2+V3/R3]\n", + "# Compare the above expression with the given expression for the output\n", + "r_1=2 # value of Rf/R1\n", + "r_2=3 # value of Rf/R2\n", + "r_3=4 # value of Rf/R3\n", + "# Resistance R3 will be minimum value of 10 k ohm\n", + "R3=10 # in k ohm\n", + "Rf= r_3*R3 # in k ohm\n", + "R2= Rf/r_2 # in k ohm\n", + "R1= Rf/r_1 # in k ohm\n", + "print \"Value of Rf = %0.f k ohm\" %Rf\n", + "print \"Value of R2 = %0.2f k ohm\" %R2\n", + "print \"Value of R1 = %0.f k ohm\" %R1" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Value of Rf = 40 k ohm\n", + "Value of R2 = 13.33 k ohm\n", + "Value of R1 = 20 k ohm\n" + ] + } + ], + "prompt_number": 58 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example : 5.4 - Page No 159\n", + " " + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V1= 2 # in volt\n", + "V2= -1 # in volt\n", + "# Let R1= (R||R)/(R+(R||R))= (R/2)/(R+R/2) = 1/3\n", + "R1=1/3 \n", + "Vs1= V1*R1 # in volt\n", + "# Let R2= (1+Rf/R)= (1+2*R/R)= 3\n", + "R2= 3 \n", + "Vo_desh= Vs1*R2 # in volt\n", + "Vs2= V2*R1 # in volt\n", + "Vo_doubleDesh= Vs2*R2 # in volt\n", + "V_out= Vo_desh+Vo_doubleDesh # in volt\n", + "print \"Output voltage = %0.f volt\" %V_out" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Output voltage = 1 volt\n" + ] + } + ], + "prompt_number": 59 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example : 5.5 - Page No 160\n", + " " + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given expression Vout= 10*(V2-V1)\n", + "# For a differential amplifier circuit\n", + "# Vout= Rf/R*(V2-V1)\n", + "# Compare the above expression with the given expression for the output, we have\n", + "RfbyR= 10 \n", + "R=10 # minimum value of resistancce to be used in kohm\n", + "Rf= RfbyR * R # in k ohm\n", + "print \"Value of Rf = %0.f k ohm\" %Rf" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Value of Rf = 100 k ohm\n" + ] + } + ], + "prompt_number": 60 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example : 5.7 - Page No 164\n", + " " + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "# Given data\n", + "R1= 50 # in kohm\n", + "# Let us choose\n", + "R3= 15 # in k ohm\n", + "R4= R3 \n", + "# Ad= 1+2*R2/R1 (i)\n", + "# Ad= ((1+2*R2/R1)*(V2-V1))/(V2-V1)= 1+2*R2/R1\n", + "# For minimum differential voltage gain\n", + "Ad_min=5 \n", + "Ad= Ad_min \n", + "R1_max= R1 # since Ad will be minimum only when R1 will be maximum\n", + "# Putting values of Ad and R1 in eq(i)\n", + "R2= (Ad-1)*R1/2 # in k ohm\n", + "# For maximum differential voltage gain\n", + "Ad_max=200 \n", + "Ad= Ad_min \n", + "# Putting values of Ad and R2 in eq(i)\n", + "R1= 2*R2/(Ad_max-1) # in k ohm\n", + "R1=int(R1)\n", + "# For maximum value of Ad, R1 will have minimum value , therefore\n", + "R1_min= 1 # in kohm\n", + "print \"Value of R1_min = %0.f k ohm\" %R1_min\n", + "print \"Value of R1 = %0.f-50 k ohm potentiometer\" %R1\n", + "print \"Value of R2 = %0.f k ohm\" %R2\n", + "print \"Value of R3 = %0.f k ohm\" %R3\n", + "print \"Value of R4 = %0.f k ohm\" %R4" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Value of R1_min = 1 k ohm\n", + "Value of R1 = 1-50 k ohm potentiometer\n", + "Value of R2 = 100 k ohm\n", + "Value of R3 = 15 k ohm\n", + "Value of R4 = 15 k ohm\n" + ] + } + ], + "prompt_number": 61 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example : 5.10 - Page No 179\n", + " " + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "Vin= 10 # in volt\n", + "R=2.2 # in k ohm\n", + "R=R*10**3 #in ohm\n", + "Ad=10**5 # voltage gain\n", + "T= 1 # in ms\n", + "T=T*10**-3 # in second\n", + "C=1 # in micro F\n", + "C=C*10**-6 # in F\n", + "I= Vin/R # in volt\n", + "V= I*T/C # in V\n", + "print \"The output voltage at the end of the pulse = %0.3f volt\" %V\n", + "RC_desh= R*C*Ad \n", + "print \"The closed-loop time constant = %0.f second \" %RC_desh" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The output voltage at the end of the pulse = 4.545 volt\n", + "The closed-loop time constant = 220 second \n" + ] + } + ], + "prompt_number": 62 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example : 5.11 - Page No 180\n", + " " + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "C=0.01 # in micro F\n", + "C=C*10**-6 # in F\n", + "omega= 10000 # in rad/second\n", + "# Vout/V1= (Rf/R1)/(1+s*C*Rf)\n", + "# substituting s= j*omega we have\n", + "# Vout/V1 = (Rf/R1)/sqrt((omega*C*Rf)**2+1)\n", + "# At omega=0\n", + "# Vout/V1= Rf/R1\n", + "# Formula omega= 1/(C*Rf)\n", + "Rf= 1/(C*omega) # in ohm\n", + "Rf= Rf*10**-3 # in k ohm\n", + "# 20*log10(Rf/R1) = 20\n", + "R1= Rf/10 # in k ohm\n", + "print \"Value of Rf = %0.f k ohm\" %Rf\n", + "print \"Value of R1 = %0.f k ohm\" %R1" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Value of Rf = 10 k ohm\n", + "Value of R1 = 1 k ohm\n" + ] + } + ], + "prompt_number": 63 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example : 5.12 Page No 180\n", + " " + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "#Given Data : \n", + "R=40*1000 #in ohm(assumed)\n", + "C=0.2*10**-6 #IN FARAD\n", + "Vout=3 #in Volt\n", + "V1=Vout #in Volt\n", + "V2=Vout #in Volt\n", + "plot([0,50],[3,-9.5]) \n", + "plt.title('Output voltage')\n", + "plt.xlabel('Time in milliseconds')\n", + "plt.ylabel('Output voltage in volts')\n", + "plt.axis([0, 60, -12, 5])\n", + "plt.show()\n", + "print \"Assuming Ideal op-amp, sketch for Vout is shown in figure.\" \n", + "\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEZCAYAAABiu9n+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtclFX+B/DPIHgpQcsLIOCCV0BBEDVbXZ1CLBQt74qa\nS2W2lbtaYuSvEjNRNDI1rWw1k3a9LctqqCirjKWIKBdRoQwVF1FKFERE5HZ+f8zyLAgjt3nm+nm/\nXvN6zTwz8zzfU77myznn+Z6jEEIIEBER1cNC3wEQEZHhYpIgIiKNmCSIiEgjJgkiItKISYKIiDRi\nkiAiIo2YJIgMjLOzM44cOaLvMIgAMEmQkdi2bRs8PDzw+OOPw97eHm+88Qbu3LnT6O87Ozvj6NGj\nWotH2+erSaFQQKFQAABCQ0Mxe/ZsWa5D1BhMEmTwIiIiEBISgoiICBQVFSExMRFXr16Fn58fysvL\nG3UOhUIBbdaNavt8RAZLEBmwO3fuiPbt24s9e/bUOl5cXCy6dOkitm7dKoQQYs6cOeL999+X3o+P\njxeOjo5CCCFmzZolLCwsRLt27UT79u3FmjVrxJUrV4RCoRCbN28W3bp1E/b29uKTTz6Rvt/U8z3M\n1dVVxMTESK/Ly8tF586dRWpqqhBCiL179wp3d3fRsWNHoVQqRWZmpvRZZ2dnceTIEXHw4EHRunVr\nYWVlJdq3by+8vLyEEEJs3bpVuLm5CWtra9GjRw/x1Vdf1bp2eHi4sLe3Fw4ODuLrr78WCoVCXLp0\nSQghRGlpqXjnnXdE9+7dha2trXj99dfF/fv3G/u/g8wQexJk0BISElBaWoqJEyfWOv74449jzJgx\niIuLA1B7iOZhkZGR6N69O2JiYnD37l0sWrRIek+lUiErKwuHDx9GeHi4NBfQ3PNVCwwMxI4dO6TX\nhw4dQteuXeHl5YWLFy8iMDAQ69evR35+PsaMGYNx48ahoqKi1jmef/55LFmyBNOnT8fdu3eRmpoK\nALC1tcX+/ftRVFSEb775BgsXLpTei42Nxdq1a3HkyBH88ssvUKlUtc4ZEhKCrKwsnD17FllZWcjN\nzcVHH31UbzuJAA43kYHLz89H586dYWFR95+qnZ0dbt26Jb0WzRj+Wbp0Kdq1a4f+/fsjKCio1g97\nc85XLTAwEPv27UNpaSkA4O9//ztmzJgBANi1axcCAgLg6+uLVq1aYdGiRbh//z4SEhLqnEcIUSeO\nMWPGwMXFBQAwYsQIjB49Gj/++CMAYPfu3Xj55Zfh5uaGdu3aYdmyZbXO9fXXX+PTTz9Fx44d0b59\ne7z33nvYuXNns9tJpo9Jggxa586dkZ+fj6qqqjrv3bhxA507d27R+Z2cnKTn3bt3x/Xr11t0vmo9\ne/aEm5sb9u3bh5KSEnz//fcIDAwEoI67e/fu0mcVCgWcnJyQm5vbqHMfPHgQQ4cORadOnfDEE0/g\nwIEDUrK8ceNGrTY5OjpKz2/evImSkhL4+PjgiSeewBNPPAF/f3/k5+dro8lkopgkyKA9/fTTaNOm\nDaKiomodLy4uRmxsLHx9fQGoh59KSkqk9/Py8mp9XtPQ0X/+859azx0cHFp0vppmzJiBHTt2YO/e\nvXB3d0ePHj0AAN26dcPVq1elzwkhkJOTI137Udd58OABJk2ahMWLF+O3335DQUEBxowZI/U27O3t\nkZOTI32+5vPOnTujXbt2yMjIQEFBAQoKClBYWIiioqIG20Lmi0mCDFqHDh2wdOlSzJ8/H4cOHUJ5\neTmys7MxdepUODk5SbeHenl54cCBAygoKEBeXh4+++yzWuextbXFpUuX6pz/448/xv3793HhwgVs\n27YN06ZNa9H5apo+fToOHTqEL7/8EjNnzpSOT506Ffv378fRo0dRXl6OiIgItG3bFr///e/rnMPO\nzg7Z2dlSEigrK0NZWZk0BHfw4EEcPny41rm/+eYb/PTTTygpKcHy5cul9ywsLDB37lwsWLAAN2/e\nBADk5ubW+j5RHfqbMydqvC1btoj+/fuLdu3aSXflFBYWSu+XlpaKadOmCRsbGzFgwACxdu1a4eTk\nJL2/d+9e0b17d9GxY0cREREh3d309ddfi27dugk7O7tadyk19Xya+Pr6CisrK/Hrr7/WOh4dHS3c\n3d1Fhw4dhFKpFBkZGdJ71Xc3CSHErVu3xPDhw8UTTzwhfHx8hBBCbNy4Udja2oqOHTuK2bNnixkz\nZogPPvhA+v7KlSuFnZ2dcHBwEF988YVQKBTi2rVrUruWLFkievToIWxsbISbm5vYsGFDk/5fkHlR\nCMGbvcn8ZGdno0ePHqioqKh3UtxUZGZmwsPDA2VlZSbdTpIP/9UQmZjo6Gg8ePAABQUFePfddzF+\n/HgmCGo2/sshs9WYyWdjtHnzZtja2qJXr16wsrLCF198oe+QyIhxuImIiDRiT4KIiDSy1HcAzeHl\n5YWzZ8/qOwwiIqMyYMAApKWlNek7RtmTOHv2rLRcgSk+li5dqvcY2D62zxzbZ8ptE0I0649ro0wS\nRESkG0wSRESkEZOEAVIqlfoOQVZsn3Ez5faZctuayyhvgeWuYERETdec3072JIiISCMmCSIi0shg\nk0RlZSW8vb0xbtw4fYdCRGS2DDZJrFu3Du7u7ia7vg4RkTEwyCRx7do1HDhwAK+++ionqImI9Mgg\nk8TChQuxZs0aLm9MRKRnBvcrHBMTg65du8Lb25u9CCIiPTO4Bf4SEhKwb98+HDhwAKWlpSgqKsJL\nL72E7du31/pcaGio9FypVLIIhojoISqVCiqVqkXnMOhiumPHjuGTTz7B999/X+s4i+mIiJrOJIvp\neHcTEZH+GHRPQhP2JIiIms4kexJERKQ/TBJERKQRkwQREWnEJEFERBoxSRARkUZMEkREpBGTBBER\nacQkQUREGhltksjK0ncERESmz2iTxNChwJIlQHGxviMhIjJdRpsk0tOBa9cANzdgxw6Aq3QQEWmf\n0a/ddOIEMH8+0L49sGEDMGCAnoMjIjJQZrl207BhwOnTwKxZwOjRwBtvALdu6TsqIiLTYPRJAgBa\ntQJeew3IzAQsLAB3d+DLL4HKSn1HRkRk3Ix+uKk+6enqIaiiIvUQ1PDhOgyOiMhANWe4ySSTBKCe\nyN69GwgOBkaMAMLDAQcHHQVIRGSAzHJOQhOFApg2TT0E5eysntBetQp48EDfkRERGQ+TTRLVHn8c\n+Phj4NQpICEB8PAADhzQd1RERMbBIJNETk4OnnnmGfTr1w/9+/fH+vXrW3zOnj2BffuAdeuAhQuB\ngABWbRMRNcQg5yTy8vKQl5cHLy8vFBcXw8fHB//617/g5uYGoOV7XJeVAZ99Bqxerb4raskSdZ0F\nEZEpM5k5CTs7O3h5eQEA2rdvDzc3N1y/fl1r52/dGli8mFXbREQNMcieRE3Z2dkYOXIkLly4gPb/\n/XO/pT2Jh7Fqm4jMQXN+Oy1likUriouLMXnyZKxbt05KENVCQ0Ol50qlEkqlstnXqa7a3rJFXbU9\naRKwfDnQqVOzT0lEpHcqlQoqlapF5zDYnkR5eTkCAgLg7++PBQsW1HpP2z2Jmm7fBj78ENizB1i2\nDJg7V13RTURk7EymmE4IgTlz5qBTp05Yu3ZtnfflTBLVWLVNRKbGZJLE8ePHMWLECHh6ekKhUAAA\nVq5cieeffx6AbpIEwKptIjItJpMkGqKrJFHt3j1g5Ur1ooGLFqnrLNq00dnliYi0wmRugTU0rNom\nInPFnkQzHDwILFgA9O6tLsrr1UtvoRARNRp7Ejri7w+cO6eep+Be20RkypgkmolV20RkDjjcpCWs\n2iYiQ8fhJj3iXttEZIqYJLSIe20TkanhcJOMWLVNRIaExXQGiFXbRGQoOCdhgOrbazs8nHttE5Fx\nYJLQkZpV2ydOsGqbiIwDh5v0hFXbRKRrsgw37d69G0VFRQCA5cuXY8KECUhJSWlehCRh1TYRGYMG\nk8Ty5cthY2OD48eP48iRI3jllVfwpz/9SRexmTxWbRORoWswSbT677ZsMTExmDt3LgICAlBWViZ7\nYOakWzdg+3Zg505gzRpg5Ejg7Fl9R0VE1Igk4eDggNdeew27du3C2LFjUVpaiqqqKl3EZnZYtU1E\nhqbBJLFnzx4899xzOHz4MDp27IiCggKsWbNGF7GZJVZtE5EhaTBJzJs3D5MmTULv3r0BAPb29oiM\njJQ1qNjYWLi6uqJ3794IDw+X9VqG6skngc8/B+Li1PMUgwYBx4/rOyoiMjcNJonz58/Xel1RUYHk\n5GTZAqqsrMRbb72F2NhYZGRkYMeOHcjMzJTteobO0xNQqYCQECAwUD0UlZur76iIyFxoTBJhYWGw\ntrbGuXPnYG1tLT26du2K8ePHyxZQUlISevXqBWdnZ1hZWWH69OnYu3evbNczBqzaJiJ90ZgklixZ\ngrt372LRokW4e/eu9Lh9+zZWrVolW0C5ublwcnKSXjs6OiKXfzoDYNU2EemepaY3qgvmpkyZUm/x\n3MCBA2UJSKFQNOpzoaGh0nOlUgmlUilLPIaoZ09g377/VW1v2sSqbSKqS6VSQaVStegcGpflUCqV\nj/zBjo+Pb9GFNUlMTERoaChiY2MBACtXroSFhQXeffdd6TOmsCyHtpSVqRPE6tXqu6KWLFHvjkdE\n9DCTWCq8oqICffv2xZEjR9CtWzcMGTIEO3bsgJubm/QZJom6rl9XT27Hx6sTxvTp6rkMIqJqsiSJ\nsrIyfPHFF/jhhx8AqHsYr7/+OqysrJofaQMOHjyIBQsWoLKyEq+88gree++92kEzSWjEvbaJSBNZ\nksQrr7yCiooKzJkzB0IIREZGwtLSEn/9619bFGxLMEk8WmUlsGUL8MEHwKRJwPLlQKdO+o6KiPRN\nliTh6emJ9PT0Bo/pEpNE49y+DXz4IbBnD7BsGTB3rrqim4jMkyxLhVtaWiIrK0t6fenSJVhaarwp\nigwIq7aJqKUa7EkcOXIEQUFBcHFxAQBkZ2fjm2++wbPPPquTAOvDnkTTca9tIpLt7qbS0lL8/PPP\nAIC+ffuibdu2zYtQS5gkmu/ePWDlSvWigcHB6jqLNm30HRUR6YIsw02enp749NNP0b59ewwYMEDv\nCYJahlXbRNQUDfYksrOzsWvXLuzevRsKhQLTp0/H1KlT0b17d13FWAd7EtrDvbaJzIfsxXS//PIL\nli9fjr/97W+o1OMGB0wS2sWqbSLzIMtwE6DuTYSHh2P69On46aefsHr16mYFSIaJe20TkSYN9iSe\neuoplJWVYerUqZg2bRp69Oihq9g0Yk9CXqzaJjJNsgw3/fTTT3B1dW1RYNrGJCE/Vm0TmR5ZhpsM\nLUGQbnCvbSICDHAV2MZgT0L30tPVQ1BFReohqOHD9R0RETWVSSwV3hhMEvrBqm0i4yZbkjhx4gSy\ns7NRUVEhXeill15qXpRawCShX6zaJjJOsiSJWbNm4fLly/Dy8kKrGkuIbtiwoXlRagGThGG4dAlY\nuBD46Sd1ncWYMfqOiIgeRZYk4ebmhoyMjEbvPa0LTBKGhVXbRMZBlrub+vfvjxs3bjQ7KDJ9/v7A\nuXPqeYqhQ9UV28XF+o6KiLShwZ6EUqlEWloahgwZgjb/HXhWKBTYt2+fLAEFBwcjJiYGrVu3Rs+e\nPfHNN9+gQ4cOtYNmT8Jgca9tIsMly3CTSqWq97hSqWzShRorLi4Ovr6+sLCwQEhICABg1apVtT7D\nJGH4WLVNZHhM7hbY6OhoREVF4bvvvqt1nEnCONSs2p48GfjoI1ZtE+mTVuckhg0bBgBo3749rK2t\naz1sbGxaFmkjbd26FWN4y4zRqlm1rVCwapvIGOmlJ+Hn54e8vLw6x8PCwjBu3DgAwIoVK5CSkoKo\nqKg6n2NPwjixaptIv5rz22kpUyyPFBcX98j3t23bhgMHDuDIkSMaPxMaGio9VyqVss2RkPZ4egIq\nlbpqOzCQVdtEclOpVBrnlRvL4OYkYmNj8c477+DYsWPo3LlzvZ9hT8L4sWqbSPdMYuK6d+/eKCsr\nw5NPPgkAePrpp7Fp06Zan2GSMB2s2ibSHdmSRHZ2NrKysjBq1CiUlJSgoqJCZ5PX9WGSMD2s2iaS\nnywV15s3b8aUKVMwb948AMC1a9cwYcKE5kVIpAGrtokMU4NJYuPGjTh+/LjUc+jTpw9+++032QMj\n88O9tokMT4NJok2bNtJyHABQUVFhUIv9kenp1g3Yvh3YuRNYswYYORI4e1bfURGZpwaTxMiRI7Fi\nxQqUlJQgLi4OU6ZMkWoZiOQ0bBhw+jQwaxYwejTw5pvArVv6jorIvDQ4cV1ZWYktW7bg8OHDAIDn\nnnsOr776ql57E5y4Nj+3bwMffgjs2QMsWwbMnauu6CaixjOJW2Abg0nCfLFqm6j5ZEkSHh4edU7c\noUMHDB48GO+//z466WHFNiYJ88a9tomaR5YkERwcDEtLSwQGBkIIgZ07d6KkpAR2dnY4ceIEvv/+\n+xYF3RxMEgSwapuoqWRJEt7e3khNTa33mIeHB86dO9f0SFuISYJqYtU2UePIUkxXWVmJU6dOSa+T\nkpJQVVUFALC01Mv6gES19OwJ7NsHrFunThYBAUBWlr6jIjINDfYkTp8+jaCgIBT/t/zV2toaW7Zs\nQb9+/bB//35MnTpVJ4HWxJ4EaVJWpu5NrF6t3stiyRL17nhEJPPdTYWFhVAoFHX2m9YHJglqCPfa\nJqpLtiQRExODjIwMlJaWSsc+/PDDpkeoJUwS1Fjca5vof2SZk5g3bx52796N9evXQwiB3bt34+rV\nq80OkkiXWLVN1DINJomEhARs374dTz75JJYuXYrExET8/PPPuoiNSCu41zZR8zWYJNq1awcAeOyx\nx5CbmwtLS8t696cmMnRPPgl8/jkQF6deXXbQIOD4cX1HRWTYGkwSAQEBKCgoQHBwMHx8fODs7IwZ\nM2boIjYiWVTvtR0Sot5re9YsIDdX31ERGaYGJ65LS0vRtm1b6Xn16+pjcoiIiEBwcDDy8/OlbUxr\n4sQ1aQurtsmcyDJx/fvf/1563rZtW3Ts2LHWMW3LyclBXFwcfve738l2DaJqjz8OfPwxcOqU+k4o\nDw/gwAF9R0VkODSWTN+4cQPXr19HSUkJUlJSIISAQqFAUVERSkpKZAvo7bffxurVq/HCCy/Idg2i\nh1VXbVfvtb1pE/faJgIekSQOHTqEbdu2ITc3F++884503NraGmFhYbIEs3fvXjg6OsLT01OW8xM1\nxN8f8PVVJ4ihQ1m1TdTgnERUVBQmTZqktQv6+fnVe3fUihUrEBYWhsOHD8PGxgYuLi44c+ZMvUuR\nc06CdIFV22RqtFpxHRERIZ2w5i501a/ffvvtlkX7kPPnz8PX1xePPfYYAODatWtwcHBAUlISunbt\nWjtohQJLly6VXiuVSiiVSq3GQ1SNVdtkrFQqFVQqlfR62bJl2ksSoaGh9W5RWp0kav5Iy8HFxQXJ\nycm8u4kMQmUlsGUL8MEHwOTJwEcfAXrYb4uoRUxq+9IePXrgzJkzTBJkULjXNhkzWW6BzcnJwYQJ\nE9ClSxd06dIFkyZNwrVr15odZGNdvny53gRBpE+s2iZz02CSCAoKwvjx43H9+nVcv34d48aNQ1BQ\nkC5iIzJYrNomc9Fgkrh58yaCgoJgZWUFKysr/PGPf8Rvv/2mi9iIDJpCAUybpl440NlZPaEdHg48\neKDvyIi0p8Ek0alTJ0RGRqKyshIVFRX47rvv0LlzZ13ERmQUWLVNpqzBievs7GzMnz8fiYmJANTL\ndGzYsAHdu3fXSYD14cQ1GbLqqu3evVm1TYZFlrubbt68iS5durQoMG1jkiBDx722yRDJtsDf6NGj\nsWXLFhQUFDQ7OCJz0ro1sHgxkJ4OXLsGuLmp74bi3zZkbBpVJ3Hq1Cns3LkTe/fuhbu7O6ZNm4bZ\ns2frIr56sSdBxoZV22QIZC+my8/Px8KFC/G3v/0NVVVVTQ5QW5gkyBg9XLW9fLm67oJIV2QZbrpz\n5w62bdsGf39/PP3007C3t8fp06ebHSSRuXp4r203N+61TYavwZ6Ei4sLXnjhBUybNg1Dhw6tdz0n\nXWNPgkxBerp6CKqoSD0ENXy4viMiUyfLcFNVVRUsLBrscOgUkwSZCiGA3bvVW6eOGKEuxnNw0HdU\nZKpkGW4ytARBZEpYtU2GjhmAyACwapsMVYNJ4ng9S1yeOHFClmCIzF31Xtvr1gELFwLjxgFZWfqO\nisxZg0li/vz5dY699dZbsgRDRGr+/sC5c+p5iqFD1RXbxcX6jorMkaWmN06ePImEhATcvHkTn376\nqTTZcffuXb3WSBCZi9at1RPaM2eqlyR3c+Ne26R7GnsSZWVluHv3LiorK3H37l0UFxejuLgYNjY2\n+Mc//qHLGInMWrduwPbtwM6dwJo1wMiRwNmz+o6KzEWDt8BevXoVv/vd73QVT6PwFlgyV6zappaQ\npU7imWeeqfdCR48ebVp0jbRhwwZs2rQJrVq1wtixYxEeHl7v9ZkkyJxxr21qDlmSxJkzZ6TnpaWl\niIqKgqWlJdasWdO8KB8hPj4eYWFhOHDgAKysrDQuU84kQaSWng78+c/AnTus2qaGyb7AX7XBgwfL\nsn7T1KlT8frrr+PZZ5995OeYJIj+h1Xb1FiyVFzfvn1beuTn5yM2NhZFRUXNDvJRfvnlF/zwww8Y\nOnQolEplrV4MEdWPVdskJ423wFYbOHCgtKifpaUlnJ2dsWXLlmZf0M/PD3l5eXWOr1ixAhUVFSgo\nKEBiYiJOnz6NqVOn4vLly/WeJzQ0VHquVCqhVCqbHRORKaiu2g4KUhfibdmi3h1vzBh9R0b6olKp\noFKpWnSOZg03ycXf3x8hISEYOXIkAKBXr144deoUOnXqVOtzHG4ialj1Xtt9+gBr13KvbZJpuOn+\n/fuIiIjAhAkTMHHiRKxduxalpaXNDvJRXnzxRemuqYsXL6KsrKxOgiCixmHVNmlDgz2JKVOmwMbG\nBrNmzYIQAn//+99x584d7NmzR+vBlJeX4+WXX0ZaWhpat26NiIiIeoeR2JMgaprr19VV2/HxrNo2\nZ7Lc3eTu7o6MjIwGj+kSkwRR83CvbfMmy3DTwIEDcfLkSel1YmIifHx8mh4dEendsGHA6dPArFnA\n6NHAm2+qC/OINGmwJ+Hq6oqLFy/CyckJCoUC//nPf9C3b19YWlpCoVAgPT1dV7FK2JMgajlWbZsf\nWYabrl69WuekNS/k7OzctCi1gEmCSHtYtW0+ZEkSs2fPRmRkZIPHdIlJgki7WLVtHmSZkzh//nyt\n1xUVFUhOTm5aZERk0Fi1TZpoTBJhYWGwtrbGuXPnYG1tLT26du2K8ePH6zJGItIR7rVND2twuCkk\nJASrVq3SVTyNwuEmIt1g1bZpkWVO4tixY9LaTTWNGDGiadFpEZMEke6UlQHr1qmHn157TV253b69\nvqOi5pAlSQQEBEhJorS0FElJSfDx8ZFt06HGYJIg0j1WbRs/newnkZOTg7/85S/45z//2aQLaROT\nBJH+sGrbeMlyd9PDHB0dkZmZ2dSvEZGJYNW2eWmwJzF//nzpeVVVFdLS0uDi4oLvvvtO9uA0YU+C\nyDCwatu4yDLctG3bNmlOolWrVnBxccGwYcOaH6UWMEkQGRZWbRsHWZLE/fv3kZWVBYVCgV69eqFt\n27YtClIbmCSIDA+rtg2fVuckysvLsXjxYjg5OWHOnDl46aWX4OjoiODgYJSXl7c4WCIyLazaNk0a\nk0RwcDBu376NK1euICUlBSkpKbh8+TIKCwuxaNEiXcZIREaEVdumReNwU69evXDx4kVYWNTOI5WV\nlejbty+ysrJ0EmB9ONxEZDxYtW04tDrcZGFhUSdBAOrJ6/qOa0tSUhKGDBkCb29vDB48GKdPn5bt\nWkQkP+61bdw0/tq7ubnh22+/rXM8MjISrq6usgW0ePFiLF++HKmpqfjoo4+wePFi2a5FRLrRurV6\nQjs9Hbh2DXBzA3bsUE92k2Gz1PTGxo0bMXHiRGzdulXarjQ5ORklJSWIjo6WLSB7e3vcuXMHAFBY\nWAgH3h5BZDK6dQO2b/9f1fYXX7Bq29A98hZYIQSOHj2KCxcuQKFQwN3dHb6+vrIGdPXqVQwfPhwK\nhQJVVVU4efIknJycagfNOQkio1dZCWzZAnzwATB5MrB8OfDkk/qOyrTpZO0mbfDz80NeXl6d4ytW\nrMD69evx5ptvYsKECdizZw82b96MuLi4Wp9TKBRYunSp9FqpVEKpVModNhHJgFXb8lGpVFCpVNLr\nZcuWGUeSeBQbGxsUFRUBUPdkOnbsKA0/VWNPgsj0sGpbfjpZ4E9uvXr1wrFjxwAAR48eRZ8+ffQc\nERHpgqenehnykBAgMFC9gGBurr6jIoPrSZw5cwZvvvkmHjx4gHbt2mHTpk3w9vau9Rn2JIhM2717\nwMqVwJdfqu+KWrAAaNNG31EZP6OZk2gpJgki83DpErBwIfDTT8BnnwFjxug7IuPGJEFEJolV29ph\nEnMSREQPY9W2/jBJEJFRYNW2fnC4iYiMEvfabjoONxGR2eBe27rBJEFERqtVK+C119QbHSkU6iGo\nL79UL/lB2sHhJiIyGazafjTeAktEZo97bWvGOQkiMnvca1u7mCSIyCRxr23t4HATEZkFVm1zuImI\nSCNWbTcPkwQRmQ1WbTcdh5uIyGyZW9U2h5uIiJqgvqpt3gVVG5MEEZm1mlXbffqoh6TofzjcRERk\nJoxmuGnPnj3o168fWrVqhZSUlFrvrVy5Er1794arqysOHz6sj/CIiOi/LPVxUQ8PD0RHR2PevHm1\njmdkZGDXrl3IyMhAbm4uRo0ahYsXL8LCgqNiRET6oJdfX1dXV/Tp06fO8b1792LGjBmwsrKCs7Mz\nevXqhaSkJD1ESEREgIFNXF+/fh2Ojo7Sa0dHR+Tm5uoxIiIi8ybbcJOfnx/y8vLqHA8LC8O4ceMa\nfR6FQqHNsIiIqAlkSxJxcXFN/o6DgwNycnKk19euXYODhjV+Q0NDpedKpRJKpbLJ1yMiMmUqlQoq\nlapF59CxSXPbAAAL1ElEQVTrLbDPPPMMPvnkE/j4+ABQT1wHBgYiKSlJmrjOysqq05vgLbBERE1n\nNLfARkdHw8nJCYmJiRg7diz8/f0BAO7u7pg6dSrc3d3h7++PTZs2cbiJiEiPWExHRGQmjKYnQURE\nxoFJgoiINGKSICIijZgkiIhIIyYJIiLSiEmCiIg0YpIgIiKNmCSIiEgjJgkiItKISYKIiDRikiAi\nIo2YJIiISCMmCSIi0ohJgoiINGKSICIijZgkiIhIIyYJIiLSSC9JYs+ePejXrx9atWqF5ORk6Xhc\nXBwGDRoET09PDBo0CPHx8foIj4iI/ksvScLDwwPR0dEYMWJErT2su3TpgpiYGKSnp+Pbb7/F7Nmz\n9RGe3qlUKn2HICu2z7iZcvtMuW3NpZck4erqij59+tQ57uXlBTs7OwCAu7s77t+/j/Lycl2Hp3em\n/g+V7TNuptw+U25bcxnsnERUVBR8fHxgZWWl71CIiMyWpVwn9vPzQ15eXp3jYWFhGDdu3CO/e+HC\nBYSEhCAuLk6u8IiIqDGEHimVSpGcnFzrWE5OjujTp49ISEjQ+L2ePXsKAHzwwQcffDTh0bNnzyb/\nTsvWk2gsIYT0vLCwEGPHjkV4eDiefvppjd/JysrSRWhERGZPL3MS0dHRcHJyQmJiIsaOHQt/f38A\nwOeff45Lly5h2bJl8Pb2hre3N/Lz8/URIhERAVCImn/KExER1WCwdzdpEhsbC1dXV/Tu3Rvh4eH6\nDqfFXn75Zdja2sLDw0M6dvv2bfj5+aFPnz4YPXo0CgsL9Rhh8+Xk5OCZZ55Bv3790L9/f6xfvx6A\n6bSvtLQUTz31FLy8vODu7o733nsPgOm0r1plZSW8vb2lG05MqX3Ozs7w9PSEt7c3hgwZAsC02ldY\nWIjJkyfDzc0N7u7uOHXqVJPbZ1RJorKyEm+99RZiY2ORkZGBHTt2IDMzU99htUhQUBBiY2NrHVu1\nahX8/Pxw8eJF+Pr6YtWqVXqKrmWsrKywdu1aXLhwAYmJidi4cSMyMzNNpn1t27ZFfHw80tLSkJ6e\njvj4eBw/ftxk2ldt3bp1cHd3lwpfTal9CoUCKpUKqampSEpKAmBa7fvLX/6CMWPGIDMzE+np6XB1\ndW16+5o81a1HCQkJ4rnnnpNer1y5UqxcuVKPEWnHlStXRP/+/aXXffv2FXl5eUIIIW7cuCH69u2r\nr9C06oUXXhBxcXEm2b579+6JQYMGifPnz5tU+3JycoSvr684evSoCAgIEEKY1r9PZ2dnkZ+fX+uY\nqbSvsLBQuLi41Dne1PYZVU8iNzcXTk5O0mtHR0fk5ubqMSJ5/Prrr7C1tQUA2Nra4tdff9VzRC2X\nnZ2N1NRUPPXUUybVvqqqKnh5ecHW1lYaWjOl9i1cuBBr1qyBhcX/fipMqX0KhQKjRo3CoEGD8PXX\nXwMwnfZduXIFXbp0QVBQEAYOHIi5c+fi3r17TW6fUSWJmus8mQuFQmH07S4uLsakSZOwbt06WFtb\n13rP2NtnYWGBtLQ0XLt2DT/88EOdRSmNuX0xMTHo2rUrvL29a92qXpMxtw8ATpw4gdTUVBw8eBAb\nN27Ejz/+WOt9Y25fRUUFUlJS8MYbbyAlJQWPP/54naGlxrTPqJKEg4MDcnJypNc5OTlwdHTUY0Ty\nsLW1larVb9y4ga5du+o5ouYrLy/HpEmTMHv2bLz44osATKt91Tp06ICxY8ciOTnZZNqXkJCAffv2\nwcXFBTNmzMDRo0cxe/Zsk2kfANjb2wNQLy46YcIEJCUlmUz7HB0d4ejoiMGDBwMAJk+ejJSUFNjZ\n2TWpfUaVJAYNGoRffvkF2dnZKCsrw65duzB+/Hh9h6V148ePx7fffgsA+Pbbb6UfV2MjhMArr7wC\nd3d3LFiwQDpuKu3Lz8+X7gy5f/8+4uLi4O3tbTLtCwsLQ05ODq5cuYKdO3fi2WefRWRkpMm0r6Sk\nBHfv3gUA3Lt3D4cPH4aHh4fJtM/Ozg5OTk64ePEiAODf//43+vXrh3HjxjWtfTLMl8jqwIEDok+f\nPqJnz54iLCxM3+G02PTp04W9vb2wsrISjo6OYuvWreLWrVvC19dX9O7dW/j5+YmCggJ9h9ksP/74\no1AoFGLAgAHCy8tLeHl5iYMHD5pM+9LT04W3t7cYMGCA8PDwEKtXrxZCCJNpX00qlUqMGzdOCGE6\n7bt8+bIYMGCAGDBggOjXr5/0e2Iq7RNCiLS0NDFo0CDh6ekpJkyYIAoLC5vcPhbTERGRRkY13ERE\nRLrFJEFERBoxSRARkUZMEkREpBGTBBERacQkQUREGjFJkEG4deuWtNGUvb09HB0d4e3tDWtra7z1\n1ltav95XX32FyMhIWc773XffAQD++Mc/IioqCgCgVCqRkpICABg7diyKioq0fu3mUKlUDe45T+ZN\n79uXEgFAp06dkJqaCgBYtmwZrK2t8fbbb8t2vXnz5sl+3prr4tRcH2f//v2yXJtIDuxJkEGqrvGs\n+ZduaGgo5syZgxEjRsDZ2Rn//Oc/sWjRInh6esLf3x8VFRUAgOTkZCiVSgwaNAjPP/+8tE5NTaGh\noYiIiACg/is/JCQETz31FPr27Yvjx4/X+bxKpcLIkSPx4osvomfPnggJCUFkZCSGDBkCT09PXL58\nuc55NXF2dsbt27dx7949jB07Fl5eXvDw8MDu3bsfGX9WVhZGjRoFLy8v+Pj44MqVKwCA4OBgeHh4\nwNPTUzqHSqWCUqnElClT4ObmhlmzZknXj42NhZubG3x8fBAdHS0dP3bsmNSbGzhwIIqLixv630Rm\ngEmCjMqVK1cQHx+Pffv2YdasWfDz80N6ejratWuH/fv3o7y8HPPnz0dUVBTOnDmDoKAg/N///V+d\n8zz8V35lZSVOnTqFzz77DMuWLav32unp6fjqq6+QmZmJyMhIXLp0CUlJSXj11VexYcOGOufVpPr9\n2NhYODg4IC0tDefOncPzzz//yPhnzpyJ+fPnIy0tDSdPnoSdnR2ioqJw9uxZpKen49///jeCg4Ol\npJKWloZ169YhIyMDly9fRkJCAkpLS/Haa68hJiYGycnJyMvLk+KJiIjApk2bkJqaiuPHj6Ndu3bN\n+D9EpobDTWQ0FAoF/P390apVK/Tv3x9VVVV47rnnAAAeHh7Izs7GxYsXceHCBYwaNQqAejfDbt26\nNXjuiRMnAgAGDhyI7Ozsej8zePBgaR3+Xr16Sdfu379/rSXCG7vSjaenJxYtWoSQkBAEBARg+PDh\nOH/+fL3xFxcX4/r163jhhRcAAK1btwagXuo6MDAQCoUCXbt2xciRI3H69GnY2NhgyJAhUtu9vLxw\n5coVPPbYY3BxcUHPnj0BALNmzcLmzZsBAMOGDcPChQsxc+ZMTJw4EQ4ODo1qB5k2JgkyKtU/jhYW\nFrCyspKOW1hYoKKiAkII9OvXDwkJCU06b5s2bQAArVq1koatNH2m+nrVr6uvXa2x+w/07t0bqamp\n2L9/P95//334+vpiwoQJ9cZfvVppfR5OStXXrxlvdbsejq3md999910EBARg//79GDZsGA4dOoS+\nffs2qi1kujjcREajMX+h9+3bFzdv3kRiYiIA9X4WGRkZzT5fUwkhGn3eGzduoG3btpg5cyYWLVqE\n1NRUjfFbW1vD0dERe/fuBQA8ePAA9+/fxx/+8Afs2rULVVVVuHnzJn744QcMGTKk3hgUCgVcXV2R\nnZ0tzaHs2LFDev/SpUvo168fFi9ejMGDB+Pnn39u6X8OMgHsSZBBqjlfUN/zmp+p+drKygr/+Mc/\n8Oc//xl37txBRUUFFi5cCHd3d43XaMzxR801PCrGR53/3LlzCA4OlnpFX3755SPjj4yMxLx58/Dh\nhx9Kn5swYQJOnjyJAQMGQKFQYM2aNejatSsyMzPrjaNNmzbYvHkzxo4di8ceewx/+MMfcO/ePQDA\nunXrEB8fDwsLC/Tv3x/+/v6PbAeZBy4VTkREGnG4iYiINGKSICIijZgkiIhIIyYJIiLSiEmCiIg0\nYpIgIiKNmCSIiEgjJgkiItLo/wEJUlJyDeG+CgAAAABJRU5ErkJggg==\n", + "text": [ + "<matplotlib.figure.Figure at 0x7f0c532cff90>" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Assuming Ideal op-amp, sketch for Vout is shown in figure.\n" + ] + } + ], + "prompt_number": 64 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example : 5.14 - Page No 185\n", + " " + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "%matplotlib inline\n", + "from sympy import symbols, simplify, sin\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "# Given data\n", + "fa= 1 # in kHz\n", + "fa=fa*10**3 # in Hz\n", + "Vp=1.5 # in volt\n", + "f= 200 # in Hz\n", + "C=0.1 # in micro F\n", + "C=C*10**-6 # in F\n", + "R= 1/(2*np.pi*fa*C) # in ohm\n", + "R=R*10**-3 # in k ohm\n", + "R=np.floor(R*10)/10 # in k ohm\n", + "fb= 20*fa # in Hz\n", + "R_desh= 1/(2*np.pi*fb*C) # in ohm\n", + "# Let\n", + "R_desh= 82 # in ohm\n", + "R_OM= R # in k ohm\n", + "print \"Value of R_OM = %0.1f k ohm\" %R_OM\n", + "CR= C*R \n", + "# Vin= Vp*sin(omega*t)= 1.5*sin(400*t)\n", + "# v_out= -CR*diff(v_in) = -0.2827 Cos(400*pi*t)# in micro volt\n", + "print \"Output Voltage = -0.2827 Cos(400*pi*t)\" \n", + "t = np.arange(0, .015, 1.0/44100)\n", + "v_out=-0.2827*np.sin(400*np.pi*t+np.pi/2)# in micro volt\n", + "plot(t,v_out) \n", + "plt.title('Output Voltage Waveform')\n", + "plt.xlabel('Time in ms')\n", + "plt.ylabel('Vout in Volts') \n", + "print \"Output Voltage waveform is shown in figure.\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Value of R_OM = 1.5 k ohm\n", + "Output Voltage = -0.2827 Cos(400*pi*t)\n", + "Output Voltage waveform is shown in figure.\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEZCAYAAACw69OmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXlYVVXb/7/nCCqKA6ghk6IMCoLgiEMKDqiUmmk5paE2\nvU0+T4Opv95KGzXzqcznLa0s0xyyTDSVHBFNEAcMFZxQFEENRXCWaf3+WJ4DCAcO5+x91j5735/r\n4tJz2GfvL2z2+q573WvdS8cYYyAIgiAIK9GLFkAQBEGoAzIUgiAIQhLIUAiCIAhJIEMhCIIgJIEM\nhSAIgpAEMhSCIAhCEshQCKIaJk2ahHfeeUe0DMXw119/wd/fH40aNcL69etFyyEUBhkKUWt+/PFH\nhISEoGHDhnB3d8dLL72EgoICsz/v4+ODHTt2SKanuvNlZ2fD0dERZ86cqfS9xx9/HNOmTav23Dqd\nDjqdDgAQHx8Pb29v6wVbwODBg/Hpp58aX2dnZ0Ov11f53j///CObjnfffRdTp07FjRs3MHz4cNmu\nQ9gnZChErZg/fz5mzJiB+fPn4/r160hKSsK5c+cQFRWFoqIis86h0+kg5Xra6s7n6emJAQMGYNmy\nZRXez8vLw+bNmzFp0qQaz6+Etb8RERFISEgwvk5ISED79u0rvRcQEICHHnpINh3nz59HUFCQRZ8t\nKSmRWA2hOBhBmElBQQFzdnZma9asqfD+zZs3WYsWLdiSJUsYY4zFxMSw//3f/zV+f+fOnczLy4sx\nxtiECROYXq9nTk5OzNnZmc2bN4+dPXuW6XQ6tnjxYubh4cHc3d3ZZ599Zvx8bc/3ICtWrGC+vr4V\n3vvvf//LOnfuzBhjLC0tjUVERLCmTZuyDh06sPXr1xuPmzRpEnvnnXfYrVu3WP369Zler2fOzs6s\nUaNG7OLFi2zfvn2sR48erGnTpszd3Z298sorrLCw0Pj5P//8kwUEBLAmTZqwl156ifXt25d99913\nxu9///33LDAwkLm4uLDBgwezc+fOVfm7T0hIYE2bNjW+fumll9iiRYuYm5ub8b0XX3yRPffcc4wx\nxqZOncq8vb1Z48aNWZcuXdju3bsZY4xlZ2czJycnlpeXZ/zcoUOHWPPmzVlxcXG1mtq2bWv8XTdq\n1IgVFhay7OxsNmzYMObq6sr8/PzYt99+azzve++9x0aNGsUmTJjAGjduzL777jsWERHB3n77bdar\nVy/m7OzMhg0bxnJzc9n48eNZ48aNWbdu3VhmZmaVvwNC+ZChEGazefNm5uDgwEpKSip9LyYmho0b\nN44xVtYIGyhvAIwx5uPjw7Zv3258bTCU8ePHs9u3b7MjR46wFi1asG3btll0vge5ffs2a9KkCduz\nZ4/xvR49erAvv/ySFRYWMl9fX/bJJ5+woqIitmPHDtaoUSN24sQJ47UNZhYfH1/huowxdvDgQbZv\n3z5WUlLCMjMzWWBgIPviiy8YY4zl5uayxo0bs99//52VlJSwL7/8kjk6OrLvv/+eMcbYunXrmJ+f\nHzt+/DgrKSlhH374IevVq1eVP8Pdu3eZk5MTO3z4MGOMseDgYHbmzBnWu3dvlpKSwhhjrEOHDmzZ\nsmWMMcaWL1/O8vLyWElJCZs/fz5r2bIlu3fvHmOMsf79+1do+N9880324osvmqXpwd91nz592Msv\nv8zu3bvHDh8+zFq0aMF27NjBGOOG4ujoyGJjYxljjN25c4dFREQwf39/dubMGVZQUMCCgoKYn58f\n2759OysuLmZPP/00mzx5ssl7SSgbGvIizObKlSto3rw59PrKfzYtW7bE1atXja+ZBcNE7733Hpyc\nnBAcHIzJkydj5cqVVp3PgJOTE5588kn89NNPAIBTp07h0KFDGD9+PJKSknDr1i3MmDEDDg4O6Nev\nH4YOHVrh2tVp6Ny5M7p37w69Xo/WrVvj+eefx65duwAAmzZtQnBwMEaMGAG9Xo+pU6eiZcuWxs9+\n8803mDlzJtq1awe9Xo+ZM2fi8OHDyMrKqnSdevXqITw8HLt27UJeXh4KCgrQpk0b9OnTBwkJCcjL\ny0N6ejoiIiIAAE899RRcXFyg1+vx+uuv4969ezhx4gQAYPz48cafjzGG1atXY/z48bXWlJWVhb17\n92Lu3LmoW7cuQkND8eyzzxp/zwDQq1cvY66lfv360Ol0mDx5Mtq0aYPGjRsjOjoaAQEB6N+/P+rU\nqYMnn3wSKSkpZtxVQomQoRBm07x5c1y5cgWlpaWVvnfx4kU0b97cqvOXT3i3atUKOTk5Vp2vPDEx\nMVizZg3u3buHZcuWYciQIWjevDlycnIqJdpbt25t9rVPnjyJoUOHwt3dHU2aNMHbb79tNNacnBx4\neXlVOL7863PnzuFf//oXXFxc4OLigmbNmgHgyfWq6Nu3LxISErBnzx707t0bAPDwww8b3/P29jb+\nLJ999hmCgoLQtGlTuLi4oKCgAFeuXAEAjBw5EomJibh06RISEhKg1+vx8MMP11pTTk4OXF1d0bBh\nQ+N7rVq1qnDsgz8/ALi5uRn/X79+/Qo5n/r16+PmzZtV/vyE8iFDIcymZ8+eqFevHn777bcK79+8\neRNxcXEYMGAAAKBhw4a4ffu28fuXLl2qcLxh1tSDnD9/vsL/PT09rTpfeXr37g1XV1fExsbi559/\nRkxMDADAw8MDWVlZFaKPc+fOGa9d/vxVXefFF19EUFAQTp8+jYKCAnz00UdGw/Xw8MCFCxeMxzLG\nKrxu1aoVFi9ejGvXrhm/bt26hR49elT5M/Tt2xe7d+9GQkIC+vbtC4BHAH/99RcSEhKM0cnu3bsx\nb948rFmzBvn5+bh27RqaNGli/BldXFwwaNAgrF69GitWrMC4ceMs0uTh4YG8vLwKBnD+/PkKJlLT\nvTHn3hH2AxkKYTZNmjTBe++9h1dffRV//vknioqKkJmZidGjR8Pb2xsTJ04EAISFhWHTpk24du0a\nLl26hC+++KLCedzc3JCRkVHp/B9++CHu3LmDY8eO4ccff8SYMWOsOl95dDodnn76abz11lsoKCjA\nsGHDAAA9evRAgwYN8Omnn6KoqAjx8fH4448/MHbsWADcBAwNsZubG65evYrr168bz3vz5k00atQI\nDRo0wPHjx/H1118bv/fII4/gyJEjiI2NRXFxMf773/9WMMP/+Z//wccff4y0tDQAQEFBAdasWWPy\nZ+jZsyeuXbuG5cuXo0+fPgC4OTRv3hzLly83msyNGzfg4OCA5s2bo7CwEO+//34FzQAf9lq6dCl+\n++0343BXbTV5e3ujV69emDlzJu7du4fU1FQsWbIEEyZMqO5WVDBva4YyCeVBhkLUimnTpuHjjz/G\nm2++iSZNmqBHjx5o3bo1tm/fDkdHRwDAxIkTERoaCh8fHwwZMgRjx46t0BOdOXMmPvzwQ7i4uOA/\n//mP8f2IiAj4+flh4MCBmDZtGgYOHGjV+R7k6aefRlZWFsaMGWPU6ujoiA0bNmDz5s1o0aIFXnnl\nFSxbtgwBAQEAKq5Dad++PcaNG4e2bdvC1dUVly5dwmeffYYVK1agcePGeP755ytoa968OdasWYO3\n3noLzZs3R3p6Orp27Yp69eoBAEaMGIHp06dj7NixaNKkCUJCQvDnn3+a1N+gQQN07doVRUVFCA4O\nNr7ft29f5ObmGg1lyJAhGDJkCAICAuDj4wMnJye0atWqwrmGDx+O06dPw93dHSEhIcb3a6tp5cqV\nyMzMhIeHB0aOHIn3338f/fv3r/S7K0/596o6hqIW+0XHBHYR4uLi8O9//xslJSV49tlnMX369Arf\nj42Nxbvvvgu9Xg+9Xo958+YZ/1gJ9ZCZmYm2bduiuLi4yoS/WigtLYW3tzdWrFhhHJ4iCDUhzFBK\nSkrQrl07bNu2DZ6enujWrRtWrlyJwMBA4zG3bt0yJvyOHDmCxx9/HKdPnxYhl5ARNRvKli1b0L17\ndzg5OWHevHn4+uuvcebMGWOUQhBqQtjTm5ycDD8/P/j4+MDR0RFjx45FbGxshWPKzx65efOm1bOI\nCOWi1mGOxMRE+Pn5oUWLFti4cSPWrVtHZkKoFmGGkp2dXWG6ppeXV5VTE9etW4fAwEBER0djwYIF\ntpRI2AgfHx+UlJSoLjoB+NqaK1eu4Pr160hMTES3bt1ESyII2RD2BJvbIx0xYgTS09OxYcMG4ywi\ngiAIQnk4iLqwp6dnhdW3WVlZVS6CMtCnTx8UFxfj6tWrxsVWBvz8/GqcNkoQBEGU4evrK3lOWliE\n0rVrV5w6dQqZmZkoLCzE6tWrK5XDzsjIMM5TP3ToEABUMpPyxyn567333hOugXSSTtJJOg1fcnTC\nhUUoDg4OWLhwIQYPHoySkhI888wzCAwMxKJFiwAAL7zwAn777Tf89NNPcHR0hLOzM1atWiVKLkEQ\nBFEDwgwFAKKjoxEdHV3hvRdeeMH4/7feegtvvfWWrWURBEEQFqC+aTUKJTIyUrQEsyCd0kI6pYV0\nKhuhK+WlQuodAEVx5gywbRtQvz4wdCjg6ipaEVEexoCdO4Fjx4B27YCBAwEVznS2awoKgA0bgBs3\n+P3x9xetSLnI0W7S46AAGAM++AAIDwf27gXWrwcCAoBffhGtjDBw+TIQEQH8619AWhowYwbQowdQ\nrngwIZg//uAG8uuvwP79wMMP8/tUxW4LhEwIzaEQnLffBv78EzhyBDDsv3T4MI9SdDrgySfF6tM6\n+flAZCS/D7Nm8aiEMWDePKBvXyApCZBxG3fCDDZtAp59FoiNBXr25O/l5gIjRwJTpwILF4rVpxVo\nyEswsbG813vwIPDgjOiUFGDQIOCvv3jEQtgexoBRowBPT+Crryp////9P94b/vNPGv4SRVYW0Lkz\nj+wNZmLg+nWge3fg3XeBclX6CcjTbpKhCOT6dSAoCFi5Eri/vUUlvvwSWLsWiI/n0QphW379lTdG\nKSlAVSW4Skp4I/bSS8CkSTaXR4BH8uHhwDvvVP39lBRg8GA+VEnlAMsgQzGBvRrK228D2dnAjz+a\nPqakBOjalT8sI0faTBoBoLgYaN8e+PZboF8/08cdPMgbtdOngXL1TAkbsGsXN/ITJ4C6dU0f9+qr\nPNqkoa8yyFBMYI+Gcu0a4OfHGyMfn+qP3bwZeOMN4OhRGlaxJT/8ACxbBuzYUfOxo0dz46dlU7aD\nMR7ZP/888PTT1R975QofNj52DHB3t40+pUOzvFTEwoXAsGE1mwkADBkCNGgAxMXJLou4T3Ex8OGH\nwOzZ5h3/7rvAf/4D3Lsnry6ijPh44OpV4Kmnaj62eXN+3Jdfyi5L05ChCODePZ7gnTHDvON1Oj5T\nhar3245Nm/jMLVO5rQcJDgY6dOD5LsI2/N//8aGsOnXMO/711/nw5fXr8urSMmQoAoiN5Q1Q+/bm\nf2bMGD6V+Phx+XQRZSxeDJSrAmQWL7/MGzlCfnJygO3bgQkTzP9MmzZ8+jeVBJQPMhQBfP89nzNf\nG+rVA6ZM4Z8l5OX8eSAxkedFasPw4cDZszzXRcjLd9/xTlbjxrX73OTJ1U+CIayDDMXGnD/PE/GP\nP177z06YwKcYl5RIr4soY+lSYNw4nreqDQ4OwMSJwM8/y6OL4DAGLF/OO1i1ZcgQbvonTkiviyBD\nsTmrVgFPPAE4OdX+s0FBPLm4e7f0uogyVq+2fBHc2LH8HtvZpEO74tAhXk6la9faf9bBgXfMli6V\nXhdBhmJzfv3VulIqTz1FPWA5OXaMFxjs0cOyz3fsyIt77tsnrS6ijFWruHFbutB37FhgzRoyfTkg\nQ7Eh587xcDsiwvJzjBkD/P47n9ZKSM+aNTyCtHS9j07HG6yVK6XVRXBKS3kEOXas5efo3BkoLOSd\nB0JayFBsyG+/AY89xsNuS2nVin/t3SudLqKMNWusL8b5xBN8Jh/1gKUnJYUPFwcHW34OnY7nMH//\nXTpdBIcMxYb8/rs05VOGD+d7PhDSkpnJK9RaOtxlICiIN1rUA5aeP/7gC4KtZeRIWjMkB2QoNqKg\ngK8jqa4mlLkMH84rqxLSEhfHiwhaW95Gp+O1vf74QxpdRBkbN/LfrbX07s33ssnKsv5cRBlkKDZi\n+3b+R2zJ7K4H6dQJuHWLpj5KzebNQHS0NOciQ5GeS5d4Ac7eva0/V506QFQU33aAkA4yFBvx55+8\n9ysFOh2fT79lizTnI3g5nPh4vv+MFERE8A3Trl6V5nwEN/yoKMDRUZrzDR5MhiI1ZCg2gLGy4RSp\nGDCARz2ENPz1Fy+FI9V+GfXr8550fLw05yOAbdukM3yAn2v7dpoxKSVkKDbgxAk+3TEwULpz9u/P\n94Kgh0EapBzuMtC/v3ml74maYYz/Lvv3l+6c7u6AtzffcZOQBjIUG2AY7pJyx0U3N8DLi5dxIaxn\nyxZpI0iADEVKjh/nUV+bNtKed9AgYOtWac+pZchQbMC2bXzsV2po2Esa8vL4glNLSnlUR2gocPky\nr4xLWIfU0YmByEge6RPSQIYiM6WlfHzemtXxpiBDkYY9e/jaE6mSvQbq1OEN1s6d0p5Xi+zYIc2U\n+wd5+GEgOZmvnCeshwxFZo4e5Yneli2lP3dEBK8ZdeeO9OfWErt2AX37ynNuGvayntJSPrlBDkNp\n0gTw9wcOHJD+3FqEDEVmEhLM3/WvtjRuzHcJTE6W5/xaISFBnggS4IZCUaR1/P030KIF4Okpz/kj\nIvjfAGE9Qg0lLi4O7du3h7+/P+bOnVvp+z///DNCQ0PRsWNH9O7dG6mpqQJUWsfu3fL1fgE+NfWv\nv+Q7v9q5fh1ITwe6dZPn/IGBwO3btCLbGnbvls/wAf58Uh5FGoQZSklJCV555RXExcUhLS0NK1eu\nRHp6eoVj2rZti4SEBKSmpuKdd97B888/L0itZTDGez5kKMpl716ejK9fX57z63RAr158B0jCMvbu\nlWZ1vCn69OHXoCn41iPMUJKTk+Hn5wcfHx84Ojpi7NixiI2NrXBMz5490aRJEwBAeHg4Lly4IEKq\nxWRk8MSsj4981zA0VqWl8l1DzciZPzHQsydVh7aGvXv537lcNG/O16McPizfNbSCMEPJzs6Gt7e3\n8bWXlxeys7NNHv/999/jkUcesYU0yTBEJ1KuP3kQd3egaVM+T5+oPX/9xWf6yEmvXmQolpKVBdy9\nC/j6ynudPn34bD/COqzYmcM6dLVoZXfu3IklS5bgLzsb25E7VDdgGPYKCpL/WmqiqIhvJxseLu91\nunblpezv3JGmOKiWSEzkhixnpwzg08bj4uS9hhYQZiienp7IKpepzMrKgpeXV6XjUlNT8dxzzyEu\nLg4uLi4mzzdr1izj/yMjIxEZGSmlXItITgb+53/kv47BUJ57Tv5rqYmjR/lmZfdHVWXDsCHUgQPy\nzfhTK3IPdxkIDwdmz5b/OiKJj49HvMzF5XSMidlXrri4GO3atcP27dvh4eGB7t27Y+XKlQgsV/Dq\n/Pnz6N+/P5YvX44e1ex6pNPpIOjHMMnNm7w8yrVrQN268l4rNRUYNQo4dUre66iNr7/mdZyWLJH/\nWq+9xtciTZ8u/7XURPfuwH/+I/+wZGkp0KwZr7v30EPyXkspyNFuCsuhODg4YOHChRg8eDCCgoIw\nZswYBAYGYtGiRVi0aBEA4P3338e1a9fw4osvolOnTujevbsoubXm0CEgJER+MwH4WpR//uG7DRLm\ns2+f9bszmgvlUWrP7dt8qLBLF/mvpddz89q3T/5rqRlhEYqUKDFC+ewz4Px5YMEC21yvf39g2jTp\nK+aqmcBAYNUqXnNLbi5cADp35rW95M4HqIXdu4E33rDdwt333uNThz/6yDbXE42qIhS1s2+f/Mne\n8nTrRuUjasO1a7yR79DBNtfz9ORTyGmBo/kcOMCjBlsRHg4kJdnuemqEDEUmkpNt+zB07Ur7OtSG\n/fv578zBRtNSdDo+dEPbDZjPwYO2Ge4yEB7OTaykxHbXVBtkKDJw6RJw4wbg52e7a3brxhtJhY38\nKZakJNtGkAA3MIoizefAAem3FKiOZs14Qv6Bgh1ELSBDkYH9+3kDb8ux8tat+fhvNWtDiXIcPChf\n/S5TdOlChmIu16/z4UEpdzk1h27dKIq0BjIUGbD1cBfAzYvyKOZz6BBPktsSw5AXRZE1k5LCJ0vY\nakjSQOfO/G+DsAwyFBkQYShA2bAXUT3//MPXCclZY60qPDyAevWAc+dse1175MAB2+ZPDJChWAcZ\nisQwVjbkZWvIUMwjJYU3HCKm71Ji3jwOHrRt/sRAp068SCQVW7UMMhSJOX+el0KXY4fGmjAMedGQ\nSvUcOsQbDhFQYt48REUoLi58My+qOmEZZCgSc/gwEBYm5tpubtzMaK1D9YjInxggQ6mZggIgJwdo\n317M9WnYy3LIUCQmJUVc7xfgZpaSIu769oBIQ6HEfM0cOiQmIW+ADMVyyFAkRmSEAvBr00ZBprl2\njSfl/f3FXN/NDWjYEDh7Vsz17QFbrz95EDIUyyFDkZjDh8VHKGQopjl8mPd+69QRp4EarOoRGUEC\n/Pk9dIiiSEsgQ5GQvDz+1batOA1kKNUjurECuKH9/bdYDUomNdU2BTtNYYgiMzPFabBXyFAk5O+/\n+YOgF/hb9fXlZezz88VpUDJkKMrm7l3gzBnbr5B/EIoiLYMMRUJSUsTmTwA+lNOxIzVYpiBDUTZp\nabwGXr16YnV07kzrhSyBDEVCROdPDBgWZxEVuX2bD2OI7v22bcuHRq9dE6tDiRiifNGEhZHpWwIZ\nioQoIUIBKI9iirQ0ICAAcHQUq0Ov57t5HjkiVocSSU3lEbZo6P5YBhmKRNy9C2Rk2G7DpuogQ6ma\nI0eU0VgBNOxlCqVEKG3a8AiScpG1gwxFIo4e5WsbRI/9AkBwMHDiBFBYKFqJskhN5T1PJUB5rsow\nppwIRa/nnUOKUmoHGYpEKOVBAAAnJ97DSksTrURZUISibHJyeEMuog5eVdCwV+0hQ5GIo0eV0/sF\nqMGqCiVFKCEh3PCLi0UrUQ6GTpmIKtBV0bEj10SYDxmKRBw5opzGCuDDXkePilahHC5f5nuFe3iI\nVsJp1Ahwd6eqtuVRSv7EAEUotYcMRSKOHuWNuFIICSFDKY8hOlFK7xegKPJBlDRsDJQZCpVgMR8y\nFAm4cgW4cwfw8hKtpAyKUCqipPyJATKUioguufIgzZrxSJJ22DQfMhQJMEQnSur9tm5N0x7Lo7Qh\nSYDG6MtjmHYvetHpg9CwV+0gQ5EAJTZWhmmPFKVwlJSQN9ChA3DsmGgVyiA9XRklVx6ETL92kKFI\nwJEjysqfGKBhL05xMW+wlHaP2rble7PcvClaiXiUlpA3QBFK7SBDkQClTRk2QIl5zunTfEaVs7No\nJRWpU4dvc0vrhXikpoQqEw9CEUrtIEOxEsaUN8PLAEUoHCUm5A3QPeKkpQFBQaJVVKZ9e7675t27\nopXYB0INJS4uDu3bt4e/vz/mzp1b6fvHjx9Hz549Ub9+fcyfP1+Awpo5f57PBHF1Fa2kMobGSuvT\nHpWYPzFAeRROeroyDaVePT40mZ4uWol9IMxQSkpK8MorryAuLg5paWlYuXIl0h+4a82aNcNXX32F\nN998U5DKmlFq/gTgO88BwKVLYnWIhiIUZXP7NnDxIi8XpEQ6dqQ8irkIM5Tk5GT4+fnBx8cHjo6O\nGDt2LGJjYysc06JFC3Tt2hWOouuNV4MSZ3gZ0OkojwIod3weoAgF4IVM/fwABwfRSqqGTN98hBlK\ndnY2vL29ja+9vLyQnZ0tSo7FKDV/YkDrD8Pdu8CFC7zBUiKtWgEFBdpeL6TU/ImBDh1o4oS5COsT\n6CReBThr1izj/yMjIxEZGSnp+U1x5Ajw+us2uZRFBAcDycmiVYjj5Ek+lKLUIFev543psWNA796i\n1YghPV15CxrLExSkDkOJj49HfHy8rNcQZiienp7Iysoyvs7KyoKXFbVLyhuKrSgq4sX9lPwwBAcD\n338vWoU4lJrsLY9hAaqWDWXMGNEqTNO2Lc/x3LoFNGwoWo3lPNjRnj17tuTXEDbk1bVrV5w6dQqZ\nmZkoLCzE6tWrMXz48CqPZQqdpnTqFK/f1aCBaCWmMYTrpaWilYghLU3Zhg9w09dyHkXp98jBgW8d\nffy4aCXKR5ihODg4YOHChRg8eDCCgoIwZswYBAYGYtGiRVi0aBEA4NKlS/D29sbnn3+ODz/8EK1a\ntcJNBS0rtofeb9OmfErz2bOilYhB6cMpgLZL5BQWApmZvMFWMmoZ9pIbofMqoqOjER0dXeG9F154\nwfj/li1bVhgWUxr20FgB/GFITwd8fUUrsT3p6cD/+3+iVVSPliOU06cBb2/l1fB6EDIU86CV8lag\n9FDdQGCgNh+G4mLeYLVrJ1pJ9Xh4APfuAbm5opXYHnuI8gGa6WUuZChWYG8RitY4c4bX8HJyEq2k\nenQ67UYp9tIpM8zEI6qHDMVCSkv5lNT27UUrqRmtRij20vsFtJtHsZd75OsLZGfzjfQI09RoKKdP\nn8bd+5XRdu7ciQULFiBfy6uw7nPuHE92N24sWknNBAbyB1ehk+Vkw156v4B2x+jt5R45OnJTOXFC\ntBJlU6OhjBo1Cg4ODjh9+jReeOEFZGVlYfz48bbQpmjsZbgL4FuZNmjAe1hawp7ukcH0tURJif1E\n+QDlUcyhRkPR6/VwcHDA2rVr8eqrr2LevHm4ePGiLbQpGntqrABtNlj2dI+0mOfKzARatFDePjWm\noDxKzdRoKI6OjlixYgV++uknDB06FABQVFQkuzClYy+hugGtDamUltqXoXh68qq7166JVmI77On+\nANp7hiyhRkP54YcfkJSUhLfffhtt2rTB2bNnMXHiRFtoUzT2kkw0oLUI5cIFnt9q2lS0EvPQ6fjQ\nj5bukdKLQj4IDXnVTI0LG7dt24YFCxYYX7dp0wb1lL4KSWYYs8/e1S+/iFZhO+zt/gBlpt+rl2gl\ntsHeflY/P76h3r17yl+IKYoaI5Qff/zRrPe0xOXLfD/wFi1EKzEfrUUo9tb7BbR3j+wtyq9bl1eu\npplepjFpklsJAAAgAElEQVQZoaxcuRIrVqzA2bNnMWzYMOP7N27cQLNmzWwiTqnYY++3ZUu+cjw3\n176M0FLS04GwMNEqakdgIHC/jJ3qsccoHygb9lLqDqCiMWkovXr1gru7O3Jzc/Hmm28aK/42atQI\noaGhNhOoROwtIQ/wMXrDAseICNFq5Cc9HRg3TrSK2qGlCCUnh1cwcHUVraR2UGK+ekwaSuvWrdG6\ndWskJSXZUo9dYG+hugHD1FS1Gwpj9jnk1bYtcOkSn+2l5C0RpMAeO2UA/5tas0a0CuVi0lCcnZ1N\n7qqo0+lw/fp12UQpnfR0oNwooN2gld5Vbi43lYceEq2kdjg4lK3G7tRJtBp5sedOGa1FMY1JQ1HS\nviNKwx7HfgGuefNm0Srkx3B/JN5l2iYYhr3Ubihpabwgpr0REMAXZBYVKXdbaZGYtR/K33//jYSE\nBOh0OvTp00fTOZSCAuD6db6Hg72hlQjFXg0f0E4eJT0dGD1atIraU68ef/ZPn7bfvzE5qXHa8Jdf\nfomnnnoKubm5uHz5MiZMmFBhXYrWSE/nC9Dssffr7c0NsaBAtBJ5scf8iQGtGIq95lAA7XTMLKFG\nQ/nuu++wb98+vP/++/jggw+QlJSEb7/91hbaFIk9N1Z6vTZWY9tzhKKFml65uXzIqGVL0UosQyum\nbwlm7Yei1+ur/L8WsefGCtDGw2DP9ygggG8MVlwsWol8GBLy9hjlA9rdX8gcasyhTJ48GeHh4Rg5\nciQYY1i3bh2mTJliC22KJD0dePZZ0SosR+3hekEBkJ8PtGolWollODnxLYEzMpS/dbGl2LPhA/wZ\n+vxz0SqUiclw49NPP0VWVhZef/11/PDDD3BxcUGzZs3w448/4rXXXrOlRkVh7w+D2iOU48d5Q2zP\ngbTa75E9DxsDfNj4xAm+nwtREZMRSk5ODnr16gUfHx+MGzcO48ePRwst1Oyohjt3+ApfX1/RSixH\n7RGKvRs+UGYoI0aIViIP6enA4MGiVViOszMvX3TuHF+MSpRhsh/3xRdf4Ny5c/jggw+QmpqKjh07\nYsiQIVi6dClu3LhhS42K4cQJbiYOZk22ViZt2wIXL/LV2GrEnmcPGaAIRfmo/R5ZSrUDA3q9HpGR\nkfjmm29w4cIFvPbaa/jiiy/g5uZmK32KQg29XwcHXoZbrRVT7XUFdnnU3Fhdv843EbPXHJcBtUf6\nlmJWXzs1NRWrVq3CL7/8gubNm+OTTz6RW5ciUYOhAOpeja2Ge2S4P6Wl9p0Lqorjx3kOwt5/rsBA\nIDFRtArlYdJQTp48iVWrVmH16tXQ6/UYN24ctmzZgrYaHjRMTwdGjhStwnrU2gO+c4fv1GjPOS6A\n7zLZqBH/Wey9J/8gahiSBPjP8P33olUoD5OGEh0djbFjx2L16tUItseiOzKghuEUgD8Mv/4qWoX0\nnDzJzUQNNZYMpq82Q1HTM5SezouQ2ut6GjkwaSgZGRm21KF4iov52oCAANFKrEet479qGO4yYGiw\n7Hk2VFWkpQFqWMbWrBlQvz6f9enpKVqNchA6khkXF4f27dvD398fc+fOrfKYqVOnwt/fH6GhoUhJ\nSbGxwjIyMviCMycnYRIkIyAAOHuWl79QE2o0FLWhpnukhTI5tUWYoZSUlOCVV15BXFwc0tLSsHLl\nSqQ/cHc2bdqE06dP49SpU1i8eDFefPFFQWrV9SDUr897VWoLQtUwHdWAGhurO3eA7Gz7z3EZUKvp\nW4MwQ0lOToafnx98fHzg6OiIsWPHIjY2tsIx69evR0xMDAAgPDwc+fn5uHz5sgi5qjIUQJ0Pg5ru\nkRrvz8mTfB2UGnJcgHqHjq2hRkPZs2cPoqKi4O/vjzZt2qBNmzaSzPTKzs6Gd7lNRby8vJCdnV3j\nMRcuXLD62paglmSiAbU9DIYcl1rqX7VsyYckr1wRrUQ61BRBAuo0fWupcR3KM888gy+++AKdO3dG\nnTp1JLuwqe2FH4QxZtbnZs2aZfx/ZGQkIiMjLZVWJenpwEsvSXpKoQQGAtu2iVYhHRkZgLu7OnJc\nAJ85ZGiw+vQRrUYa1BRBAvZXdTg+Ph7x8fGyXqNGQ2natCmio6Mlv7CnpyeysrKMr7OysuDl5VXt\nMRcuXICniSkV5Q1FakpL1fkwfPWVaBXSobYIElCfoaSlAU88IVqFdLi7A4WFPIps3ly0mpp5sKM9\ne/Zsya9R45BXv379MG3aNCQmJuLQoUPGL2vp2rUrTp06hczMTBQWFmL16tUYPnx4hWOGDx+On376\nCQCQlJSEpk2bCin7cuEC0Lgx0KSJzS8tG+3b81XLpaWilUiD2gwfsL8ecE2o7R6VjyIJTo0RSlJS\nEnQ6HQ4cOFDh/Z07d1p3YQcHLFy4EIMHD0ZJSQmeeeYZBAYGYtGiRQCAF154AY888gg2bdoEPz8/\nNGzYED/88INV17QUNfZ+mzQBXFyA8+cBHx/RaqwnLQ3o10+0CmlR07BkUZF61nGVxzAbTy1RpLXU\naChyjrlFR0dXGk574YUXKrxeuHChbNc3F7X1rAwYeldqMJT0dODll0WrkBY1TR3OyAC8vNST4zKg\ntijSWkwayrJlyzBx4kTMnz+/QiKcMQadTofXX3/dJgKVQHo6EBoqWoX0GAxFhhSZTSkt5cN3ajP9\n1q35+PzNm3wPDntGbTO8DAQFAVu3ilahHEzmUG7f3zDjxo0bFb5u3rypuf1Q1FLQ7kHUMv6blaW+\nHBcA1KnDh4iOHxetxHrUHuUTHJMRimHoSc7ZU/aCGnMoAP+Zli8XrcJ61Hp/gLIhla5dRSuxjvR0\nYOBA0Sqkp3Vr4OpV4MYNXiFa69j5rgTyk5vLh1Qeeki0EukpXzHVnlFr7xdQTx5FrUNeej1fTKuG\nKFIKyFBqwDDcpcYS1S1a8J/rn39EK7EOtQ5JAuoYUikt5TuEtm8vWok8UGK+jBoN5cyZM2a9p1bU\nPJyilnn0ao5Q1HB/zp0DXF15nkuNqCWKlIIaDWXUqFGV3nvyySdlEaNE1NxYAfZf04sxdZu+vz9v\nkO/dE63EctT+DFGEUobJpHx6ejrS0tJQUFCAtWvXGqcLX79+HXfv3rWlRqGkpQFDhohWIR/23gPO\nzeWmosYcFwDUrcsTv6dOAfa6capa8ycGKEIpo9o95Tds2ICCggJs2LDB+H6jRo3w7bff2kScElBz\n7xfghrJxo2gVlqPmHJcBQ4Nlr4aSng507y5ahXz4+vLyTHfv8r2GtIxJQ3nsscfw2GOPITExET17\n9rSlJsVw/TqQnw+Uq6CvOuw9QlH7cApg//coLQ2YNEm0CvlwdOT7vJw8CXTsKFqNWGosvbJ48WIs\nXrzY+Nqwan7JkiXyqVII6el8ZopexXPhvL2BggL+ZY8LA9PSgA4dRKuQF3uOIg05Lq2YPhlKDTz6\n6KNGE7lz5w5+//13eHh4yC5MCWjhQdDruWmmpwM9eohWU3vS0oChQ0WrkJfAQOCzz0SrsIyLF3ke\nyB7Ku1sDJeY5NRrKEw9sYDB+/Hj07t1bNkFKQs3rG8pj6F3Zq6GoOccFcMM/dQooKeHlWOwJLXTK\nAP43+PvvolWIp9aDOSdPnkRubq4cWhSH2hPyBux1jD4vD7h1i1exVTPOznwRamamaCW1R0udMopQ\nzIhQnJ2djUNeOp0Obm5umDt3ruzClICWelfffy9aRe0x3B81z/AyYDB9X1/RSmqHFnJcAC+/kpEB\nFBcDDjW2quqlxh/95s2bttChOO7cAbKz7e8BtgR77V1ppfcLlN0je8sXqW3bX1M4OQEeHtxU2rUT\nrUYcZnlpbGwsEhISoNPpEBERgWHDhsmtSzgnT3Iz0UJvw9cXyMnhJmpPGyBpZUgS4IaSmChaRe3R\nQo7LgGG9kJYNpcYcyowZM7BgwQJ06NABgYGBWLBgAWbOnGkLbULRUu/XwaFsHr09ocXGyp7IzeVD\nQC1bilZiG+w1FyklNfa/N27ciMOHD6PO/eklkyZNQlhYGD755BPZxYlEK/kTA4YGy552ptSSoZTf\nasBeckaG/Im96LWWwEBgxw7RKsRSY4Si0+mQn59vfJ2fn19hS2C1oqXhFMD+8ijXr/PtcVu3Fq3E\nNjRrBtSrx4cm7YVjx7T1DNljFCk1NUYoM2fOROfOnREZGQkA2LVrF+bMmSO3LuGkpQH/+7+iVdiO\nwEBg7VrRKszn+HG+PsPe1mVYgyFK8fQUrcQ8tBRBAvzv8fhxvv+LmqtrVIfJH/ull17Cnj17MG7c\nOCQmJmLkyJEYNWoUEhMTMXbsWFtqtDnFxcCZM3w/b61gb+O/WmusALpHSqdJE6BpUyArS7QScZiM\nUAICAjBt2jTk5ORgzJgxGDduHDp16mRLbcLIyOC9QHua8WQt9jaPXmuNFWB/QypavEeGoWOtDMU+\niMkI5d///jcSExOxa9cuuLq6YsqUKWjXrh1mz56Nk/Y2HaiWaGmGl4Hy8+jtAS03VvbA1at8Grq9\nDM9Jhb2ZvtTUONLn4+ODGTNmICUlBatWrcLvv/+OQJW3tlpLyBuwpyEVLZq+Pd0fwzOkgfk7FbCn\neyQHNRpKcXEx1q9fj/Hjx2PIkCFo37491tpT9tYCtNhYAfbzMNy+zavYaqGKQXk8PXmvPy9PtJKa\n0doMLwP2FEXKgUlD2bJlC6ZMmQJPT098++23GDp0KDIyMrBq1So89thjttRoc7S2BsWAvYTrJ04A\nfn72keuREp3Ofkxfi0OSQNkzxJhoJWIwaShz5sxBz549kZ6ejg0bNmD8+PFwdna2pTYhlJbyBkuL\nhmIvvSutNlaAfd0jLRSFfJAWLfiU4cuXRSsRg0lD2bFjB5577jm4urpKftG8vDxERUUhICAAgwYN\nqrBwsjxTpkyBm5sbQkJCJNdginPnABcXoHFjm11SMQQGls2jVzJaNpQOHezHULR6j+wl0pcDIctv\n5syZg6ioKJw8eRIDBgwwuVBy8uTJiIuLs6m2o0cBG/qXomjShBvphQuilVSPlhur4GD+N6pk8vN5\nJQNvb9FKxGAvUaQcCDGU9evXIyYmBgAQExODdevWVXlcnz594OLiYktpOHqUP7RaxR56V2QoolVU\nj2FSi9ZmeBmwh2dILoQYyuXLl+Hm5gYAcHNzw2UFDTgeOaJtQ1F60vfePT4s6e8vWokYvLz4LLcr\nV0QrMY2WDR/QdoQi2zyZqKgoXLp0qdL7H330UYXXOp1OkmKTs2bNMv4/MjLSWHusthw9Crz5ptVy\n7JagIODQIdEqTHPiBNCmDVC3rmglYtDpeIfn2DEgIkK0mqrRakLegFI7ZfHx8YiPj5f1GrIZytat\nW01+z83NDZcuXULLli1x8eJFPPTQQ1Zfr7yhWEpREXDqlDZneBkICQGWLhWtwjRHjmg3x2XAMOyl\nVEM5dgzo31+0CnF4eQG3bgHXrvEJPkrhwY727NmzJb+GkCGv4cOHY+n9Vmvp0qUYMWKECBmVOHWK\nJxK1VMPrQQy9X6XO9CJDUX4eRev3SKfjlYeVGKXIjRBDmTFjBrZu3YqAgADs2LEDM2bMAADk5OTg\n0UcfNR43btw49OrVCydPnoS3tzd++OEHWXVpPSEP8GqpLi5AZqZoJVWj9cYK4H+jR46IVlE1V6/y\n3nmrVqKViEWriXkha41dXV2xbdu2Su97eHhg48aNxtcrV660pSwylPuEhPAGq21b0UoqQ4ZSFqEo\ncfdGw/1Rmi5bo9XEvEa3gakaLa9BKY/BUJRGfj6vY9WmjWglYmnRAqhfH8jOFq2kMmT4nKAgMhTN\nQxEKR6mGcvQonz2k1d3wyqPUPEpqKhkKoNz7Izf0aN7n9m2+05qfn2gl4lGqoVDvtwylNlhHjgAd\nO4pWIR4fH14twB4qQ0sJGcp90tP5lr+OjqKViKddO+DsWb6IUElofdFpeZRoKKWlfIYg3SOeQwoJ\n4RGbliBDuQ8Nd5VRrx5PyCttlgpFKGUo0VDOnuUzBJs2Fa1EGXTsSIaiWchQKqK0YS/GyFDKY5iW\nWlIiWkkZdH8qEhoK/P23aBW2hQzlPmQoFQkJUVYP+MIFHjlJUFRBFTRuzGd7nT0rWkkZlD+pCEUo\nGobG5yuitAiFpnRXRmkLHGmGV0WCg/nUYSVFkXJDhgJeufXmTT4zg+AozVBoOKUyYWHKGlKhe1SR\nRo2Ali2B06dFK7EdZCjgD2VoKK3uLU/r1kBBAS9wpwSosapMWBhw+LBoFZw7d/i2Au3aiVaiLLSW\nRyFDAX8ow8JEq1AWej1fRKiUPAoZSmWUZChpaXyPGq1uK2AKreVRyFDAH8rQUNEqlIdSHoaiIuDk\nSW1v2lQVbdvyYoxKiCLJ8KtGKc+QrSBDAUUopggLA1JSRKvgvd/WrYGGDUUrURZ6PW+wlDCkQoZS\nNaGhZCia4u5dnjSj3m9lOnVShqGkpACdO4tWoUyUMuyVksL/XoiKtGnDo8j8fNFKbIPmDcUw9lu/\nvmglyqNjR754rrBQrA5qrEyjBENhjG8bTfeoMnq98qZ3y4nmDYWGu0zToAHvYYkuw02NlWmUMHX4\n7FnA2ZkWnZpCS3kUMhQylGoRPexVWsobTDKUqgkOBk6cEBtF0pBk9YSGio8ibQUZChlKtYg2lIwM\nwNWVfxGVcXLiUaTIQp6HDpGhVEfnzsDBg6JV2AZNG4qh90tThk0j2lAof1IzovMoNCRZPaGhwPHj\nytsOQg40bSiZmbzIXrNmopUoF0NjVVoq5vrUWNWMyCEVQ0KeIhTTODnxiT9aSMxr2lCosaoZV1eg\neXNx9YgoQqmZTp3437IILl7knQ0vLzHXtxe6dAEOHBCtQn40bSgHDgDduolWoXxEDXsxRglfc+ja\nlRuKiKq2huiE6uBVT9eu2sijaNpQ9u/nN5qoHlGGkpPD//XwsP217QkXF17VVkRinqJ88+jShQxF\n1ZSW8htMhlIzooZUDI0V9X5rpls33kGyNRRBmkfHjjwxf/euaCXyollDycjge1+3aCFaifLp2pUP\nDzJm2+vu309DkubSvbsYQ6GEvHloJTGvWUOh4S7zadmSbxZ06pRtr5uczBtKomZERCiXLwPXr/Oq\nx0TNaCGPollDoYR87QgP5w28rWCMDKU2dOrES+TYcq3Dvn38/ug124rUDi3kUTT7p0ARSu3o3p03\nILbi9OmyLVSJmmnQAPDzs23NqH37eEeDMA8tTB0WYih5eXmIiopCQEAABg0ahPwqajtnZWWhX79+\n6NChA4KDg7FgwQLJrl9SwheCdeki2SlVj60jlORkaqxqi62HvchQakdoKN8o7vZt0UrkQ4ihzJkz\nB1FRUTh58iQGDBiAOXPmVDrG0dERn3/+OY4dO4akpCT897//RbpE8yLT0gB3d56UJ8yjc2e+HbCt\nhlQMwymE+djSUEpL+bXoHplP/fp8W201D3sJMZT169cjJiYGABATE4N169ZVOqZly5YIu1+10dnZ\nGYGBgcgxLEywkr17gV69JDmVZmjYkM9SsVWpdIpQak+3braLIo8f5xUUaJZk7ejVC0hMFK1CPoQY\nyuXLl+Hm5gYAcHNzw+XLl6s9PjMzEykpKQiXqIUhQ7EMW+VR7t3j0ytpOmrtCAnh9emuX5f/WjTc\nZRk9e/L2R63IZihRUVEICQmp9LV+/foKx+l0OuiqWbl28+ZNPPHEE/jyyy/h7Owsiba9e4HevSU5\nlaYID7eNofz9N08w0x7ytcPRkecFbXGPkpLIUCzBEKHYek2XrXCQ68Rbt241+T03NzdcunQJLVu2\nxMWLF/GQia3eioqKMGrUKEyYMAEjRoyo9nqzZs0y/j8yMhKRkZFVHnf5MnDlChAYWOOPQDxA797A\nBx/If509e8jwLeXhh/nvLypK3uvs2wdMnizvNdSItzc3/jNnAF9f2147Pj4e8fHxsl5Dx5jtvfKt\nt95Cs2bNMH36dMyZMwf5+fmVEvOMMcTExKBZs2b4/PPPqz2fTqeDuT/GunXA4sXApk0Wy9csjAFu\nbjyp6O0t33UefxwYPRoYN06+a6iVzZuBzz4Dtm+X7xoFBby68NWrQN268l1HrTz5JPDYY8CECWJ1\n1KbdNBchOZQZM2Zg69atCAgIwI4dOzBjxgwAQE5ODh599FEAwF9//YXly5dj586d6NSpEzp16oS4\nuDirr035E8vR6XgPePdu+a7BGO9h9+kj3zXUTM+ePDFfVCTfNf76i+fTyEwso1cv9eZRZBvyqg5X\nV1ds27at0vseHh7YuHEjAODhhx9GqQy7Ou3dC7z/vuSn1Qx9+nBDGT9envMfPw44O9P+GpbStCkv\nhZKSIt+U3oQEoG9fec6tBXr2BJYuFa1CHjS1Uv7ePb6gkebOW47BUORi926KTqzFkEeRCzIU6+jc\nmedQ8vJEK5EeTRlKYiIQHMx7wIRlhIUB58/z8XM5IEOxHjkN5dYtXt6FZnhZTt26fNhr1y7RSqRH\nU4ayYwfQv79oFfaNgwPQowcfR5cDMhTrMRiKDCPGSEriJUQaNJD+3FqiXz9g507RKqRHU4ayfTsw\nYIBoFfZP37582ENqzp/ndY7atZP+3FrC2xto0kSevTdouEsayFDsnBs3eKhOM7ysZ8AAoJplRhaz\nbRuPIGmHRuuJipLnHu3aRYYiBZ07A1lZwD//iFYiLZoxlN27ea0jJyfRSuyfbt34w3DxorTn3bpV\n/gV5WkEOQ7l5k69BIkOxHgcHPrQr8zpDm6MZQ9m+nfInUuHgwH+XUjZYpaU8QiFDkYZ+/fgUeSn3\nMI+P550JKokjDWoc9tKMoezYQfkTKRk8GNiyRbrzHT4MNGsGtGol3Tm1TNOmfEajlJMn/vyT33dC\nGgYO5M+Qmup6acJQcnKAc+doh0YpGTSIRyhSzSSi4S7piYqS1vS3bOH3nZCGkBCgsBA4cUK0EunQ\nhKFs3Mh7Vo6OopWoh9atARcX6fZH+eMPIDpamnMRnEGDpDOUs2eB/Hw+ZZiQBp0OeOQR3j6pBU0Y\nyoYNwLBholWoj8GDeTFCa8nN5TPwKMclLT168MkT589bf67164GhQwG9JloM2/Hoo2QodsWdOzyZ\nSL1f6XnsMWDtWuvPs3EjH56pX9/6cxFlODjwjlRsrPXn+v13oIYdJAgLGDAAOHCAV3BWA6o3lO3b\n+ZxvFxfRStRH3748N5WZad15YmOB4cMlkUQ8wIgR3AysITeXT5qgHJf0NGzIn6M//hCtRBpUbyir\nVwOjRolWoU4cHLgRWBOl3LrFZ+Dd37WAkJhBg/jaEWtqr/3xB0WQcjJmDG+n1ICqDeX2bf4wjB4t\nWol6GTUK+O03yz+/bh2vPdWsmXSaiDKcnLipWGP6q1cDI0dKp4moyGOP8QoE+fmilViPqg1l40a+\nEMvNTbQS9TJwIHDqFJCRYdnnly8Xv3Od2pk40fL9N3Jy+IZdjz0mrSaijMaN+YSUdetEK7EeVRvK\nzz/TNrJyU7cu8NRTwI8/1v6zly/z6rXUWMlLdDQ3/dOna//Z5ct5dELVheVl3Djgp59Eq7Ae1RrK\nhQu8MirlT+RnyhRuKCUltfvc8uU8B0ONlbw4OlrWYDHGI5uYGHl0EWWMGAEcO8Z3LLVnVGsoixbx\nnnPjxqKVqJ+QEKBlS16aw1yKi4GvvgJeflk+XUQZzzwDfPcd37XUXHbt4vepd2/5dBGcunV5x2zR\nItFKrEOVhnLvHvDtt9RY2ZJ//xv49FPzj1+/HvD0pO2YbUVICP9ascL8z3z2GfDGG7SY0VY8/zyw\nbBmv6myvqPJP5aefeImI9u1FK9EOY8bwNSmJiTUfyxgwfz7wr3/Jr4soY9o0bhLmFCNMSwP27+cJ\nfcI2tGnDp2d/9ZVoJZajOkO5exf44ANg9mzRSrSFgwNvsN5/v+ZjN2/mUyRpKqptGTCATyP+5Zea\nj501C5g6lfYPsjWzZgH/+Y/9rpxXnaF8+inQpQuvY0TYlmefBc6cqb420b17wJtvAp98wk2IsB06\nHY9Qpk/na7RMsXs3jzRfe8122ghOu3a8ZtqHH4pWYhk6xuy/Gr9OpwNjDH//zXthhw7Rvhqi2LqV\nJ4BTUqperDhzJp/JsnYtbfUriokTgUaNgP/7v8rfu3kTCAsD5s0DHn/c9toIvi1wSAhfl9Kzp3zX\nMbSbUqKaCCUriz8ACxeSmYgkKornU554gpdVKc+yZTwp/M03ZCYi+eorXtb+QUMpLORVJQYMIDMR\nyUMP8UlFTzxh+YJhUagmQvH0ZHjjDQrTlUBJCR/+OnSI57M8PLiZrF3L8yfBwaIVEmfOcOMYNAiY\nPBnIy+Pj961bc9OnvYPEs3gx8O67PC85dCh/jqREjghFNYayaxdD376ilRAGGANWruRrH65dAyIj\ngRkzqAyOksjP57msLVv4ENikSdxcKHpUDklJPC/s7Cz9SnoyFBPI8YshCIJQM6rJoeTl5SEqKgoB\nAQEYNGgQ8qsos3n37l2Eh4cjLCwMQUFBmDlzpgClBEEQhLkIMZQ5c+YgKioKJ0+exIABAzBnzpxK\nx9SvXx87d+7E4cOHkZqaip07d2LPnj0C1EpDfHy8aAlmQTqlhXRKC+lUNkIMZf369Yi5X3EuJiYG\n60zUbW5wv2pgYWEhSkpK4OrqajONUmMvf2CkU1pIp7SQTmUjxFAuX74Mt/vZWTc3N1y+fLnK40pL\nSxEWFgY3Nzf069cPQUFBtpRJEARB1ALZ1ipHRUXh0qVLld7/6KOPKrzW6XTQmZhWotfrcfjwYRQU\nFGDw4MGIj49HZGSkHHIJgiAIa2ECaNeuHbt48SJjjLGcnBzWrl27Gj/z/vvvs3nz5lX5PV9fXwaA\nvuiLvuiLvsz88vX1lbRdZ4wxIdWUhg8fjqVLl2L69OlYunQpRowYUemYK1euwMHBAU2bNsWdO3ew\ndetWvPfee1We77QlW9ERBEEQkiJkHUpeXh5Gjx6N8+fPw8fHB7/88guaNm2KnJwcPPfcc9i4cSNS\nU+fTe9sAAAgFSURBVFMxadIklJaWorS0FBMnTsS0adNsLZUgCIIwE1UsbCQIgiDEo7jikHFxcWjf\nvj38/f0xd+7cKo+ZOnUq/P39ERoaipSUlBo/a85CSiXonDZtGgIDAxEaGoqRI0eiQIJNEeTQaWD+\n/PnQ6/XIy8tTpMavvvoKgYGBCA4OxvTp063SKJfO5ORkdO/eHZ06dUK3bt2wf/9+oTqnTJkCNzc3\nhISEVDheac+QKZ1Ke4ZM6TQg1TMkp85aPUeSZ2WsoLi4mPn6+rKzZ8+ywsJCFhoaytLS0iocs3Hj\nRhYdHc0YYywpKYmFh4fX+Nlp06axuXPnMsYYmzNnDps+fboidW7ZsoWVlJQwxhibPn26YnUyxtj5\n8+fZ4MGDmY+PD7t69ariNO7YsYMNHDiQFRYWMsYY++effyzWKKfOiIgIFhcXxxhjbNOmTSwyMlKY\nTsYYS0hIYIcOHWLBwcEVPqOkZ6g6nUp6hqrTyZh0z5CcOmv7HCkqQklOToafnx98fHzg6OiIsWPH\nIjY2tsIx5RdFhoeHIz8/H5cuXar2s+YupBStMyoqCvr7G3iHh4fjwoULitQJAK+//jo+rc0m8jbW\n+PXXX2PmzJlwvF82t0WLForU6e7ubuxF5+fnw9PTU5hOAOjTpw9cXFwqnVdJz1B1OpX0DFWnE5Du\nGZJTZ22fI0UZSnZ2Nry9vY2vvby8kJ2dbdYxOTk5Jj9r7kJK0TrLs2TJEjzyyCOK1BkbGwsvLy90\n7NjRKn1yajx16hQSEhLQo0cPREZG4sCBA4rUOWfOHLzxxhto1aoVpk2bhk8++USYzupQ0jNkLqKf\noeqQ8hmSU2dtnyNFbcJqaoHjgzAz5hEwxqo8X3ULKc1FSp1V8dFHH6Fu3boYP368RZ83IIfOO3fu\n4OOPP8bWrVst+vyDyPW7LC4uxrVr15CUlIT9+/dj9OjROHPmjCUSAcin85lnnsGCBQvw+OOPY82a\nNZgyZUqF321tsVRnbZ4Jkc+QuZ8T/QxV97nbt29L+gzVdL3y1Pb3WdvnSFERiqenJ7Kysoyvs7Ky\n4OXlVe0xFy5cgJeXV5XvG4YP3NzcjKHdxYsX8dBDDylG54Of/fHHH7Fp0yb8/PPPVmmUS2dGRgYy\nMzMRGhqKNm3a4MKFC+jSpQv++ecfxWgEeO9r5MiRAIBu3bpBr9fj6tWrFmmUU2dycjIev7894hNP\nPIHk5GSLNVqjs6ahNqU8Q+YMCSrhGapOp9TPkFw6AQueI0uTQHJQVFTE2rZty86ePcvu3btXY2Ip\nMTHRmFiq7rPTpk1jc+bMYYwx9sknn1idqJNL5+bNm1lQUBDLzc21Sp/cOstjbUJRLo3ffPMNe/fd\ndxljjJ04cYJ5e3tbrFFOnZ06dWLx8fGMMca2bdvGunbtKkyngbNnz1aZlFfKM1SdTiU9Q9XpLI8U\nSXm5dNb2OVKUoTDGZ7oEBAQwX19f9vHHHzPG+A/1zTffGI95+eWXma+vL+vYsSM7ePBgtZ9ljLGr\nV6+yAQMGMH9/fxYVFcWuXbumSJ1+fn6sVatWLCwsjIWFhbEXX3xRkTrL06ZNG6sfBjk0FhYWsgkT\nJrDg4GDWuXNntnPnTqs0yqVz//79rHv37iw0NJT16NGDHTp0SKjOsWPHMnd3d1a3bl3m5eXFlixZ\nwhhT3jNkSqfSniFTOssjxTMkl87aPke0sJEgCIKQBEXlUAiCIAj7hQyFIAiCkAQyFIIgCEISyFAI\ngiAISSBDIQiCICSBDIUgCIKQBDIUQnNcvXoVnTp1QqdOneDu7g4vLy906tQJjRo1wiuvvCL59RYt\nWoRly5ZJfl6CUBq0DoXQNLNnz0ajRo3w+uuvi5ZCEHYPRSiE5jH0qeLj4zFs2DAAwKxZsxATE4O+\nffvCx8cHa9euxZtvvomOHTsiOjoaxcXFAICDBw8iMjISXbt2xZAhQ4z1rsoza9YszJ8/HwAQGRmJ\nGTNmIDw8HO3atcOePXsqHR8fH4+IiAiMGDECvr6+mDFjBpYtW4bu3bujY8eOxuJ8a9asQUhICMLC\nwhARESHL74YgagMZCkGY4OzZs9i5cyfWr1+PCRMmICoqCqmpqXBycsLGjRtRVFSEV199Fb/99hsO\nHDiAyZMn4+233650nvLVeXU6HUpKSrBv3z588cUXmD17dpXXTk1NxaJFi5Ceno5ly5YhIyMDycnJ\nePbZZ/HVV18BAD744ANs2bIFhw8fxoYNG+T7RRCEmSiqfD1BKAWdTofo6GjUqVMHwcHBKC0txeDB\ngwEAISEhyMzMxMmTJ3Hs2DEMHDgQAFBSUgIPD48az22o3tq5c2dkZmZWeUy3bt2M+4/4+fkZrx0c\nHIydO3cCAHr37o2YmBiMHj3aeE6CEAkZCkGYoG7dugAAvV5v3LHO8Lq4uBiMMXTo0AF79+6t1Xnr\n1asHAKhTp45x6MzUMYbrGV4brg3w3fSSk5OxceNGdOnSBQcPHoSrq2uttBCElNCQF0FUgTlzVdq1\na4fc3FwkJSUBAIqKipCWlmbx+WpLRkYGunfvjtmzZ6NFixZWb3dLENZCEQqhecrnN6r6f/ljyr92\ndHTEr7/+iqlTp6KgoADFxcV47bXXEBQUZPIa5rxf3Y6I5b/31ltv4dSpU2CMYeDAgZJtJ0sQlkLT\nhgmCIAhJoCEvgiAIQhLIUAiCIAhJIEMhCIIgJIEMhSAIgpAEMhSCIAhCEshQCIIgCEkgQyEIgiAk\ngQyFIAiCkIT/D1aoyBiLHf2sAAAAAElFTkSuQmCC\n", + "text": [ + "<matplotlib.figure.Figure at 0x7f0c53674cd0>" + ] + } + ], + "prompt_number": 65 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file |