diff options
author | hardythe1 | 2015-04-07 15:58:05 +0530 |
---|---|---|
committer | hardythe1 | 2015-04-07 15:58:05 +0530 |
commit | c7fe425ef3c5e8804f2f5de3d8fffedf5e2f1131 (patch) | |
tree | 725a7d43dc1687edf95bc36d39bebc3000f1de8f /Linear_Integrated_Circuits/Chapter3.ipynb | |
parent | 62aa228e2519ac7b7f1aef53001f2f2e988a6eb1 (diff) | |
download | Python-Textbook-Companions-c7fe425ef3c5e8804f2f5de3d8fffedf5e2f1131.tar.gz Python-Textbook-Companions-c7fe425ef3c5e8804f2f5de3d8fffedf5e2f1131.tar.bz2 Python-Textbook-Companions-c7fe425ef3c5e8804f2f5de3d8fffedf5e2f1131.zip |
added books
Diffstat (limited to 'Linear_Integrated_Circuits/Chapter3.ipynb')
-rwxr-xr-x | Linear_Integrated_Circuits/Chapter3.ipynb | 306 |
1 files changed, 306 insertions, 0 deletions
diff --git a/Linear_Integrated_Circuits/Chapter3.ipynb b/Linear_Integrated_Circuits/Chapter3.ipynb new file mode 100755 index 00000000..b6d3c5fe --- /dev/null +++ b/Linear_Integrated_Circuits/Chapter3.ipynb @@ -0,0 +1,306 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 3 : Operational Amplifier Characteristics " + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.1 Page No.108" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data \n", + "\n", + "Ri = 10*10**3\n", + "R1 = 10*10**6\n", + "Acl = 10\n", + "\n", + "# Solution \n", + "\n", + "Rf = Acl * R1\n", + "Rt = 47*10**3\n", + "Rs = (Rt**2)/(Rf - (2*Rt))\n", + "\n", + "# Displaying the results\n", + "\n", + "print \"The value of Rf = \",Rf/10**6,\"Mega Ohms\"\n", + "print \"Thevalue of Rs = \",Rs,\"Ohms\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The value of Rf = 100 Mega Ohms\n", + "Thevalue of Rs = 22 Ohms\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.2 Page No.110" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "\n", + "Rf = 10*10**3\n", + "R1 = 10**3\n", + "Vios = 10*10**-3\n", + "Ib = 300*10**-9\n", + "Ios = 50*10**-9\n", + "\n", + "# Solution \n", + "# Solution for part a\n", + "Vot1 = (1 + (Rf/R1))*Vios + Rf*Ib\n", + "# Solution for part b \n", + "Rcomp = (Rf * R1)/(Rf + R1)\n", + "# Solution for part c\n", + "Vot2 = (1+(Rf/R1))*Vios + Rf*Ios \n", + "\n", + "# Displaying the values \n", + "\n", + "print \"The value of maximum output offset due to Vios and Ib = \", int( Vot1*10**3),\"mV\"\n", + "print \"The value of Rcomp = \",Rcomp,\"Ohms\" # Given answer in the textbook is not correct please make the change \n", + "print \"The value of maximum output offset if Rcomp is connected = \",Vot2*10**3,\"mV\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The value of maximum output offset due to Vios and Ib = 113 mV\n", + "The value of Rcomp = 909 Ohms\n", + "The value of maximum output offset if Rcomp is connected = 110.5 mV\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.3 Page No.111" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data \n", + "\n", + "Acl = 100\n", + "Temp0 = 25\n", + "Temp1 = 50\n", + "Vodrift = 0.15*10**-3\n", + "\n", + "# Solution \n", + "\n", + "Vos = Vodrift * (Temp1 - Temp0)\n", + "Vo = Vos * Acl\n", + "\n", + "# Displaying the results \n", + "\n", + "print \"The value of Input offset voltage = \",Vos*10**3,\"mV\"\n", + "print \"The value of Ooutput voltage = \",int(Vo*10**3),\"mV\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The value of Input offset voltage = 3.75 mV\n", + "The value of Ooutput voltage = 375 mV\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.4 Page No.125" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data \n", + "from scipy import signal\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "\n", + "Vpp = 6.0\n", + "Frequency = 2*10**6\n", + "\n", + "# Solution \n", + "\n", + "WL = 1.0/Frequency # Calculating the wavelength \n", + "SR = Vpp/(WL/2) # Calculating the slew rate\n", + "\n", + "# Displaying the results \n", + "\n", + "print \"The value of slew rate is =\",int(SR*10**-6),\"V/us\"\n", + "\n", + "# Ploting the result \n", + "\n", + "Vp = 3\n", + "t = np.linspace(0, 1, 500)\n", + "plt.plot(t, -Vp*abs(signal.sawtooth(2 * np.pi * 2 * t))) # Note : Triangular wave is the absolute of sawtooth wave\n", + "plt.ylim(-3,0)\n", + "plt.title(\"Output wave form of example 3.4\")\n", + "plt.ylabel(\"Amplitude (V)\")\n", + "plt.xlabel(\"Time(t)\")\n", + "plt.show()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The value of slew rate is = 24 V/us\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.5 Page No.126" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math \n", + "# Given data \n", + "\n", + "Acl = 50\n", + "Slew_rate = 0.5\n", + "frequency = 20*10**3\n", + "# solution \n", + "\n", + "Vm = round((Slew_rate * 10**6)/(2*math.pi * frequency),2)\n", + "Vo = 2 * Vm\n", + "Vpeak_to_peak = Vo/Acl\n", + "\n", + "# Displaying the outputs \n", + "\n", + "print \"The peak voltage is =\",Vm,\"V peak\"\n", + "print \"The peak to peak voltage =\",Vo,\"V peak to peak\"\n", + "print \"The value of maximum input voltage is =\",int(Vpeak_to_peak*10**3),\"mVpeak to peak \" \n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The peak voltage is = 3.98 V peak\n", + "The peak to peak voltage = 7.96 V peak to peak\n", + "The value of maximum input voltage is = 159 mVpeak to peak \n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.6 Page No.127" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data \n", + "\n", + "Vptpi = 500*10**-3 #input peak to peak voltage \n", + "Vptpo = 3\n", + "Tr = 4*10**-6\n", + "\n", + "# Solution \n", + "\n", + "Vdelta = (0.9 - 0.1) * Vptpo\n", + "SR = (Vdelta / Tr ) * 10**-6\n", + "\n", + "# Display the values \n", + "\n", + "print \"The value of delta V = \",Vdelta,\"V\"\n", + "print \"The slew rate is = \",SR,\"V/us\"\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The value of delta V = 2.4 V\n", + "The slew rate is = 0.6 V/us\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file |