summaryrefslogtreecommitdiff
path: root/Linear_Integrated_Circuit_by_M._S._Sivakumar/Ch7_1.ipynb
diff options
context:
space:
mode:
authorTrupti Kini2016-05-12 23:30:31 +0600
committerTrupti Kini2016-05-12 23:30:31 +0600
commit5218db5dbae9c0890958f57af323c8d296ac9b07 (patch)
tree23dfd4b8c171a9f4ca5e20525a4f92a216484ce3 /Linear_Integrated_Circuit_by_M._S._Sivakumar/Ch7_1.ipynb
parentda40306957548bcc4a1a8d5e2cdc8928017fe5da (diff)
downloadPython-Textbook-Companions-5218db5dbae9c0890958f57af323c8d296ac9b07.tar.gz
Python-Textbook-Companions-5218db5dbae9c0890958f57af323c8d296ac9b07.tar.bz2
Python-Textbook-Companions-5218db5dbae9c0890958f57af323c8d296ac9b07.zip
Added(A)/Deleted(D) following books
A A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A._K._Theraja_B.L_Thereja/chapter25_2.ipynb A A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A._K._Theraja_B.L_Thereja/chapter26_2.ipynb A A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A._K._Theraja_B.L_Thereja/chapter27_2.ipynb A A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A._K._Theraja_B.L_Thereja/chapter28_2.ipynb A A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A._K._Theraja_B.L_Thereja/chapter29_2.ipynb A A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A._K._Theraja_B.L_Thereja/chapter30_2.ipynb A A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A._K._Theraja_B.L_Thereja/chapter31_2.ipynb A A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A._K._Theraja_B.L_Thereja/chapter32_2.ipynb A A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A._K._Theraja_B.L_Thereja/chapter33_2.ipynb A A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A._K._Theraja_B.L_Thereja/chapter34_2.ipynb A A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A._K._Theraja_B.L_Thereja/chapter35_2.ipynb A A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A._K._Theraja_B.L_Thereja/chapter36_2.ipynb A A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A._K._Theraja_B.L_Thereja/chapter37_2.ipynb A A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A._K._Theraja_B.L_Thereja/chapter38_2.ipynb A A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A._K._Theraja_B.L_Thereja/chapter39_2.ipynb A A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A._K._Theraja_B.L_Thereja/screenshots/chapter29example32_2.png A A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A._K._Theraja_B.L_Thereja/screenshots/chapter29example33_2.png A A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A._K._Theraja_B.L_Thereja/screenshots/chapter32example30_2.png A Advance_Semiconductor_Devices_by_K._C._Nandi/chapter1_1.ipynb A Advance_Semiconductor_Devices_by_K._C._Nandi/chapter2_1.ipynb A Advance_Semiconductor_Devices_by_K._C._Nandi/chapter5_1.ipynb A Advance_Semiconductor_Devices_by_K._C._Nandi/screenshots/KC_econ1_chapter1_1.png A Advance_Semiconductor_Devices_by_K._C._Nandi/screenshots/KC_econ_ch1_1.png A Advance_Semiconductor_Devices_by_K._C._Nandi/screenshots/KC_percentChangeinDiodeCurrent_chapter2_1.png D College_Physics_(volume_2)_by_R._A._Serway_and_J._S._Faughn/Ch15_1.ipynb D College_Physics_(volume_2)_by_R._A._Serway_and_J._S._Faughn/Ch15_2.ipynb D College_Physics_(volume_2)_by_R._A._Serway_and_J._S._Faughn/Ch15_3.ipynb D College_Physics_(volume_2)_by_R._A._Serway_and_J._S._Faughn/Ch16_1.ipynb D College_Physics_(volume_2)_by_R._A._Serway_and_J._S._Faughn/Ch16_2.ipynb D College_Physics_(volume_2)_by_R._A._Serway_and_J._S._Faughn/Ch16_3.ipynb D College_Physics_(volume_2)_by_R._A._Serway_and_J._S._Faughn/Ch17_1.ipynb D College_Physics_(volume_2)_by_R._A._Serway_and_J._S._Faughn/Ch17_2.ipynb D College_Physics_(volume_2)_by_R._A._Serway_and_J._S._Faughn/Ch17_3.ipynb D College_Physics_(volume_2)_by_R._A._Serway_and_J._S._Faughn/Ch18_1.ipynb D College_Physics_(volume_2)_by_R._A._Serway_and_J._S._Faughn/Ch18_2.ipynb D College_Physics_(volume_2)_by_R._A._Serway_and_J._S._Faughn/Ch18_3.ipynb D College_Physics_(volume_2)_by_R._A._Serway_and_J._S._Faughn/Ch19_1.ipynb D College_Physics_(volume_2)_by_R._A._Serway_and_J._S._Faughn/Ch19_2.ipynb D College_Physics_(volume_2)_by_R._A._Serway_and_J._S._Faughn/Ch19_3.ipynb D College_Physics_(volume_2)_by_R._A._Serway_and_J._S._Faughn/Ch20_1.ipynb D College_Physics_(volume_2)_by_R._A._Serway_and_J._S._Faughn/Ch20_2.ipynb D College_Physics_(volume_2)_by_R._A._Serway_and_J._S._Faughn/Ch20_3.ipynb D College_Physics_(volume_2)_by_R._A._Serway_and_J._S._Faughn/Ch21_1.ipynb D College_Physics_(volume_2)_by_R._A._Serway_and_J._S._Faughn/Ch21_2.ipynb D College_Physics_(volume_2)_by_R._A._Serway_and_J._S._Faughn/Ch21_3.ipynb D College_Physics_(volume_2)_by_R._A._Serway_and_J._S._Faughn/Ch22_1.ipynb D College_Physics_(volume_2)_by_R._A._Serway_and_J._S._Faughn/Ch22_2.ipynb D College_Physics_(volume_2)_by_R._A._Serway_and_J._S._Faughn/Ch22_3.ipynb D College_Physics_(volume_2)_by_R._A._Serway_and_J._S._Faughn/Ch23_1.ipynb D College_Physics_(volume_2)_by_R._A._Serway_and_J._S._Faughn/Ch23_2.ipynb D College_Physics_(volume_2)_by_R._A._Serway_and_J._S._Faughn/Ch23_3.ipynb D College_Physics_(volume_2)_by_R._A._Serway_and_J._S._Faughn/Ch24_1.ipynb D College_Physics_(volume_2)_by_R._A._Serway_and_J._S._Faughn/Ch24_2.ipynb D College_Physics_(volume_2)_by_R._A._Serway_and_J._S._Faughn/Ch24_3.ipynb D College_Physics_(volume_2)_by_R._A._Serway_and_J._S._Faughn/Ch25_1.ipynb D College_Physics_(volume_2)_by_R._A._Serway_and_J._S._Faughn/Ch25_2.ipynb D College_Physics_(volume_2)_by_R._A._Serway_and_J._S._Faughn/Ch25_3.ipynb D College_Physics_(volume_2)_by_R._A._Serway_and_J._S._Faughn/Ch26_1.ipynb D College_Physics_(volume_2)_by_R._A._Serway_and_J._S._Faughn/Ch26_2.ipynb D College_Physics_(volume_2)_by_R._A._Serway_and_J._S._Faughn/Ch26_3.ipynb D College_Physics_(volume_2)_by_R._A._Serway_and_J._S._Faughn/Ch27_1.ipynb D College_Physics_(volume_2)_by_R._A._Serway_and_J._S._Faughn/Ch27_2.ipynb D College_Physics_(volume_2)_by_R._A._Serway_and_J._S._Faughn/Ch27_3.ipynb D College_Physics_(volume_2)_by_R._A._Serway_and_J._S._Faughn/Ch28_1.ipynb D College_Physics_(volume_2)_by_R._A._Serway_and_J._S._Faughn/Ch28_2.ipynb D College_Physics_(volume_2)_by_R._A._Serway_and_J._S._Faughn/Ch28_3.ipynb D College_Physics_(volume_2)_by_R._A._Serway_and_J._S._Faughn/Ch29_1.ipynb D College_Physics_(volume_2)_by_R._A._Serway_and_J._S._Faughn/Ch29_2.ipynb D College_Physics_(volume_2)_by_R._A._Serway_and_J._S._Faughn/Ch29_3.ipynb D College_Physics_(volume_2)_by_R._A._Serway_and_J._S._Faughn/Ch30_1.ipynb D College_Physics_(volume_2)_by_R._A._Serway_and_J._S._Faughn/Ch30_2.ipynb D College_Physics_(volume_2)_by_R._A._Serway_and_J._S._Faughn/Ch30_3.ipynb A Electronic_Devices_and_Circuits_by_J._Paul/Ch10_1.ipynb A Electronic_Devices_and_Circuits_by_J._Paul/Ch11_1.ipynb A Electronic_Devices_and_Circuits_by_J._Paul/Ch12_1.ipynb A Electronic_Devices_and_Circuits_by_J._Paul/Ch13_1.ipynb A Electronic_Devices_and_Circuits_by_J._Paul/Ch1_1.ipynb A Electronic_Devices_and_Circuits_by_J._Paul/Ch2_1.ipynb A Electronic_Devices_and_Circuits_by_J._Paul/Ch3_1.ipynb A Electronic_Devices_and_Circuits_by_J._Paul/Ch4_1.ipynb A Electronic_Devices_and_Circuits_by_J._Paul/Ch5_1.ipynb A Electronic_Devices_and_Circuits_by_J._Paul/Ch6_1.ipynb A Electronic_Devices_and_Circuits_by_J._Paul/Ch7_1.ipynb A Electronic_Devices_and_Circuits_by_J._Paul/Ch8_1.ipynb A Electronic_Devices_and_Circuits_by_J._Paul/Ch9_1.ipynb A Electronic_Devices_and_Circuits_by_J._Paul/screenshots/4CollCurr_1.png A Electronic_Devices_and_Circuits_by_J._Paul/screenshots/4MaxNBasRes_1.png A Electronic_Devices_and_Circuits_by_J._Paul/screenshots/4saturationMode_1.png D Engineering_Physics_(volume_-_2)_by_B._K._Pandey_and_S._Chaturvedi/ch1.ipynb D Engineering_Physics_(volume_-_2)_by_B._K._Pandey_and_S._Chaturvedi/ch1_1.ipynb D Engineering_Physics_(volume_-_2)_by_B._K._Pandey_and_S._Chaturvedi/ch1_2.ipynb D Engineering_Physics_(volume_-_2)_by_B._K._Pandey_and_S._Chaturvedi/ch1_3.ipynb D Engineering_Physics_(volume_-_2)_by_B._K._Pandey_and_S._Chaturvedi/ch1_4.ipynb D Engineering_Physics_(volume_-_2)_by_B._K._Pandey_and_S._Chaturvedi/ch1_5.ipynb D Engineering_Physics_(volume_-_2)_by_B._K._Pandey_and_S._Chaturvedi/ch2.ipynb D Engineering_Physics_(volume_-_2)_by_B._K._Pandey_and_S._Chaturvedi/ch2_1.ipynb D Engineering_Physics_(volume_-_2)_by_B._K._Pandey_and_S._Chaturvedi/ch2_2.ipynb D Engineering_Physics_(volume_-_2)_by_B._K._Pandey_and_S._Chaturvedi/ch2_3.ipynb D Engineering_Physics_(volume_-_2)_by_B._K._Pandey_and_S._Chaturvedi/ch2_4.ipynb D Engineering_Physics_(volume_-_2)_by_B._K._Pandey_and_S._Chaturvedi/ch2_5.ipynb D Engineering_Physics_(volume_-_2)_by_B._K._Pandey_and_S._Chaturvedi/ch3.ipynb D Engineering_Physics_(volume_-_2)_by_B._K._Pandey_and_S._Chaturvedi/ch3_1.ipynb D Engineering_Physics_(volume_-_2)_by_B._K._Pandey_and_S._Chaturvedi/ch3_2.ipynb D Engineering_Physics_(volume_-_2)_by_B._K._Pandey_and_S._Chaturvedi/ch3_3.ipynb D Engineering_Physics_(volume_-_2)_by_B._K._Pandey_and_S._Chaturvedi/ch3_4.ipynb D Engineering_Physics_(volume_-_2)_by_B._K._Pandey_and_S._Chaturvedi/ch3_5.ipynb D Engineering_Physics_(volume_-_2)_by_B._K._Pandey_and_S._Chaturvedi/ch4.ipynb D Engineering_Physics_(volume_-_2)_by_B._K._Pandey_and_S._Chaturvedi/ch4_1.ipynb D Engineering_Physics_(volume_-_2)_by_B._K._Pandey_and_S._Chaturvedi/ch4_2.ipynb D Engineering_Physics_(volume_-_2)_by_B._K._Pandey_and_S._Chaturvedi/ch4_3.ipynb D Engineering_Physics_(volume_-_2)_by_B._K._Pandey_and_S._Chaturvedi/ch4_4.ipynb D Engineering_Physics_(volume_-_2)_by_B._K._Pandey_and_S._Chaturvedi/ch4_5.ipynb D Engineering_Physics_(volume_-_2)_by_B._K._Pandey_and_S._Chaturvedi/ch6.ipynb D Engineering_Physics_(volume_-_2)_by_B._K._Pandey_and_S._Chaturvedi/ch6_1.ipynb D Engineering_Physics_(volume_-_2)_by_B._K._Pandey_and_S._Chaturvedi/ch6_2.ipynb D Engineering_Physics_(volume_-_2)_by_B._K._Pandey_and_S._Chaturvedi/ch6_3.ipynb D Engineering_Physics_(volume_-_2)_by_B._K._Pandey_and_S._Chaturvedi/ch6_4.ipynb D Engineering_Physics_(volume_-_2)_by_B._K._Pandey_and_S._Chaturvedi/ch6_5.ipynb D Engineering_Physics_(volume_-_2)_by_B._K._Pandey_and_S._Chaturvedi/ch7.ipynb D Engineering_Physics_(volume_-_2)_by_B._K._Pandey_and_S._Chaturvedi/ch7_1.ipynb D Engineering_Physics_(volume_-_2)_by_B._K._Pandey_and_S._Chaturvedi/ch7_2.ipynb D Engineering_Physics_(volume_-_2)_by_B._K._Pandey_and_S._Chaturvedi/ch7_3.ipynb D Engineering_Physics_(volume_-_2)_by_B._K._Pandey_and_S._Chaturvedi/ch7_4.ipynb D Engineering_Physics_(volume_-_2)_by_B._K._Pandey_and_S._Chaturvedi/ch7_5.ipynb D Engineering_Physics_(volume_-_2)_by_B._K._Pandey_and_S._Chaturvedi/ch8.ipynb D Engineering_Physics_(volume_-_2)_by_B._K._Pandey_and_S._Chaturvedi/ch8_1.ipynb D Engineering_Physics_(volume_-_2)_by_B._K._Pandey_and_S._Chaturvedi/ch8_2.ipynb D Engineering_Physics_(volume_-_2)_by_B._K._Pandey_and_S._Chaturvedi/ch8_3.ipynb D Engineering_Physics_(volume_-_2)_by_B._K._Pandey_and_S._Chaturvedi/ch8_4.ipynb D Engineering_Physics_(volume_-_2)_by_B._K._Pandey_and_S._Chaturvedi/ch8_5.ipynb D Engineering_Physics_(volume_-_2)_by_B._K._Pandey_and_S._Chaturvedi/chapter1_1.ipynb D Engineering_Physics_(volume_-_2)_by_B._K._Pandey_and_S._Chaturvedi/chapter2_1.ipynb D Engineering_Physics_(volume_-_2)_by_B._K._Pandey_and_S._Chaturvedi/chapter3_1.ipynb D Engineering_Physics_(volume_-_2)_by_B._K._Pandey_and_S._Chaturvedi/chapter4_1.ipynb D Engineering_Physics_(volume_-_2)_by_B._K._Pandey_and_S._Chaturvedi/chapter6_1.ipynb D Engineering_Physics_(volume_-_2)_by_B._K._Pandey_and_S._Chaturvedi/chapter7_1.ipynb D Engineering_Physics_(volume_-_2)_by_B._K._Pandey_and_S._Chaturvedi/chapter8_1.ipynb A Linear_Integrated_Circuit_by_M._S._Sivakumar/Ch11_1.ipynb A Linear_Integrated_Circuit_by_M._S._Sivakumar/Ch12_1.ipynb A Linear_Integrated_Circuit_by_M._S._Sivakumar/Ch13_1.ipynb A Linear_Integrated_Circuit_by_M._S._Sivakumar/Ch14_1.ipynb A Linear_Integrated_Circuit_by_M._S._Sivakumar/Ch3_1.ipynb A Linear_Integrated_Circuit_by_M._S._Sivakumar/Ch4_1.ipynb A Linear_Integrated_Circuit_by_M._S._Sivakumar/Ch5_1.ipynb A Linear_Integrated_Circuit_by_M._S._Sivakumar/Ch6_1.ipynb A Linear_Integrated_Circuit_by_M._S._Sivakumar/Ch7_1.ipynb A Linear_Integrated_Circuit_by_M._S._Sivakumar/Ch8_1.ipynb A Linear_Integrated_Circuit_by_M._S._Sivakumar/Ch9_1.ipynb A Linear_Integrated_Circuit_by_M._S._Sivakumar/screenshots/BiasingVoltage_1.png A Linear_Integrated_Circuit_by_M._S._Sivakumar/screenshots/InOutCrrnt_1.png A Linear_Integrated_Circuit_by_M._S._Sivakumar/screenshots/inAndOutCurrnt_1.png
Diffstat (limited to 'Linear_Integrated_Circuit_by_M._S._Sivakumar/Ch7_1.ipynb')
-rw-r--r--Linear_Integrated_Circuit_by_M._S._Sivakumar/Ch7_1.ipynb747
1 files changed, 747 insertions, 0 deletions
diff --git a/Linear_Integrated_Circuit_by_M._S._Sivakumar/Ch7_1.ipynb b/Linear_Integrated_Circuit_by_M._S._Sivakumar/Ch7_1.ipynb
new file mode 100644
index 00000000..c7941467
--- /dev/null
+++ b/Linear_Integrated_Circuit_by_M._S._Sivakumar/Ch7_1.ipynb
@@ -0,0 +1,747 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 7 Filters and Rectifiers"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.1 Pg 232"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The resistor value is = 1.59 k ohm \n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "from math import pi, sqrt\n",
+ "# Design active low filter with cut-off frequency 10 kHz\n",
+ "fc = 10 # # kHz\n",
+ "C = 0.01 # #uF # we assume\n",
+ "\n",
+ "# the cut-off frequency of active low pass filter is defined as\n",
+ "# fc = (1/2*pi*R3*C)#\n",
+ "\n",
+ "# R3 can be calculated as\n",
+ "R3 = (1/(2*pi*fc*C))#\n",
+ "print 'The resistor value is = %0.2f'%R3,' k ohm '"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.2 Pg 233"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The resistor value is = 106 ohm \n",
+ "The pass band gain is = 1.50 \n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "from math import pi, sqrt\n",
+ "# Design active low filter with cut-off frequency 15 kHz\n",
+ "fc = 15*10**3 # # Hz \n",
+ "C = 0.1*10**-6 # #F # we assume\n",
+ "\n",
+ "# the cut-off frequency of active low pass filter is defined as\n",
+ "# fc = (1/2*pi*R3*C)#\n",
+ "\n",
+ "# R3 can be calculated as\n",
+ "R3 = (1/(2*pi*fc*C))#\n",
+ "print 'The resistor value is = %0.f'%R3,' ohm '\n",
+ "\n",
+ "# the pass band gain of filter is given by\n",
+ "# Af = 1+(R2/R1)#\n",
+ "# assume that the inverting terminal resistor R2=0.5*R1#\n",
+ "# in Af equation if we put R2=0.5R1 in R1 R1 cancellout each other \n",
+ "Af = 1+(0.5)\n",
+ "print 'The pass band gain is = %0.2f'%Af,' '"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.3 Pg 234"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The resistor value is = 159 Kohm \n",
+ "The resistor R2 value is = 900.00 k ohm \n",
+ "The magnitude of an active low pass filter is = 1.96 \n",
+ "The phase angle of the filter is = -78.69 \n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "from math import pi, sqrt\n",
+ "# Design active low filter with cut-off frequency 20 kHz\n",
+ "fc = 20 # # kHz \n",
+ "f = 100 # # frequency of filter\n",
+ "Af = 10 # # desired pass band gain\n",
+ "C = 0.05 # #nF # we assume\n",
+ "\n",
+ "# the cut-off frequency of active low pass filter is defined as\n",
+ "# fc = (1/2*pi*R3*C)#\n",
+ "\n",
+ "# R3 can be calculated as\n",
+ "R3 = (1/(2*pi*fc*1e3*C*1e-9))/1e3 # Kohm\n",
+ "print 'The resistor value is = %0.f'%R3,' Kohm '\n",
+ "\n",
+ "# the pass band gain of filter is given by\n",
+ "# Af = 1+(R2/R1)#\n",
+ "# assume that the inverting terminal resistor R1= 100 k ohm#\n",
+ "R1 = 100 # # k ohm\n",
+ "R2 = (Af*R1)-R1#\n",
+ "print 'The resistor R2 value is = %0.2f'%R2,' k ohm '\n",
+ "\n",
+ "# the magnitude of an active low pass filter is given as\n",
+ "A = Af/(sqrt(1+(f/fc)**2))#\n",
+ "print 'The magnitude of an active low pass filter is = %0.2f'%A,' '\n",
+ "\n",
+ "#the phase angle of the filter\n",
+ "from math import atan , degrees\n",
+ "Angle = -degrees(atan(f/fc))#\n",
+ "print 'The phase angle of the filter is = %0.2f'%Angle,' '"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.4 Pg 236"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The frequency of the first order low pass filter is = 2.65 kHz \n",
+ "The pass band gain of filter is = 13.00 \n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "from math import pi, sqrt\n",
+ "# to determine the cut-off frequency and pass band gain Af\n",
+ "R1 = 1 # # k ohm\n",
+ "R2 = 12 # # k ohm\n",
+ "R3 = 1.2 # # k ohm\n",
+ "C = 0.05 # #uF # we assume\n",
+ "\n",
+ "# the frequency of the first order low pass filter is defined as\n",
+ "fc = (1/(2*pi*R3*C))#\n",
+ "print 'The frequency of the first order low pass filter is = %0.2f'%fc,' kHz '\n",
+ "\n",
+ "# the pass band gain of filter is given by\n",
+ "Af =(1+R2/R1)#\n",
+ "print 'The pass band gain of filter is = %0.2f'%Af,''"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.5 Pg 236"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The capacitor of high pass filter is = 25.13 uF \n",
+ "The second resistor value is = 90.00 K ohm \n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "from math import pi, sqrt\n",
+ "# to design a first order high pass filter with cut-off frequency 2kHz\n",
+ "Af = 10 #\n",
+ "fc = 2 # # kHz \n",
+ "R3 = 2 # #K ohm # we assume\n",
+ "R1 = 10 # # k ohm\n",
+ "# the capacitor of high pass filter is given by\n",
+ "C = 2*pi*R3*fc#\n",
+ "print 'The capacitor of high pass filter is = %0.2f'%C,' uF '\n",
+ "\n",
+ "# the voltage gain of the high pass filter is\n",
+ "# Af = 1+(R2/R1)#\n",
+ "R2 = R1*(Af-1)#\n",
+ "print 'The second resistor value is = %0.2f'%R2,' K ohm '"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.6 Pg 237"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The resistance R3 is = 1.59 K ohm \n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "from math import pi, sqrt\n",
+ "# to design an active high pass filter with cut-off frequency 10kHz\n",
+ "fc = 10 # # kHz \n",
+ "C = 0.01 # #uF # we assume\n",
+ "# the cut-off frequency of active high pass filter is given by\n",
+ "# fc = 2*pi*R3*C#\n",
+ "# R3 can be calculated as\n",
+ "R3 = (1/(2*pi*fc*C))#\n",
+ "\n",
+ "print 'The resistance R3 is = %0.2f'%R3,' K ohm '"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.7 Pg 238"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The resistance R3 is = 64 Kohm \n",
+ "The pass band gain is = 1.20 \n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "from math import pi, sqrt\n",
+ "# to design an active high pass filter with cut-off frequency 25kHz\n",
+ "fc = 25 # # kHz \n",
+ "C = 0.1 # #nF # we assume\n",
+ "# the cut-off frequency of active high pass filter is given by\n",
+ "# fc = 2*pi*R3*C#\n",
+ "# R3 can be calculated as\n",
+ "R3 = (1/(2*pi*fc*1e3*C*1e-9)) / 1e3 # Kohm\n",
+ "print 'The resistance R3 is = %0.f'%R3,' Kohm '\n",
+ "\n",
+ "# the desire pass band gain of filter is given by \n",
+ "#Af = 1+(R2/R1)#\n",
+ "# assume that the inverting terminal resistor R2=0.2*R1#\n",
+ "# in Af equation if we put R2=0.2R1 in R1 R1 cancellout each other \n",
+ "Af = 1+(0.2)\n",
+ "print 'The pass band gain is = %0.2f'%Af,' '"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.8 Pg 239"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The resistance R3 is = 159 K ohm \n",
+ "The resistance R2 is = 700.00 K ohm \n",
+ "The magnitude of an active high pass filter is = 14.55 \n",
+ "The phase angle of the filter is = 14.04 degree\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "from math import pi, sqrt\n",
+ "## # to design an active high pass filter with cut-off frequency 20kHz \n",
+ "Af = 15 #\n",
+ "fc = 20 # #kHz\n",
+ "f = 80 # # kHz the frequency of filter \n",
+ "C = 0.05 # #nF # we assume\n",
+ "# the cut-off frequency of active high pass filter is given by\n",
+ "# fc = 2*pi*R3*C#\n",
+ "# R3 can be calculated as\n",
+ "R3 = (1/(2*pi*fc*C))#\n",
+ "print 'The resistance R3 is = %0.f'%(R3*1000),' K ohm ' # Round Off Error\n",
+ "\n",
+ "# the desire pass band gain of filter is given by \n",
+ "#Af = 1+(R2/R1)#\n",
+ "# assume that the inverting terminal resistor R1=50 K ohm#\n",
+ "R1 = 50 # # K ohm\n",
+ "R2 = (R1*Af)-(R1)\n",
+ "print 'The resistance R2 is = %0.2f'%R2,' K ohm '\n",
+ "\n",
+ "# the magnitude of an active high pass filter is given as\n",
+ "A = Af*(f/fc)/(sqrt(1+(f/fc)**2))#\n",
+ "print 'The magnitude of an active high pass filter is = %0.2f'%A,' '\n",
+ "\n",
+ "#the phase angle of the filter\n",
+ "from numpy import inf\n",
+ "Angle = degrees(-atan(f/fc)+atan(inf))\n",
+ "print 'The phase angle of the filter is = %0.2f'%Angle,' degree' # Round Off Error"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.9 Pg 241"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The lower cut-off frequency FLC of band pass filter is = 159.2 Hz \n",
+ "The upper cut-off frequency FUC of band pass filter is = 15.92 kHz \n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "from math import pi, sqrt\n",
+ "# to calculate upper and lower cut-off frequency of the band pass filter\n",
+ "R1 = 10*10**3 # #K ohm\n",
+ "R2 = 10 # #K ohm\n",
+ "C1 = 0.1*10**-6 # # uF\n",
+ "C2 = 0.001 # #uF\n",
+ "\n",
+ "# the lower cut-off frequency of band pass filter is\n",
+ "fLC = 1/(2*pi*R1*C1)#\n",
+ "print 'The lower cut-off frequency FLC of band pass filter is = %0.1f'%fLC,' Hz '\n",
+ "\n",
+ "# The upper cut-off frequency of band pass filter is\n",
+ "fUC = 1/(2*pi*R2*C2)#\n",
+ "print 'The upper cut-off frequency FUC of band pass filter is = %0.2f'%fUC,' kHz '"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.10 Pg 242"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The resistance R3 Value is = 7.96 M ohm \n",
+ "The resistance R6 value is = 1.59 M ohm \n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "from math import pi, sqrt\n",
+ "# to design an active band pass filter with lower cut-off frequency 10 kHz an upper 50 kHz\n",
+ "fL = 10 # # kHz\n",
+ "fH = 50 # # kHz\n",
+ "C1 = 0.002 # # nF\n",
+ "C2 = 0.002 # # nF\n",
+ "\n",
+ "# the lower cut-off frequency of band pass filter is\n",
+ "# fL = 1/(2*pi*R3*C1)#\n",
+ "R3 = 1/(2*pi*fL*C1)#\n",
+ "print 'The resistance R3 Value is = %0.2f'%R3,' M ohm '\n",
+ "\n",
+ "# The upper cut-off frequency of band pass filter is\n",
+ "# fH = 1/(2*pi*R6*C2)#\n",
+ "R6 = 1/(2*pi*fH*C2)#\n",
+ "print 'The resistance R6 value is = %0.2f'%R6,' M ohm '"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.11 Pg 243"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The resistance R3 Value is = 7.96 M ohm \n",
+ "The resistance R6 value is = 3.98 M ohm \n",
+ "The desire pass band gain of filter is = 15 \n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "from math import pi, sqrt\n",
+ "# to design an active band pass filter with lower cut-off frequency 20 kHz an upper 40 kHz\n",
+ "fL = 20 # # kHz\n",
+ "fH = 40 # # kHz\n",
+ "# the inverting terminal resistance 2R1=R2 and 4R4=R5\n",
+ "C1 = 0.001 # # nF\n",
+ "C2 = 0.001 # # nF\n",
+ "\n",
+ "# the lower cut-off frequency of band pass filter is\n",
+ "# fL = 1/(2*pi*R3*C1)#\n",
+ "R3 = 1/(2*pi*fL*C1)#\n",
+ "print 'The resistance R3 Value is = %0.2f'%R3,' M ohm '\n",
+ "\n",
+ "# The upper cut-off frequency of band pass filter is\n",
+ "# fH = 1/(2*pi*R6*C2)#\n",
+ "R6 = 1/(2*pi*fH*C2)#\n",
+ "print 'The resistance R6 value is = %0.2f'%R6,' M ohm '\n",
+ "\n",
+ "# the desire pass band gain of filter is defined as\n",
+ "R1 = 1 # # M ohm we assume\n",
+ "#we define inverting terminal resistance 2R1=R2\n",
+ "R2 = 2 # # M ohm\n",
+ "# then\n",
+ "R4 = 1 # #M ohm\n",
+ "R5 = 4 # # M ohm\n",
+ "Af = (1+(R2/R1))*(1+(R5/R4))#\n",
+ "print 'The desire pass band gain of filter is = %d'%Af,' '"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.12 Pg 244"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The resistance R3 Value is = 7.96 M ohm \n",
+ "The resistance R6 value is = 1.99 M ohm \n",
+ "The desire pass band gain of filter is = 15.00 \n",
+ "The magnitude of gain of band pass filter is = 11.49 \n",
+ "The phase angle of gain of band pass filter is = 50 degree\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "from math import pi, sqrt\n",
+ "# to design an active band pass filter with lower cut-off frequency 20 kHz an upper 80 kHz\n",
+ "f = 100 # # kHz the frequency of band pass filter\n",
+ "fL = 20 # # kHz\n",
+ "fH = 80 # # kHz\n",
+ "# the inverting terminal resistance R1=0.5*R2 and R4=0.25*R5\n",
+ "C1 = 0.001 # # nF\n",
+ "C2 = 0.001 # # nF\n",
+ "\n",
+ "# the lower cut-off frequency of band pass filter is\n",
+ "# fL = 1/(2*pi*R3*C1)#\n",
+ "R3 = 1/(2*pi*fL*C1)#\n",
+ "print 'The resistance R3 Value is = %0.2f'%R3,' M ohm '\n",
+ "\n",
+ "# The upper cut-off frequency of band pass filter is\n",
+ "# fH = 1/(2*pi*R6*C2)#\n",
+ "R6 = 1/(2*pi*fH*C2)#\n",
+ "print 'The resistance R6 value is = %0.2f'%R6,' M ohm ' # Round Off Error\n",
+ "\n",
+ "# the desire pass band gain of filter is defined as\n",
+ "R1 = 1 # # M ohm we assume\n",
+ "#we define inverting terminal resistance R1=0.5*R2\n",
+ "R2 = 2 # # M ohm\n",
+ "# then\n",
+ "R4 = 1 # #M ohm\n",
+ "R5 = 4 # # M ohm\n",
+ "Af = (1+(R2/R1))*(1+(R5/R4))#\n",
+ "print 'The desire pass band gain of filter is = %0.2f'%Af,' '\n",
+ "\n",
+ "# the magnitude of gain of band pass filter is given as\n",
+ "A = Af*(f**2/(fL*fH))/((sqrt(1+(f/fL)**2))*(sqrt(1+(f/fH)**2)))#\n",
+ "print 'The magnitude of gain of band pass filter is = %0.2f'%A,' ' # Round Off Error\n",
+ "\n",
+ "#the phase angle of the filter\n",
+ "from numpy import inf\n",
+ "Angle = degrees(2*atan(inf)-atan(f/fL)-atan(f/fH))\n",
+ "print 'The phase angle of gain of band pass filter is = %0.f'%Angle,'degree' # Round Off Error"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.13 Pg 247"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The output of the half wave precision rectifier Vo is = -20.00 V \n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "# to determine the output voltage of the precision rectifier circuit\n",
+ "Vi = 10 # #V i/p volt\n",
+ "R1 = 20 # # K ohm\n",
+ "R2 = 40 # # K ohm\n",
+ "Vd = 0.7 # # V the diode voltage drop\n",
+ "\n",
+ "# the output of the half wave precision rectifier is defined as\n",
+ "# Vo = -(R2/R1)*Vi # for Vi < 0\n",
+ "# = 0 otherwise\n",
+ "# i.e for Vi > 0\n",
+ "# Vo = 0\n",
+ "# for Vi < 0\n",
+ "Vo = -(R2/R1)*Vi\n",
+ "print 'The output of the half wave precision rectifier Vo is = %0.2f'%Vo,' V '"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.14 Pg 247"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The output of the half wave precision rectifier Vo is = -15.00 V \n",
+ "The output of the half wave precision rectifier Vo is = 15.00 V \n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "# to determine the output voltage of the precision rectifier circuit for i/p voltage a) Vi = 5 b) Vi = -5\n",
+ "Vi = 5 # #V i/p volt\n",
+ "R1 = 5 # # K ohm\n",
+ "R2 = 15 # # K ohm\n",
+ "Vd = 0.7 # # V the diode voltage drop\n",
+ "\n",
+ "# the output of the half wave precision rectifier is defined as\n",
+ "# Vo = -(R2/R1)*Vi # for Vi < 0\n",
+ "# = 0 otherwise\n",
+ "\n",
+ "# for Vi = 5 V\n",
+ "# i.e for Vi > 0\n",
+ "# Vo = 0\n",
+ "# for Vi < 0\n",
+ "Vo = -(R2/R1)*Vi#\n",
+ "print 'The output of the half wave precision rectifier Vo is = %0.2f'%Vo,' V '\n",
+ "\n",
+ "# for Vi = -5 V\n",
+ "# i.e for Vi > 0\n",
+ "# Vo = 0\n",
+ "# for Vi < 0\n",
+ "Vi =-5 # # V\n",
+ "Vo = -(R2/R1)*Vi#\n",
+ "print 'The output of the half wave precision rectifier Vo is = %0.2f'%Vo,' V '"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.15 Pg 248"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The gain of precision full wave rectifier A is = 6.00 \n",
+ "The output voltage Vo is = 42.00 V \n",
+ "The output voltage Vo is = 42.00 V \n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "# to determine the output voltage of the precision rectifier circuit for i/p voltage a) Vi = 7 b) Vi = -7\n",
+ "Vi = 7 # #V i/p volt\n",
+ "R1 = 5 # # K ohm\n",
+ "R3 = 5 # # K ohm\n",
+ "R4 = 5 # # K ohm\n",
+ "R2 = 15 # # K ohm\n",
+ "R5 = 15 # # K ohm\n",
+ "Vd = 0.7 # # V the diode voltage drop\n",
+ "\n",
+ "# the output of the full wave precision rectifier is defined as\n",
+ "# Vo = -A*Vi # for Vi < 0 equation 1\n",
+ "# = A*Vi # otherwise equation 2\n",
+ "\n",
+ "# or Vo = abs(A*Vi) #\n",
+ "\n",
+ "# The gain of precision full wave rectifier\n",
+ "A = (((R2*R5)/(R1*R3))-(R5/R4)) #\n",
+ "print 'The gain of precision full wave rectifier A is = %0.2f'%A,' '\n",
+ "\n",
+ "\n",
+ "# for Vi = 7 V the output voltage is\n",
+ "Vi = 7 #\n",
+ "Vo = -A*Vi # # from equation 1\n",
+ "Vo = A*Vi # # from equation 2\n",
+ "Vo = abs(A*Vi) #\n",
+ "print 'The output voltage Vo is = %0.2f'%Vo,' V '\n",
+ "\n",
+ "# for Vi = -7 V the output voltage is\n",
+ "Vi = -7 #\n",
+ "Vo = -A*Vi # # from equation 1\n",
+ "Vo = A*Vi # # from equation 2\n",
+ "Vo = abs(A*Vi) #\n",
+ "print 'The output voltage Vo is = %0.2f'%Vo,' V '"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}