summaryrefslogtreecommitdiff
path: root/Introduction_to_flight_by_J_D_Anderson/Appendix_E.ipynb
diff options
context:
space:
mode:
authorTrupti Kini2016-06-08 23:30:31 +0600
committerTrupti Kini2016-06-08 23:30:31 +0600
commita3871e3e452c3fe7206fd396ee6e3b2cc75cd891 (patch)
treeec9f04c9b8eb9a7d384c5be31d1447999976ef08 /Introduction_to_flight_by_J_D_Anderson/Appendix_E.ipynb
parentbad3642fdd468faa5da238beef2f5fb18d3ac388 (diff)
downloadPython-Textbook-Companions-a3871e3e452c3fe7206fd396ee6e3b2cc75cd891.tar.gz
Python-Textbook-Companions-a3871e3e452c3fe7206fd396ee6e3b2cc75cd891.tar.bz2
Python-Textbook-Companions-a3871e3e452c3fe7206fd396ee6e3b2cc75cd891.zip
Added(A)/Deleted(D) following books
A Energy_Management_by_W._R._Murphy_and_G._A._Mckay/Chapter1.ipynb A Energy_Management_by_W._R._Murphy_and_G._A._Mckay/Chapter10.ipynb A Energy_Management_by_W._R._Murphy_and_G._A._Mckay/Chapter11.ipynb A Energy_Management_by_W._R._Murphy_and_G._A._Mckay/Chapter2.ipynb A Energy_Management_by_W._R._Murphy_and_G._A._Mckay/Chapter3.ipynb A Energy_Management_by_W._R._Murphy_and_G._A._Mckay/Chapter4.ipynb A Energy_Management_by_W._R._Murphy_and_G._A._Mckay/Chapter5.ipynb A Energy_Management_by_W._R._Murphy_and_G._A._Mckay/Chapter6.ipynb A Energy_Management_by_W._R._Murphy_and_G._A._Mckay/Chapter7.ipynb A Energy_Management_by_W._R._Murphy_and_G._A._Mckay/Chapter8.ipynb A Energy_Management_by_W._R._Murphy_and_G._A._Mckay/Chapter9.ipynb A Energy_Management_by_W._R._Murphy_and_G._A._Mckay/screenshots/Chapter1.png A Energy_Management_by_W._R._Murphy_and_G._A._Mckay/screenshots/Chapter3.png A Energy_Management_by_W._R._Murphy_and_G._A._Mckay/screenshots/Chapter9.png A Introduction_to_flight_by_J_D_Anderson/11._Hypersonic_vehicles.ipynb A Introduction_to_flight_by_J_D_Anderson/2._Fundamental_Thoughts.ipynb A Introduction_to_flight_by_J_D_Anderson/3._The_Standard_Atmosphere.ipynb A Introduction_to_flight_by_J_D_Anderson/4._Aerodynamics.ipynb A Introduction_to_flight_by_J_D_Anderson/5._Airfoils,_Wings_and_Other_Aerodynamic_shapes.ipynb A Introduction_to_flight_by_J_D_Anderson/6._Elements_of_Airplane_Performance.ipynb A Introduction_to_flight_by_J_D_Anderson/7._Principles_of_Stability_and_Control.ipynb A Introduction_to_flight_by_J_D_Anderson/8._Space_Flight_(Astronautics).ipynb A Introduction_to_flight_by_J_D_Anderson/9._Propulsion.ipynb A Introduction_to_flight_by_J_D_Anderson/Appendix_A.ipynb A Introduction_to_flight_by_J_D_Anderson/Appendix_B.ipynb A Introduction_to_flight_by_J_D_Anderson/Appendix_C.ipynb A Introduction_to_flight_by_J_D_Anderson/Appendix_D.ipynb A Introduction_to_flight_by_J_D_Anderson/Appendix_E.ipynb A Introduction_to_flight_by_J_D_Anderson/README.txt A Introduction_to_flight_by_J_D_Anderson/screenshots/1.png A Introduction_to_flight_by_J_D_Anderson/screenshots/2.png A Introduction_to_flight_by_J_D_Anderson/screenshots/3.png A Modern_Compressible_Flow_with_historical_perspective_by_John_D_Anderson/1._Compressible_Flow-Some_History_and_Introductory_Thoughts.ipynb A Modern_Compressible_Flow_with_historical_perspective_by_John_D_Anderson/3._One_Dimentional_Flow.ipynb A Modern_Compressible_Flow_with_historical_perspective_by_John_D_Anderson/4._Oblique_Shock_and_Expansion_Waves.ipynb A Modern_Compressible_Flow_with_historical_perspective_by_John_D_Anderson/5._Quasi-One-Dimensional_Flow.ipynb A Modern_Compressible_Flow_with_historical_perspective_by_John_D_Anderson/README.txt A Modern_Compressible_Flow_with_historical_perspective_by_John_D_Anderson/screenshots/1.png A Modern_Compressible_Flow_with_historical_perspective_by_John_D_Anderson/screenshots/2.png A Modern_Compressible_Flow_with_historical_perspective_by_John_D_Anderson/screenshots/3.png
Diffstat (limited to 'Introduction_to_flight_by_J_D_Anderson/Appendix_E.ipynb')
-rw-r--r--Introduction_to_flight_by_J_D_Anderson/Appendix_E.ipynb421
1 files changed, 421 insertions, 0 deletions
diff --git a/Introduction_to_flight_by_J_D_Anderson/Appendix_E.ipynb b/Introduction_to_flight_by_J_D_Anderson/Appendix_E.ipynb
new file mode 100644
index 00000000..f6035999
--- /dev/null
+++ b/Introduction_to_flight_by_J_D_Anderson/Appendix_E.ipynb
@@ -0,0 +1,421 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Appendix E"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Stagnation Temperature: 319.9 K\n",
+ "Stagnation Pressure: 187.9 KPa\n"
+ ]
+ }
+ ],
+ "source": [
+ "# -*- coding: utf8 -*-\n",
+ "from __future__ import division\n",
+ "#Example: 17.1\n",
+ "'''Air flows in a duct at a pressure of 150 kPa with a velocity of 200 m/s. The temperature\n",
+ "of the air is 300 K. Determine the isentropic stagnation pressure and temperature.'''\n",
+ "\n",
+ "#Variable Declaration: \n",
+ "T = 300\t\t\t\t\t#Temperature of air in K\n",
+ "P = 150\t\t\t\t\t#Pressure of air in kPa\n",
+ "v = 200\t\t\t\t\t#velocity of air flow n m/s\n",
+ "Cp = 1.004\t\t\t\t#specific heat at constant pressure in kJ/kg\n",
+ "\n",
+ "#Calculations:\n",
+ "To = v**2/(2000*Cp)+T\t#stagnation temperature in K\n",
+ "k = 1.4\t\t \t\t#constant\n",
+ "Po = P*(To/T)**(k/(k-1))#stagnation pressure in kPa\n",
+ "\n",
+ "#Results:\n",
+ "print 'Stagnation Temperature: ',round(To,1),'K'\n",
+ "print 'Stagnation Pressure:',round(Po,1),'KPa'"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Thrust acting in x direction: 10.68 KN\n"
+ ]
+ }
+ ],
+ "source": [
+ "# -*- coding: utf8 -*-\n",
+ "from __future__ import division\n",
+ "#Example: 17.3\n",
+ "'''A jet engine is being tested on a test stand (Fig. 17.5). The inlet area to the compressor is\n",
+ "0.2 m2, and air enters the compressor at 95 kPa, 100 m/s. The pressure of the atmosphere\n",
+ "is 100 kPa. The exit area of the engine is 0.1 m2, and the products of combustion leave the\n",
+ "exit plane at a pressure of 125 kPa and a velocity of 450 m/s. The air–fuel ratio is 50 kg\n",
+ "air/kg fuel, and the fuel enters with a low velocity. The rate of air flow entering the engine\n",
+ "is 20 kg/s. Determine the thrust, Rx, on the engine.'''\n",
+ "\n",
+ "#Keys\n",
+ "#i = inlet\n",
+ "#e = exit\n",
+ "\n",
+ "#Variable Declaration: \n",
+ "#using momentum equation on control surface in x direction\n",
+ "me = 20.4\t\t#mass exiting in kg\n",
+ "mi = 20\t\t\t#mass entering in kg\n",
+ "ve = 450\t\t#exit velocity in m/s\n",
+ "vi = 100\t\t#exit velocity in m/s\n",
+ "Pi = 95\t\t\t#Pressure at inlet in kPa\n",
+ "Pe = 125\t\t#Pressure at exit in kPa\n",
+ "Po = 100\t\t#surrounding pressure in kPa\n",
+ "Ai = 0.2\t\t#inlet area in m**2\n",
+ "Ae = 0.1\t\t#exit area in m**2\n",
+ "\n",
+ "#Calculations:\n",
+ "Rx = (me*ve-mi*vi)/1000-(Pi-Po)*Ai+(Pe-Po)*Ae\t\t#thrust in x direction in kN\n",
+ "\n",
+ "#Results:\n",
+ "print 'Thrust acting in x direction: ',Rx,'KN' "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Speed of sound at 300K: 347.2 m/s\n",
+ "Speed of sound at 1000K: 633.9 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "# -*- coding: utf8 -*-\n",
+ "from __future__ import division\n",
+ "from math import sqrt\n",
+ "#Example: 17.5\n",
+ "'''Determine the velocity of sound in air at 300 K and at 1000 K.'''\n",
+ "\n",
+ "#Variable Declaration: \n",
+ "k = 1.4\t\t\t#constant\n",
+ "R = 0.287\t\t#gas constant\n",
+ "#At 300K\n",
+ "T1 = 300\t\t#K\n",
+ "T2 = 1000\t\t#K\n",
+ "\n",
+ "#Calculations:\n",
+ "c1 = sqrt(k*R*T1*1000)\n",
+ "c2 = sqrt(k*R*T2*1000)\n",
+ "\n",
+ "#Results:\n",
+ "print 'Speed of sound at 300K: ',round(c1,1),'m/s'\n",
+ "print 'Speed of sound at 1000K: ',round(c2,1),'m/s'"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Mass flow rate at the throat section: 1.0646 Kg/s\n",
+ "Mass flow rate at the exit section: 0.8711 Kg/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "# -*- coding: utf8 -*-\n",
+ "from __future__ import division\n",
+ "from math import sqrt\n",
+ "#Example: 17.6\n",
+ "'''A convergent nozzle has an exit area of 500 mm2. Air enters the nozzle with a stagnation\n",
+ "pressure of 1000 kPa and a stagnation temperature of 360 K. Determine the mass rate of\n",
+ "flow for back pressures of 800 kPa, 528 kPa, and 300 kPa, assuming isentropic flow'''\n",
+ "\n",
+ "#Variable Declaration: \n",
+ "k = 1.4\t\t\t\t#constant\n",
+ "R = 0.287\t\t\t#gas constant\n",
+ "To = 360\t\t\t#stagnation Temperature in K \n",
+ "P = 528\t\t\t\t#stagnation pressure in kPa\n",
+ "A = 500*10**-6\t\t#area in m**2\n",
+ "Me = 0.573\t\t\t#Mach number\n",
+ "Pe = 800\t\t\t#exit pressure in kPa\n",
+ "\n",
+ "#Calculations:\n",
+ "T = To*0.8333\t\t#Temperature of air in K, 0.8333 stagnation ratio from table\n",
+ "v = sqrt(k*R*T*1000)#velocity in m/s\n",
+ "d = P/(R*T)\t\t\t#stagnation density in kg/m**3\n",
+ "ms = d*A*v\t\t\t#mass flow rate in kg/s\n",
+ "Te = To*0.9381\t\t#exit temperature in K, ratio from table\n",
+ "ce = sqrt(k*R*Te*1000)#exit velocity of sound in m/s\n",
+ "ve = Me*ce\n",
+ "de = Pe/R/Te\n",
+ "mse = de*A*ve\n",
+ "\n",
+ "#Results:\n",
+ "print 'Mass flow rate at the throat section: ',round(ms,4),'Kg/s'\n",
+ "print 'Mass flow rate at the exit section: ',round(mse,4),'Kg/s'"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "__When diverging section act as a nozzle__\n",
+ "Exit pressure: 93.9 Kpa\n",
+ "Exit Temperature: 183.2 K\n",
+ "Exit velocity: 596.1 m/s\n",
+ "__When diverging section act as a diffuser__\n",
+ "Exit pressure: 93.6 Kpa\n",
+ "Exit Temperature: 353.2 K\n",
+ "Exit velocity: 116.0 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "# -*- coding: utf8 -*-\n",
+ "from __future__ import division\n",
+ "from math import sqrt\n",
+ "#Example: 17.7\n",
+ "'''A converging-diverging nozzle has an exit area to throat area ratio of 2. Air enters this\n",
+ "nozzle with a stagnation pressure of 1000 kPa and a stagnation temperature of 360 K. The\n",
+ "throat area is 500 mm2. Determine the mass rate of flow, exit pressure, exit temperature,\n",
+ "exit Mach number, and exit velocity for the following conditions:\n",
+ "a. Sonic velocity at the throat, diverging section acting as a nozzle.\n",
+ "(Corresponds to point d in Fig. 17.13.)\n",
+ "b. Sonic velocity at the throat, diverging section acting as a diffuser.\n",
+ "(Corresponds to point c in Fig. 17.13.)'''\n",
+ "\n",
+ "#Variable Declaration: \n",
+ "Po = 1000\t\t \t#stagnation pressure in kPa\n",
+ "To = 360\t\t \t#stagnation temperature in K\n",
+ "#when diverging section acting as nozzle\n",
+ "Pe1 = 0.0939*Po\t\t\t#exit pressure of air in kPa\n",
+ "Te1 = 0.5089*To\t\t\t#exit temperature in K\n",
+ "k = 1.4\t\t \t\t#constant\n",
+ "R = 0.287\t\t \t#gas constant for air\n",
+ "Me = 2.197\t\t \t#mach number from table\n",
+ "#when diverging section act as diffuser\n",
+ "Me2 = 0.308\n",
+ "Pe2 = 0.0936*Po\t\t#exit pressure of air in kPa\n",
+ "Te2 = 0.9812*To\t\t#exit temperature in K\n",
+ "\n",
+ "#Calculations:\n",
+ "ce = sqrt(k*R*Te1*1000)\t#velocity of sound in exit section in m/s\n",
+ "ve1 = Me*ce\t\t\t\t#velocity of air at exit section in m/s\n",
+ "ce = sqrt(k*R*Te2*1000)\t\t#velocity of sound in exit section in m/s\n",
+ "ve2 = Me2*ce\n",
+ "\n",
+ "#Results:\n",
+ "print '__When diverging section act as a nozzle__'\n",
+ "print 'Exit pressure: ',round(Pe1,1),\"Kpa\"\n",
+ "print 'Exit Temperature: ',round(Te1,1),\"K\"\n",
+ "print 'Exit velocity: ',round(ve1,1),\"m/s\"\n",
+ "print '__When diverging section act as a diffuser__'\n",
+ "print 'Exit pressure: ',round(Pe2,1),\"Kpa\"\n",
+ "print 'Exit Temperature: ',round(Te2,1),\"K\"\n",
+ "print 'Exit velocity: ',round(ve2,1),\"m/s\"\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Static Pressure in downstream: 512.7 Kpa\n",
+ "Static Temperature in downstream: 339.7 K\n",
+ "Stagnation Pressure in downstream: 630.0 Kpa\n"
+ ]
+ }
+ ],
+ "source": [
+ "# -*- coding: utf8 -*-\n",
+ "from __future__ import division\n",
+ "#Example: 17.8\n",
+ "'''Consider the convergent-divergent nozzle of Example 17.7, in which the diverging section\n",
+ "acts as a supersonic nozzle (Fig. 17.16). Assume that a normal shock stands in the exit\n",
+ "plane of the nozzle. Determine the static pressure and temperature and the stagnation\n",
+ "pressure just downstream of the normal shock.'''\n",
+ "\n",
+ "#Variable Declaration:\n",
+ "Px = 93.9 \t\t\t#Static Pressure in Upstream(Kpa)\n",
+ "Tx = 183.2 \t\t\t#Static Temperature in Upstream(K)\n",
+ "Pox = 1000\t\t\t#Total Pressure in Upstream(Kpa)\n",
+ "Mx = 2.197\t\t\t#X-direction Mach No (Using table A.13)\n",
+ "My = 0.547\t\t\t#Y-direction Mach No (Using table A.13)\n",
+ "rP = 5.46\t\t\t#Py/Px (Using table A.13)\n",
+ "rT = 1.854\t\t\t#Ty/Tx (Using table A.13)\n",
+ "rPo = 0.63\t\t\t#Poy/Pox (Using table A.13)\n",
+ "\n",
+ "#Calculations:\n",
+ "Py = rP*Px\n",
+ "Ty = rT*Tx\n",
+ "Poy = rPo*Pox\n",
+ "\n",
+ "#Results:\n",
+ "print 'Static Pressure in downstream: ',round(Py,1),'Kpa'\n",
+ "print 'Static Temperature in downstream: ',round(Ty,1),'K'\n",
+ "print 'Stagnation Pressure in downstream: ',round(Poy,1),'Kpa'"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Exit pressure: 669.6 Kpa\n",
+ "Exit temperature: 327.8 K\n",
+ "Exit stagnation pressure: 929.8 Kpa\n"
+ ]
+ }
+ ],
+ "source": [
+ "# -*- coding: utf8 -*-\n",
+ "from __future__ import division\n",
+ "#Example: 17.9\n",
+ "'''Consider the convergent-divergent nozzle of Examples 17.7 and 17.8. Assume that there\n",
+ "is a normal shock wave standing at the point where M = 1.5. Determine the exit-plane\n",
+ "pressure, temperature, and Mach number. Assume isentropic flow except for the normal\n",
+ "shock (Fig. 17.18).'''\n",
+ "\n",
+ "#Key\n",
+ "#x = inlet\n",
+ "#y = exit\n",
+ "\n",
+ "#Variable Declaration: \n",
+ "Mx = 1.5\t\t\t\t#mach number for inlet\n",
+ "My = 0.7011\t\t\t\t#mach number for exit\n",
+ "Px = 272.4\t\t\t\t#inlet pressure in kPa\n",
+ "Tx = 248.3\t\t\t\t#inlet temperature in K\n",
+ "Pox = 1000\t\t\t\t#stagnation pressure for inlet\n",
+ "\n",
+ "#Calculations:\n",
+ "Py = 2.4583*Px\t\t\t#Exit Pressure in kPa\n",
+ "Ty = 1.320*Tx\t\t\t#Exit temperature in K\n",
+ "Poy = 0.9298*Pox\t\t#Exit pressure in kPa\n",
+ "\n",
+ "#Results:\n",
+ "print 'Exit pressure: ',round(Py,1),\"Kpa\"\n",
+ "print 'Exit temperature: ',round(Ty,1),\"K\"\n",
+ "print 'Exit stagnation pressure: ',round(Poy,1),\"Kpa\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}