diff options
author | Trupti Kini | 2016-06-08 23:30:31 +0600 |
---|---|---|
committer | Trupti Kini | 2016-06-08 23:30:31 +0600 |
commit | a3871e3e452c3fe7206fd396ee6e3b2cc75cd891 (patch) | |
tree | ec9f04c9b8eb9a7d384c5be31d1447999976ef08 /Introduction_to_flight_by_J_D_Anderson/Appendix_E.ipynb | |
parent | bad3642fdd468faa5da238beef2f5fb18d3ac388 (diff) | |
download | Python-Textbook-Companions-a3871e3e452c3fe7206fd396ee6e3b2cc75cd891.tar.gz Python-Textbook-Companions-a3871e3e452c3fe7206fd396ee6e3b2cc75cd891.tar.bz2 Python-Textbook-Companions-a3871e3e452c3fe7206fd396ee6e3b2cc75cd891.zip |
Added(A)/Deleted(D) following books
A Energy_Management_by_W._R._Murphy_and_G._A._Mckay/Chapter1.ipynb
A Energy_Management_by_W._R._Murphy_and_G._A._Mckay/Chapter10.ipynb
A Energy_Management_by_W._R._Murphy_and_G._A._Mckay/Chapter11.ipynb
A Energy_Management_by_W._R._Murphy_and_G._A._Mckay/Chapter2.ipynb
A Energy_Management_by_W._R._Murphy_and_G._A._Mckay/Chapter3.ipynb
A Energy_Management_by_W._R._Murphy_and_G._A._Mckay/Chapter4.ipynb
A Energy_Management_by_W._R._Murphy_and_G._A._Mckay/Chapter5.ipynb
A Energy_Management_by_W._R._Murphy_and_G._A._Mckay/Chapter6.ipynb
A Energy_Management_by_W._R._Murphy_and_G._A._Mckay/Chapter7.ipynb
A Energy_Management_by_W._R._Murphy_and_G._A._Mckay/Chapter8.ipynb
A Energy_Management_by_W._R._Murphy_and_G._A._Mckay/Chapter9.ipynb
A Energy_Management_by_W._R._Murphy_and_G._A._Mckay/screenshots/Chapter1.png
A Energy_Management_by_W._R._Murphy_and_G._A._Mckay/screenshots/Chapter3.png
A Energy_Management_by_W._R._Murphy_and_G._A._Mckay/screenshots/Chapter9.png
A Introduction_to_flight_by_J_D_Anderson/11._Hypersonic_vehicles.ipynb
A Introduction_to_flight_by_J_D_Anderson/2._Fundamental_Thoughts.ipynb
A Introduction_to_flight_by_J_D_Anderson/3._The_Standard_Atmosphere.ipynb
A Introduction_to_flight_by_J_D_Anderson/4._Aerodynamics.ipynb
A Introduction_to_flight_by_J_D_Anderson/5._Airfoils,_Wings_and_Other_Aerodynamic_shapes.ipynb
A Introduction_to_flight_by_J_D_Anderson/6._Elements_of_Airplane_Performance.ipynb
A Introduction_to_flight_by_J_D_Anderson/7._Principles_of_Stability_and_Control.ipynb
A Introduction_to_flight_by_J_D_Anderson/8._Space_Flight_(Astronautics).ipynb
A Introduction_to_flight_by_J_D_Anderson/9._Propulsion.ipynb
A Introduction_to_flight_by_J_D_Anderson/Appendix_A.ipynb
A Introduction_to_flight_by_J_D_Anderson/Appendix_B.ipynb
A Introduction_to_flight_by_J_D_Anderson/Appendix_C.ipynb
A Introduction_to_flight_by_J_D_Anderson/Appendix_D.ipynb
A Introduction_to_flight_by_J_D_Anderson/Appendix_E.ipynb
A Introduction_to_flight_by_J_D_Anderson/README.txt
A Introduction_to_flight_by_J_D_Anderson/screenshots/1.png
A Introduction_to_flight_by_J_D_Anderson/screenshots/2.png
A Introduction_to_flight_by_J_D_Anderson/screenshots/3.png
A Modern_Compressible_Flow_with_historical_perspective_by_John_D_Anderson/1._Compressible_Flow-Some_History_and_Introductory_Thoughts.ipynb
A Modern_Compressible_Flow_with_historical_perspective_by_John_D_Anderson/3._One_Dimentional_Flow.ipynb
A Modern_Compressible_Flow_with_historical_perspective_by_John_D_Anderson/4._Oblique_Shock_and_Expansion_Waves.ipynb
A Modern_Compressible_Flow_with_historical_perspective_by_John_D_Anderson/5._Quasi-One-Dimensional_Flow.ipynb
A Modern_Compressible_Flow_with_historical_perspective_by_John_D_Anderson/README.txt
A Modern_Compressible_Flow_with_historical_perspective_by_John_D_Anderson/screenshots/1.png
A Modern_Compressible_Flow_with_historical_perspective_by_John_D_Anderson/screenshots/2.png
A Modern_Compressible_Flow_with_historical_perspective_by_John_D_Anderson/screenshots/3.png
Diffstat (limited to 'Introduction_to_flight_by_J_D_Anderson/Appendix_E.ipynb')
-rw-r--r-- | Introduction_to_flight_by_J_D_Anderson/Appendix_E.ipynb | 421 |
1 files changed, 421 insertions, 0 deletions
diff --git a/Introduction_to_flight_by_J_D_Anderson/Appendix_E.ipynb b/Introduction_to_flight_by_J_D_Anderson/Appendix_E.ipynb new file mode 100644 index 00000000..f6035999 --- /dev/null +++ b/Introduction_to_flight_by_J_D_Anderson/Appendix_E.ipynb @@ -0,0 +1,421 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Appendix E" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Stagnation Temperature: 319.9 K\n", + "Stagnation Pressure: 187.9 KPa\n" + ] + } + ], + "source": [ + "# -*- coding: utf8 -*-\n", + "from __future__ import division\n", + "#Example: 17.1\n", + "'''Air flows in a duct at a pressure of 150 kPa with a velocity of 200 m/s. The temperature\n", + "of the air is 300 K. Determine the isentropic stagnation pressure and temperature.'''\n", + "\n", + "#Variable Declaration: \n", + "T = 300\t\t\t\t\t#Temperature of air in K\n", + "P = 150\t\t\t\t\t#Pressure of air in kPa\n", + "v = 200\t\t\t\t\t#velocity of air flow n m/s\n", + "Cp = 1.004\t\t\t\t#specific heat at constant pressure in kJ/kg\n", + "\n", + "#Calculations:\n", + "To = v**2/(2000*Cp)+T\t#stagnation temperature in K\n", + "k = 1.4\t\t \t\t#constant\n", + "Po = P*(To/T)**(k/(k-1))#stagnation pressure in kPa\n", + "\n", + "#Results:\n", + "print 'Stagnation Temperature: ',round(To,1),'K'\n", + "print 'Stagnation Pressure:',round(Po,1),'KPa'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Thrust acting in x direction: 10.68 KN\n" + ] + } + ], + "source": [ + "# -*- coding: utf8 -*-\n", + "from __future__ import division\n", + "#Example: 17.3\n", + "'''A jet engine is being tested on a test stand (Fig. 17.5). The inlet area to the compressor is\n", + "0.2 m2, and air enters the compressor at 95 kPa, 100 m/s. The pressure of the atmosphere\n", + "is 100 kPa. The exit area of the engine is 0.1 m2, and the products of combustion leave the\n", + "exit plane at a pressure of 125 kPa and a velocity of 450 m/s. The air–fuel ratio is 50 kg\n", + "air/kg fuel, and the fuel enters with a low velocity. The rate of air flow entering the engine\n", + "is 20 kg/s. Determine the thrust, Rx, on the engine.'''\n", + "\n", + "#Keys\n", + "#i = inlet\n", + "#e = exit\n", + "\n", + "#Variable Declaration: \n", + "#using momentum equation on control surface in x direction\n", + "me = 20.4\t\t#mass exiting in kg\n", + "mi = 20\t\t\t#mass entering in kg\n", + "ve = 450\t\t#exit velocity in m/s\n", + "vi = 100\t\t#exit velocity in m/s\n", + "Pi = 95\t\t\t#Pressure at inlet in kPa\n", + "Pe = 125\t\t#Pressure at exit in kPa\n", + "Po = 100\t\t#surrounding pressure in kPa\n", + "Ai = 0.2\t\t#inlet area in m**2\n", + "Ae = 0.1\t\t#exit area in m**2\n", + "\n", + "#Calculations:\n", + "Rx = (me*ve-mi*vi)/1000-(Pi-Po)*Ai+(Pe-Po)*Ae\t\t#thrust in x direction in kN\n", + "\n", + "#Results:\n", + "print 'Thrust acting in x direction: ',Rx,'KN' " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Speed of sound at 300K: 347.2 m/s\n", + "Speed of sound at 1000K: 633.9 m/s\n" + ] + } + ], + "source": [ + "# -*- coding: utf8 -*-\n", + "from __future__ import division\n", + "from math import sqrt\n", + "#Example: 17.5\n", + "'''Determine the velocity of sound in air at 300 K and at 1000 K.'''\n", + "\n", + "#Variable Declaration: \n", + "k = 1.4\t\t\t#constant\n", + "R = 0.287\t\t#gas constant\n", + "#At 300K\n", + "T1 = 300\t\t#K\n", + "T2 = 1000\t\t#K\n", + "\n", + "#Calculations:\n", + "c1 = sqrt(k*R*T1*1000)\n", + "c2 = sqrt(k*R*T2*1000)\n", + "\n", + "#Results:\n", + "print 'Speed of sound at 300K: ',round(c1,1),'m/s'\n", + "print 'Speed of sound at 1000K: ',round(c2,1),'m/s'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mass flow rate at the throat section: 1.0646 Kg/s\n", + "Mass flow rate at the exit section: 0.8711 Kg/s\n" + ] + } + ], + "source": [ + "# -*- coding: utf8 -*-\n", + "from __future__ import division\n", + "from math import sqrt\n", + "#Example: 17.6\n", + "'''A convergent nozzle has an exit area of 500 mm2. Air enters the nozzle with a stagnation\n", + "pressure of 1000 kPa and a stagnation temperature of 360 K. Determine the mass rate of\n", + "flow for back pressures of 800 kPa, 528 kPa, and 300 kPa, assuming isentropic flow'''\n", + "\n", + "#Variable Declaration: \n", + "k = 1.4\t\t\t\t#constant\n", + "R = 0.287\t\t\t#gas constant\n", + "To = 360\t\t\t#stagnation Temperature in K \n", + "P = 528\t\t\t\t#stagnation pressure in kPa\n", + "A = 500*10**-6\t\t#area in m**2\n", + "Me = 0.573\t\t\t#Mach number\n", + "Pe = 800\t\t\t#exit pressure in kPa\n", + "\n", + "#Calculations:\n", + "T = To*0.8333\t\t#Temperature of air in K, 0.8333 stagnation ratio from table\n", + "v = sqrt(k*R*T*1000)#velocity in m/s\n", + "d = P/(R*T)\t\t\t#stagnation density in kg/m**3\n", + "ms = d*A*v\t\t\t#mass flow rate in kg/s\n", + "Te = To*0.9381\t\t#exit temperature in K, ratio from table\n", + "ce = sqrt(k*R*Te*1000)#exit velocity of sound in m/s\n", + "ve = Me*ce\n", + "de = Pe/R/Te\n", + "mse = de*A*ve\n", + "\n", + "#Results:\n", + "print 'Mass flow rate at the throat section: ',round(ms,4),'Kg/s'\n", + "print 'Mass flow rate at the exit section: ',round(mse,4),'Kg/s'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "__When diverging section act as a nozzle__\n", + "Exit pressure: 93.9 Kpa\n", + "Exit Temperature: 183.2 K\n", + "Exit velocity: 596.1 m/s\n", + "__When diverging section act as a diffuser__\n", + "Exit pressure: 93.6 Kpa\n", + "Exit Temperature: 353.2 K\n", + "Exit velocity: 116.0 m/s\n" + ] + } + ], + "source": [ + "# -*- coding: utf8 -*-\n", + "from __future__ import division\n", + "from math import sqrt\n", + "#Example: 17.7\n", + "'''A converging-diverging nozzle has an exit area to throat area ratio of 2. Air enters this\n", + "nozzle with a stagnation pressure of 1000 kPa and a stagnation temperature of 360 K. The\n", + "throat area is 500 mm2. Determine the mass rate of flow, exit pressure, exit temperature,\n", + "exit Mach number, and exit velocity for the following conditions:\n", + "a. Sonic velocity at the throat, diverging section acting as a nozzle.\n", + "(Corresponds to point d in Fig. 17.13.)\n", + "b. Sonic velocity at the throat, diverging section acting as a diffuser.\n", + "(Corresponds to point c in Fig. 17.13.)'''\n", + "\n", + "#Variable Declaration: \n", + "Po = 1000\t\t \t#stagnation pressure in kPa\n", + "To = 360\t\t \t#stagnation temperature in K\n", + "#when diverging section acting as nozzle\n", + "Pe1 = 0.0939*Po\t\t\t#exit pressure of air in kPa\n", + "Te1 = 0.5089*To\t\t\t#exit temperature in K\n", + "k = 1.4\t\t \t\t#constant\n", + "R = 0.287\t\t \t#gas constant for air\n", + "Me = 2.197\t\t \t#mach number from table\n", + "#when diverging section act as diffuser\n", + "Me2 = 0.308\n", + "Pe2 = 0.0936*Po\t\t#exit pressure of air in kPa\n", + "Te2 = 0.9812*To\t\t#exit temperature in K\n", + "\n", + "#Calculations:\n", + "ce = sqrt(k*R*Te1*1000)\t#velocity of sound in exit section in m/s\n", + "ve1 = Me*ce\t\t\t\t#velocity of air at exit section in m/s\n", + "ce = sqrt(k*R*Te2*1000)\t\t#velocity of sound in exit section in m/s\n", + "ve2 = Me2*ce\n", + "\n", + "#Results:\n", + "print '__When diverging section act as a nozzle__'\n", + "print 'Exit pressure: ',round(Pe1,1),\"Kpa\"\n", + "print 'Exit Temperature: ',round(Te1,1),\"K\"\n", + "print 'Exit velocity: ',round(ve1,1),\"m/s\"\n", + "print '__When diverging section act as a diffuser__'\n", + "print 'Exit pressure: ',round(Pe2,1),\"Kpa\"\n", + "print 'Exit Temperature: ',round(Te2,1),\"K\"\n", + "print 'Exit velocity: ',round(ve2,1),\"m/s\"\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Static Pressure in downstream: 512.7 Kpa\n", + "Static Temperature in downstream: 339.7 K\n", + "Stagnation Pressure in downstream: 630.0 Kpa\n" + ] + } + ], + "source": [ + "# -*- coding: utf8 -*-\n", + "from __future__ import division\n", + "#Example: 17.8\n", + "'''Consider the convergent-divergent nozzle of Example 17.7, in which the diverging section\n", + "acts as a supersonic nozzle (Fig. 17.16). Assume that a normal shock stands in the exit\n", + "plane of the nozzle. Determine the static pressure and temperature and the stagnation\n", + "pressure just downstream of the normal shock.'''\n", + "\n", + "#Variable Declaration:\n", + "Px = 93.9 \t\t\t#Static Pressure in Upstream(Kpa)\n", + "Tx = 183.2 \t\t\t#Static Temperature in Upstream(K)\n", + "Pox = 1000\t\t\t#Total Pressure in Upstream(Kpa)\n", + "Mx = 2.197\t\t\t#X-direction Mach No (Using table A.13)\n", + "My = 0.547\t\t\t#Y-direction Mach No (Using table A.13)\n", + "rP = 5.46\t\t\t#Py/Px (Using table A.13)\n", + "rT = 1.854\t\t\t#Ty/Tx (Using table A.13)\n", + "rPo = 0.63\t\t\t#Poy/Pox (Using table A.13)\n", + "\n", + "#Calculations:\n", + "Py = rP*Px\n", + "Ty = rT*Tx\n", + "Poy = rPo*Pox\n", + "\n", + "#Results:\n", + "print 'Static Pressure in downstream: ',round(Py,1),'Kpa'\n", + "print 'Static Temperature in downstream: ',round(Ty,1),'K'\n", + "print 'Stagnation Pressure in downstream: ',round(Poy,1),'Kpa'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Exit pressure: 669.6 Kpa\n", + "Exit temperature: 327.8 K\n", + "Exit stagnation pressure: 929.8 Kpa\n" + ] + } + ], + "source": [ + "# -*- coding: utf8 -*-\n", + "from __future__ import division\n", + "#Example: 17.9\n", + "'''Consider the convergent-divergent nozzle of Examples 17.7 and 17.8. Assume that there\n", + "is a normal shock wave standing at the point where M = 1.5. Determine the exit-plane\n", + "pressure, temperature, and Mach number. Assume isentropic flow except for the normal\n", + "shock (Fig. 17.18).'''\n", + "\n", + "#Key\n", + "#x = inlet\n", + "#y = exit\n", + "\n", + "#Variable Declaration: \n", + "Mx = 1.5\t\t\t\t#mach number for inlet\n", + "My = 0.7011\t\t\t\t#mach number for exit\n", + "Px = 272.4\t\t\t\t#inlet pressure in kPa\n", + "Tx = 248.3\t\t\t\t#inlet temperature in K\n", + "Pox = 1000\t\t\t\t#stagnation pressure for inlet\n", + "\n", + "#Calculations:\n", + "Py = 2.4583*Px\t\t\t#Exit Pressure in kPa\n", + "Ty = 1.320*Tx\t\t\t#Exit temperature in K\n", + "Poy = 0.9298*Pox\t\t#Exit pressure in kPa\n", + "\n", + "#Results:\n", + "print 'Exit pressure: ',round(Py,1),\"Kpa\"\n", + "print 'Exit temperature: ',round(Ty,1),\"K\"\n", + "print 'Exit stagnation pressure: ',round(Poy,1),\"Kpa\"" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.6" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |