summaryrefslogtreecommitdiff
path: root/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter7.ipynb
diff options
context:
space:
mode:
authorTrupti Kini2017-03-17 23:30:25 +0600
committerTrupti Kini2017-03-17 23:30:25 +0600
commita297dabc1ff4a53da82155d9d8a8df09c5d709df (patch)
treefcf7b6e3e8a2c9e88ebbd5d1e49066d93690372b /Introduction_to_Heat_Transfer_by_S._K._Som/Chapter7.ipynb
parentc4a28d22e482e55d556f090ed77edd592dbdb725 (diff)
downloadPython-Textbook-Companions-a297dabc1ff4a53da82155d9d8a8df09c5d709df.tar.gz
Python-Textbook-Companions-a297dabc1ff4a53da82155d9d8a8df09c5d709df.tar.bz2
Python-Textbook-Companions-a297dabc1ff4a53da82155d9d8a8df09c5d709df.zip
Added(A)/Deleted(D) following books
M Introduction_to_Heat_Transfer_by_S._K._Som/Chapter1.ipynb M Introduction_to_Heat_Transfer_by_S._K._Som/Chapter10.ipynb M Introduction_to_Heat_Transfer_by_S._K._Som/Chapter11.ipynb M Introduction_to_Heat_Transfer_by_S._K._Som/Chapter2.ipynb M Introduction_to_Heat_Transfer_by_S._K._Som/Chapter3.ipynb M Introduction_to_Heat_Transfer_by_S._K._Som/Chapter4.ipynb M Introduction_to_Heat_Transfer_by_S._K._Som/Chapter5.ipynb M Introduction_to_Heat_Transfer_by_S._K._Som/Chapter6.ipynb M Introduction_to_Heat_Transfer_by_S._K._Som/Chapter7.ipynb M Introduction_to_Heat_Transfer_by_S._K._Som/Chapter8.ipynb M Introduction_to_Heat_Transfer_by_S._K._Som/Chapter9.ipynb M Introduction_to_Heat_Transfer_by_S._K._Som/chapter12.ipynb
Diffstat (limited to 'Introduction_to_Heat_Transfer_by_S._K._Som/Chapter7.ipynb')
-rw-r--r--Introduction_to_Heat_Transfer_by_S._K._Som/Chapter7.ipynb242
1 files changed, 19 insertions, 223 deletions
diff --git a/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter7.ipynb b/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter7.ipynb
index 85b7eec5..bffd25f6 100644
--- a/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter7.ipynb
+++ b/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter7.ipynb
@@ -42,7 +42,6 @@
}
],
"source": [
- " \n",
"import math \n",
" \n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 7, Example 1\"\n",
@@ -115,11 +114,7 @@
}
],
"source": [
- " \n",
- " \n",
- " \n",
- " \n",
- " import math\n",
+ "import math\n",
" \n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 7, Example 2\"\n",
"#Atmospheric air at temprature,Tinf=300K and with a free stream Velocity Uinf=30m/s flows over a flat plate parallel to a side of length(L)=2m.\n",
@@ -161,24 +156,7 @@
"A=L*B;\n",
"print\"The rate of heat transfer per unit width in W is\"\n",
"Q=hbarL*A*(Tw-Tinf)\n",
- "print\"Q=\",Q\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n"
+ "print\"Q=\",Q"
]
},
{
@@ -218,11 +196,7 @@
}
],
"source": [
- " \n",
- " \n",
- " \n",
- " \n",
- " import math\n",
+ "import math\n",
" \n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 7, Example 3\"\n",
"#Air at a pressure of 101kPa and temprature,Tinf=20°C flows with a velocity(Uinf) of 5m/s over a flat plate whose temprature is kept constant at Tw=140°C.\n",
@@ -272,33 +246,7 @@
"#Q is the rate of heat transfer\n",
"print\"The rate of heat transfer per unit width in W is\"\n",
"Q=h*A*(Tw-Tinf)\n",
- "print\"Q=\",Q\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n"
+ "print\"Q=\",Q"
]
},
{
@@ -340,11 +288,7 @@
}
],
"source": [
- " \n",
- " \n",
- " \n",
- " \n",
- " import math\n",
+ "import math\n",
" \n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 7, Example 4\"\n",
"#Castor oil at temprature,Tinf=36°C flows over a heated plate of length,L=6m and breadth,B=1m at velocity,Uinf=0.06m/s\n",
@@ -392,29 +336,7 @@
"A=L*B;\n",
"print\"(c)The rate of heat transfer in W is\"\n",
"Q=hbarL*A*(Tw-Tinf)\n",
- "print\"Q=\",Q\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n"
+ "print\"Q=\",Q"
]
},
{
@@ -447,11 +369,7 @@
}
],
"source": [
- " \n",
- " \n",
- " \n",
- " \n",
- " import math\n",
+ "import math\n",
" \n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 7, Example 5\"\n",
"#A flat plate of width B=1m is maintained at a uniform surface temprtaure(Tw)=225°C\n",
@@ -487,24 +405,7 @@
"#If qm be the power generation in W/m**2 within the module ,we can write from energy balance qm*(t/0.1000)*(l/0.1000)*(B)=hbarL*(t/0.1000)*(B)*(Tw-Tinf)\n",
"print\"The required power generation in W/m**3 is\"\n",
"qm=(hL*(l/0.1000)*(B)*(Tw-Tinf))/((t/0.1000)*(l/0.1000)*(B))\n",
- "print\"qm=\",qm\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n"
+ "print\"qm=\",qm"
]
},
{
@@ -540,11 +441,7 @@
}
],
"source": [
- " \n",
- " \n",
- " \n",
- " \n",
- " import math\n",
+ "import math\n",
"\n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 7, Example 6\"\n",
"#An aircraft is moving at a velocity of Uinf=150m/s in air at an altitude where the pressure is 0.7bar and the temprature is Tinf=-5°C.\n",
@@ -579,21 +476,7 @@
"#Therefore we can write Surface temprature of wing, Tw=Tinf+(Qr/(2*hbarL))\n",
"print\"Surface temprature of wing in kelvin is\"\n",
"Tw=(273+Tinf)+(Qr/(2*hbarL))\n",
- "print\"Tw=\",Tw\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n"
+ "print\"Tw=\",Tw"
]
},
{
@@ -633,11 +516,7 @@
}
],
"source": [
- " \n",
- " \n",
- " \n",
- " \n",
- " import math\n",
+ "import math\n",
" \n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 7, Example 7\"\n",
"#A fine wire having a diameter(D)=0.04mm is placed in an air stream at temprature,Tinf=25°C having a flow velocity of Uinf=60m/s perpendicular to wire.\n",
@@ -679,32 +558,7 @@
"#Heat transfer per unit length(qL) is given by pi*D*hbar*(Tw-Tinf)\n",
"print\"Heat transfer per unit length in W/m is\"\n",
"qL=math.pi*(D*10**-3)*hbar*(Tw-Tinf)\n",
- "print\"qL=\",qL\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n"
+ "print\"qL=\",qL"
]
},
{
@@ -742,11 +596,7 @@
}
],
"source": [
- " \n",
- " \n",
- " \n",
- " \n",
- " import math\n",
+ "import math\n",
"\n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 7, Example 8\"\n",
"#Mercury and a light oil flowing at Uinf=4mm/s in a smooth tube having diameter(D)=25mm at a bulk temprature of 80°C.\n",
@@ -783,24 +633,7 @@
"#Ltoil is the thermal entry length for oil\n",
"print\"The thermal entry length for oil in m is\"\n",
"Ltoil=0.05*Reoil*Proil*D\n",
- "print\"Ltoil=\",Ltoil\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n"
+ "print\"Ltoil=\",Ltoil"
]
},
{
@@ -840,11 +673,7 @@
}
],
"source": [
- " \n",
- " \n",
- " \n",
- " \n",
- " import math\n",
+ "import math\n",
" \n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 7, Example 9\"\n",
"#Air at one atmospheric pressure and temprature(Tbi=75°C) enters a tube of internal diameter(D)=4.0mm with average velocity(U)=2m/s\n",
@@ -895,21 +724,7 @@
"#Let Twe be the surface temprature at the exit plane.Then we can write hL*(Twe-Tbo)=qw\n",
"print\"The tube surface temprature at the exit plane in °C is \"\n",
"Twe=Tbo+(qw/hL)\n",
- "print\"Twe=\",Twe\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n"
+ "print\"Twe=\",Twe"
]
},
{
@@ -952,11 +767,7 @@
}
],
"source": [
- " \n",
- " \n",
- " \n",
- " \n",
- " import math\n",
+ "import math\n",
" \n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 7, Example 10\"\n",
"#Air at one atmospheric pressure and temprature(Tbi=75°C) enters a tube of internal diameter(D)=4.0mm with average velocity(U)=2m/s\n",
@@ -1011,18 +822,7 @@
"#Let Twe be the surface temprature at the exit plane.Then we can write hL*(Twe-Tbo)=qw\n",
"print\"The tube surface temprature at the exit plane in °C is \"\n",
"Twe=Tbo+(qw/hL)\n",
- "print\"Twe=\",Twe\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n"
+ "print\"Twe=\",Twe"
]
},
{
@@ -1067,11 +867,7 @@
}
],
"source": [
- " \n",
- " \n",
- " \n",
- " \n",
- " import math\n",
+ "import math\n",
" \n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 7, Example 11\"\n",
"#Liquid sulphur di oxide in a saturated state flows inside a L=5m long tube and D=25mm internal diameter with a mass flow rate(mdot) of 0.15 kg/s.\n",