diff options
author | Trupti Kini | 2017-03-17 23:30:25 +0600 |
---|---|---|
committer | Trupti Kini | 2017-03-17 23:30:25 +0600 |
commit | a297dabc1ff4a53da82155d9d8a8df09c5d709df (patch) | |
tree | fcf7b6e3e8a2c9e88ebbd5d1e49066d93690372b /Introduction_to_Heat_Transfer_by_S._K._Som/Chapter7.ipynb | |
parent | c4a28d22e482e55d556f090ed77edd592dbdb725 (diff) | |
download | Python-Textbook-Companions-a297dabc1ff4a53da82155d9d8a8df09c5d709df.tar.gz Python-Textbook-Companions-a297dabc1ff4a53da82155d9d8a8df09c5d709df.tar.bz2 Python-Textbook-Companions-a297dabc1ff4a53da82155d9d8a8df09c5d709df.zip |
Added(A)/Deleted(D) following books
M Introduction_to_Heat_Transfer_by_S._K._Som/Chapter1.ipynb
M Introduction_to_Heat_Transfer_by_S._K._Som/Chapter10.ipynb
M Introduction_to_Heat_Transfer_by_S._K._Som/Chapter11.ipynb
M Introduction_to_Heat_Transfer_by_S._K._Som/Chapter2.ipynb
M Introduction_to_Heat_Transfer_by_S._K._Som/Chapter3.ipynb
M Introduction_to_Heat_Transfer_by_S._K._Som/Chapter4.ipynb
M Introduction_to_Heat_Transfer_by_S._K._Som/Chapter5.ipynb
M Introduction_to_Heat_Transfer_by_S._K._Som/Chapter6.ipynb
M Introduction_to_Heat_Transfer_by_S._K._Som/Chapter7.ipynb
M Introduction_to_Heat_Transfer_by_S._K._Som/Chapter8.ipynb
M Introduction_to_Heat_Transfer_by_S._K._Som/Chapter9.ipynb
M Introduction_to_Heat_Transfer_by_S._K._Som/chapter12.ipynb
Diffstat (limited to 'Introduction_to_Heat_Transfer_by_S._K._Som/Chapter7.ipynb')
-rw-r--r-- | Introduction_to_Heat_Transfer_by_S._K._Som/Chapter7.ipynb | 242 |
1 files changed, 19 insertions, 223 deletions
diff --git a/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter7.ipynb b/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter7.ipynb index 85b7eec5..bffd25f6 100644 --- a/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter7.ipynb +++ b/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter7.ipynb @@ -42,7 +42,6 @@ } ], "source": [ - " \n", "import math \n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 7, Example 1\"\n", @@ -115,11 +114,7 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", - " import math\n", + "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 7, Example 2\"\n", "#Atmospheric air at temprature,Tinf=300K and with a free stream Velocity Uinf=30m/s flows over a flat plate parallel to a side of length(L)=2m.\n", @@ -161,24 +156,7 @@ "A=L*B;\n", "print\"The rate of heat transfer per unit width in W is\"\n", "Q=hbarL*A*(Tw-Tinf)\n", - "print\"Q=\",Q\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"Q=\",Q" ] }, { @@ -218,11 +196,7 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", - " import math\n", + "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 7, Example 3\"\n", "#Air at a pressure of 101kPa and temprature,Tinf=20°C flows with a velocity(Uinf) of 5m/s over a flat plate whose temprature is kept constant at Tw=140°C.\n", @@ -272,33 +246,7 @@ "#Q is the rate of heat transfer\n", "print\"The rate of heat transfer per unit width in W is\"\n", "Q=h*A*(Tw-Tinf)\n", - "print\"Q=\",Q\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"Q=\",Q" ] }, { @@ -340,11 +288,7 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", - " import math\n", + "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 7, Example 4\"\n", "#Castor oil at temprature,Tinf=36°C flows over a heated plate of length,L=6m and breadth,B=1m at velocity,Uinf=0.06m/s\n", @@ -392,29 +336,7 @@ "A=L*B;\n", "print\"(c)The rate of heat transfer in W is\"\n", "Q=hbarL*A*(Tw-Tinf)\n", - "print\"Q=\",Q\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"Q=\",Q" ] }, { @@ -447,11 +369,7 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", - " import math\n", + "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 7, Example 5\"\n", "#A flat plate of width B=1m is maintained at a uniform surface temprtaure(Tw)=225°C\n", @@ -487,24 +405,7 @@ "#If qm be the power generation in W/m**2 within the module ,we can write from energy balance qm*(t/0.1000)*(l/0.1000)*(B)=hbarL*(t/0.1000)*(B)*(Tw-Tinf)\n", "print\"The required power generation in W/m**3 is\"\n", "qm=(hL*(l/0.1000)*(B)*(Tw-Tinf))/((t/0.1000)*(l/0.1000)*(B))\n", - "print\"qm=\",qm\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"qm=\",qm" ] }, { @@ -540,11 +441,7 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", - " import math\n", + "import math\n", "\n", "print\"Introduction to heat transfer by S.K.Som, Chapter 7, Example 6\"\n", "#An aircraft is moving at a velocity of Uinf=150m/s in air at an altitude where the pressure is 0.7bar and the temprature is Tinf=-5°C.\n", @@ -579,21 +476,7 @@ "#Therefore we can write Surface temprature of wing, Tw=Tinf+(Qr/(2*hbarL))\n", "print\"Surface temprature of wing in kelvin is\"\n", "Tw=(273+Tinf)+(Qr/(2*hbarL))\n", - "print\"Tw=\",Tw\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"Tw=\",Tw" ] }, { @@ -633,11 +516,7 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", - " import math\n", + "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 7, Example 7\"\n", "#A fine wire having a diameter(D)=0.04mm is placed in an air stream at temprature,Tinf=25°C having a flow velocity of Uinf=60m/s perpendicular to wire.\n", @@ -679,32 +558,7 @@ "#Heat transfer per unit length(qL) is given by pi*D*hbar*(Tw-Tinf)\n", "print\"Heat transfer per unit length in W/m is\"\n", "qL=math.pi*(D*10**-3)*hbar*(Tw-Tinf)\n", - "print\"qL=\",qL\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"qL=\",qL" ] }, { @@ -742,11 +596,7 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", - " import math\n", + "import math\n", "\n", "print\"Introduction to heat transfer by S.K.Som, Chapter 7, Example 8\"\n", "#Mercury and a light oil flowing at Uinf=4mm/s in a smooth tube having diameter(D)=25mm at a bulk temprature of 80°C.\n", @@ -783,24 +633,7 @@ "#Ltoil is the thermal entry length for oil\n", "print\"The thermal entry length for oil in m is\"\n", "Ltoil=0.05*Reoil*Proil*D\n", - "print\"Ltoil=\",Ltoil\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"Ltoil=\",Ltoil" ] }, { @@ -840,11 +673,7 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", - " import math\n", + "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 7, Example 9\"\n", "#Air at one atmospheric pressure and temprature(Tbi=75°C) enters a tube of internal diameter(D)=4.0mm with average velocity(U)=2m/s\n", @@ -895,21 +724,7 @@ "#Let Twe be the surface temprature at the exit plane.Then we can write hL*(Twe-Tbo)=qw\n", "print\"The tube surface temprature at the exit plane in °C is \"\n", "Twe=Tbo+(qw/hL)\n", - "print\"Twe=\",Twe\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"Twe=\",Twe" ] }, { @@ -952,11 +767,7 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", - " import math\n", + "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 7, Example 10\"\n", "#Air at one atmospheric pressure and temprature(Tbi=75°C) enters a tube of internal diameter(D)=4.0mm with average velocity(U)=2m/s\n", @@ -1011,18 +822,7 @@ "#Let Twe be the surface temprature at the exit plane.Then we can write hL*(Twe-Tbo)=qw\n", "print\"The tube surface temprature at the exit plane in °C is \"\n", "Twe=Tbo+(qw/hL)\n", - "print\"Twe=\",Twe\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"Twe=\",Twe" ] }, { @@ -1067,11 +867,7 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", - " import math\n", + "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 7, Example 11\"\n", "#Liquid sulphur di oxide in a saturated state flows inside a L=5m long tube and D=25mm internal diameter with a mass flow rate(mdot) of 0.15 kg/s.\n", |