summaryrefslogtreecommitdiff
path: root/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter5.ipynb
diff options
context:
space:
mode:
authorTrupti Kini2017-01-10 23:30:44 +0600
committerTrupti Kini2017-01-10 23:30:44 +0600
commit882a643ff3426d410a375df9c18ae2f90e045728 (patch)
treefb761bc73ea8a25d2a7814334955872baaa616bd /Introduction_to_Heat_Transfer_by_S._K._Som/Chapter5.ipynb
parentf3b30a82c058596a9c865251f1cf22540efdf777 (diff)
downloadPython-Textbook-Companions-882a643ff3426d410a375df9c18ae2f90e045728.tar.gz
Python-Textbook-Companions-882a643ff3426d410a375df9c18ae2f90e045728.tar.bz2
Python-Textbook-Companions-882a643ff3426d410a375df9c18ae2f90e045728.zip
Added(A)/Deleted(D) following books
A Introduction_to_Heat_Transfer_by_S._K._Som/Chapter1.ipynb A Introduction_to_Heat_Transfer_by_S._K._Som/Chapter10.ipynb A Introduction_to_Heat_Transfer_by_S._K._Som/Chapter11.ipynb A Introduction_to_Heat_Transfer_by_S._K._Som/Chapter2.ipynb A Introduction_to_Heat_Transfer_by_S._K._Som/Chapter3.ipynb A Introduction_to_Heat_Transfer_by_S._K._Som/Chapter4.ipynb A Introduction_to_Heat_Transfer_by_S._K._Som/Chapter5.ipynb A Introduction_to_Heat_Transfer_by_S._K._Som/Chapter6.ipynb A Introduction_to_Heat_Transfer_by_S._K._Som/Chapter7.ipynb A Introduction_to_Heat_Transfer_by_S._K._Som/Chapter8.ipynb A Introduction_to_Heat_Transfer_by_S._K._Som/Chapter9.ipynb A Introduction_to_Heat_Transfer_by_S._K._Som/chapter12.ipynb A Introduction_to_Heat_Transfer_by_S._K._Som/screenshots/9.7.png A Introduction_to_Heat_Transfer_by_S._K._Som/screenshots/Ex10.7.png A Introduction_to_Heat_Transfer_by_S._K._Som/screenshots/Ex11.4.png A Thermodynamics,_Statistical_Thermodynamic_and_Kinetics_by_T._Engel_and_P._Reid/Chapter01.ipynb A Thermodynamics,_Statistical_Thermodynamic_and_Kinetics_by_T._Engel_and_P._Reid/Chapter02.ipynb A Thermodynamics,_Statistical_Thermodynamic_and_Kinetics_by_T._Engel_and_P._Reid/Chapter03.ipynb A Thermodynamics,_Statistical_Thermodynamic_and_Kinetics_by_T._Engel_and_P._Reid/Chapter04.ipynb A Thermodynamics,_Statistical_Thermodynamic_and_Kinetics_by_T._Engel_and_P._Reid/Chapter05.ipynb A Thermodynamics,_Statistical_Thermodynamic_and_Kinetics_by_T._Engel_and_P._Reid/Chapter06.ipynb A Thermodynamics,_Statistical_Thermodynamic_and_Kinetics_by_T._Engel_and_P._Reid/Chapter07.ipynb A Thermodynamics,_Statistical_Thermodynamic_and_Kinetics_by_T._Engel_and_P._Reid/Chapter08.ipynb A Thermodynamics,_Statistical_Thermodynamic_and_Kinetics_by_T._Engel_and_P._Reid/Chapter09.ipynb A Thermodynamics,_Statistical_Thermodynamic_and_Kinetics_by_T._Engel_and_P._Reid/Chapter10.ipynb A Thermodynamics,_Statistical_Thermodynamic_and_Kinetics_by_T._Engel_and_P._Reid/Chapter11.ipynb A Thermodynamics,_Statistical_Thermodynamic_and_Kinetics_by_T._Engel_and_P._Reid/Chapter12.ipynb A Thermodynamics,_Statistical_Thermodynamic_and_Kinetics_by_T._Engel_and_P._Reid/Chapter13.ipynb A Thermodynamics,_Statistical_Thermodynamic_and_Kinetics_by_T._Engel_and_P._Reid/Chapter14.ipynb A Thermodynamics,_Statistical_Thermodynamic_and_Kinetics_by_T._Engel_and_P._Reid/Chapter15.ipynb A Thermodynamics,_Statistical_Thermodynamic_and_Kinetics_by_T._Engel_and_P._Reid/Chapter16.ipynb A Thermodynamics,_Statistical_Thermodynamic_and_Kinetics_by_T._Engel_and_P._Reid/Chapter17.ipynb A Thermodynamics,_Statistical_Thermodynamic_and_Kinetics_by_T._Engel_and_P._Reid/Chapter18.ipynb A Thermodynamics,_Statistical_Thermodynamic_and_Kinetics_by_T._Engel_and_P._Reid/Chapter19.ipynb A Thermodynamics,_Statistical_Thermodynamic_and_Kinetics_by_T._Engel_and_P._Reid/screenshots/15.8.png A Thermodynamics,_Statistical_Thermodynamic_and_Kinetics_by_T._Engel_and_P._Reid/screenshots/4.3.png A Thermodynamics,_Statistical_Thermodynamic_and_Kinetics_by_T._Engel_and_P._Reid/screenshots/9.6.png A Thermodynamics,_Statistical_Thermodynamics_and_Kinetics_by_T._Engel_and_P._Reid/Chapte_5AfCLKz.ipynb A Thermodynamics,_Statistical_Thermodynamics_and_Kinetics_by_T._Engel_and_P._Reid/Chapte_9c27zxN.ipynb A Thermodynamics,_Statistical_Thermodynamics_and_Kinetics_by_T._Engel_and_P._Reid/Chapte_9cObgYn.ipynb A Thermodynamics,_Statistical_Thermodynamics_and_Kinetics_by_T._Engel_and_P._Reid/Chapte_9ui5Wjm.ipynb A Thermodynamics,_Statistical_Thermodynamics_and_Kinetics_by_T._Engel_and_P._Reid/Chapte_JaqgDu7.ipynb A Thermodynamics,_Statistical_Thermodynamics_and_Kinetics_by_T._Engel_and_P._Reid/Chapte_MnetfXH.ipynb A Thermodynamics,_Statistical_Thermodynamics_and_Kinetics_by_T._Engel_and_P._Reid/Chapte_N5LVZdn.ipynb A Thermodynamics,_Statistical_Thermodynamics_and_Kinetics_by_T._Engel_and_P._Reid/Chapte_NEmIMzZ.ipynb A Thermodynamics,_Statistical_Thermodynamics_and_Kinetics_by_T._Engel_and_P._Reid/Chapte_NaQvqio.ipynb A Thermodynamics,_Statistical_Thermodynamics_and_Kinetics_by_T._Engel_and_P._Reid/Chapte_Npcu1fX.ipynb A Thermodynamics,_Statistical_Thermodynamics_and_Kinetics_by_T._Engel_and_P._Reid/Chapte_SSPoRzJ.ipynb A Thermodynamics,_Statistical_Thermodynamics_and_Kinetics_by_T._Engel_and_P._Reid/Chapte_WJvqX73.ipynb A Thermodynamics,_Statistical_Thermodynamics_and_Kinetics_by_T._Engel_and_P._Reid/Chapte_cyWVjGT.ipynb A Thermodynamics,_Statistical_Thermodynamics_and_Kinetics_by_T._Engel_and_P._Reid/Chapte_eAEoe4s.ipynb A Thermodynamics,_Statistical_Thermodynamics_and_Kinetics_by_T._Engel_and_P._Reid/Chapte_ezyRCsC.ipynb A Thermodynamics,_Statistical_Thermodynamics_and_Kinetics_by_T._Engel_and_P._Reid/Chapte_jHUJFvU.ipynb A Thermodynamics,_Statistical_Thermodynamics_and_Kinetics_by_T._Engel_and_P._Reid/Chapte_rQOLXRQ.ipynb A Thermodynamics,_Statistical_Thermodynamics_and_Kinetics_by_T._Engel_and_P._Reid/Chapte_vVWK1Pz.ipynb A Thermodynamics,_Statistical_Thermodynamics_and_Kinetics_by_T._Engel_and_P._Reid/Chapte_ys4AGAJ.ipynb
Diffstat (limited to 'Introduction_to_Heat_Transfer_by_S._K._Som/Chapter5.ipynb')
-rw-r--r--Introduction_to_Heat_Transfer_by_S._K._Som/Chapter5.ipynb450
1 files changed, 450 insertions, 0 deletions
diff --git a/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter5.ipynb b/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter5.ipynb
new file mode 100644
index 00000000..d3fc7380
--- /dev/null
+++ b/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter5.ipynb
@@ -0,0 +1,450 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "# Chapter 5:Convection"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex5.3:pg-206"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Introduction to heat transfer by S.K.Som, Chapter 5, Example 3\n",
+ "Reynolds number is\n",
+ "ReL= 55263.1578947\n",
+ "The average heat transfer coefficient over a length(L)= 1m ,in W/m**2 is\n",
+ "hbarL= 4.16\n",
+ "The rate of heat transfer in W/m of width is\n",
+ "Q= 332.8\n"
+ ]
+ }
+ ],
+ "source": [
+ " \n",
+ "import math \n",
+ "from scipy.integrate import quad\n",
+ " \n",
+ "print\"Introduction to heat transfer by S.K.Som, Chapter 5, Example 3\"\n",
+ "#Air at temprature (T1=20°C) and 1 atmospheric pressure flows over a flat plate with a free stream velocity(Uinf) of 1m/s.\n",
+ "Uinf=1;\n",
+ "T1=20;\n",
+ "#The length of plate is 1m and is heated over its entire length to a constant temprature of T2=100°C.\n",
+ "T2=100;\n",
+ "#For air at 20°C(The mean temprature of 100°C and 20°C),viscosity(mu=1.9*10**-5kg/(m*s)),density(rho=1.05kg/m**3),conductivity(k=0.03W/(m*K)),specific heat(cp=1.007kJ/(kg*K))\n",
+ "#Prandtl number is Pr=0.7\n",
+ "mu=1.9*10**-5;\n",
+ "rho=1.05;\n",
+ "k=0.03;\n",
+ "cp=1.007;\n",
+ "Pr=0.7;\n",
+ "#For laminar flow over a plate Nusselt number is Nux=0.332*Rex**0.5*Pr**(1/3)\n",
+ "#The boundary layer flow over a flat plate will be laminar if Reynolds number is Rex=(rho*Uinf*x)/mu<5*10**5\n",
+ "#First of all we have to check whether the flow is laminar or not.\n",
+ "#Let us check at x=1m\n",
+ "x=1.0;\n",
+ "print\"Reynolds number is\"\n",
+ "ReL=(rho*Uinf*x)/mu\n",
+ "print\"ReL=\",ReL\n",
+ "#There fore the flow is laminar and we can use the relationships of Nux,\n",
+ "#Thus Rex=(1.05*1*x)/(1.9*10**-5)=0.5526*10**5*x\n",
+ "#Therefore we can write Nux=(hx*x/k)=0.332*(0.5526*10**5*x)**0.5*Pr**(1/3)....or hx=2.08*x**(-1/2) W/(m**2*°C)\n",
+ "#hbarL is the average heat transfer coefficient over a length(L)\n",
+ "print\"The average heat transfer coefficient over a length(L)= 1m ,in W/m**2 is\"\n",
+ "L=1;\n",
+ "hbarL=(1.0/L)*quad(lambda x:2.08*x**(-1/2.0),0,L)[0]\n",
+ "print\"hbarL=\",hbarL\n",
+ "#Q is the rate of heat transfer\n",
+ "print\"The rate of heat transfer in W/m of width is\"\n",
+ "Q=hbarL*L*(T2-T1)\n",
+ "print\"Q=\",Q\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex5.4:pg-207"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Introduction to heat transfer by S.K.Som, Chapter 5, Example 4\n",
+ "The local heat transfer coefficient hx is hx=27.063*U**0.85\n",
+ "The minimum flow velocity in m/s is\n",
+ "U= 15.4806813943\n"
+ ]
+ }
+ ],
+ "source": [
+ " \n",
+ "import math\n",
+ " \n",
+ "print\"Introduction to heat transfer by S.K.Som, Chapter 5, Example 4\"\n",
+ "#Air at atmospheric pressure is required to flow over a circuit board to cool the electronics element mounted on it.\n",
+ "#Chip has length (L)=3mm and width(B)=3mm located x=0.1m from the leading edge\n",
+ "L=0.003;#in metre\n",
+ "B=0.003;#in metre\n",
+ "x=0.1;\n",
+ "#The Nusselt no. is given by Nux=0.06*Rex**0.85*Pr**0.33\n",
+ "#The chip has to dissipate E=50mW of energy while its surface temprature has to be kept below temprature,Ts=45°C and free strem Temptrature of air is Tinf=25°C\n",
+ "Ts=45;\n",
+ "Tinf=25;\n",
+ "E=50*10**-3;#in watt\n",
+ "#For air ,density(rho=1.2kg/m**3),viscosity(mu=1.8*10**5kg/(m*s)),conductivity(k=0.03W/(m*K)) and specific heat(cp=1000J/(kg*K))\n",
+ "rho=1.2;\n",
+ "mu=1.8*10**5;\n",
+ "k=0.03;\n",
+ "cp=1000;\n",
+ "#Let the minimum flow velocity be U.\n",
+ "#The local heat transfer coefficient hx where the chip is mounted is determined as hx=(k/x)*0.06*(rho*U*x/mu)**0.85*(mu*cp/k)**0.33\n",
+ "print\"The local heat transfer coefficient hx is hx=27.063*U**0.85\"\n",
+ "#from an enrgy balance we can write as E=27.063*U**0.85*L*B*(Ts-Tinf)\n",
+ "print\"The minimum flow velocity in m/s is\"\n",
+ "U=(E/(27.063*L*B*(Ts-Tinf)))**(1/0.85)\n",
+ "print\"U=\",U\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex5.6:pg-208"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Introduction to heat transfer by S.K.Som, Chapter 5, Example 6\n",
+ "mdot= 0.0235619449019\n",
+ "(dTb/dx)in °C/m is\n",
+ "Y= 26.6666666667\n",
+ "Therefore Exit bulk mean temprature Tb2 in °C is\n",
+ "Tb2= 83.3333333333\n",
+ "Heat flux(hx) in W/(m**2*°C) is \n",
+ "hx= 100\n",
+ "Overall Nusselt number is \n",
+ "NuL= 87.7192982456\n"
+ ]
+ }
+ ],
+ "source": [
+ " \n",
+ "import math\n",
+ " \n",
+ " \n",
+ "print\"Introduction to heat transfer by S.K.Som, Chapter 5, Example 6\"\n",
+ "#Air at 1atm pressure and temprature(Tin)=30°C enters a tube of 25mm diameter(D) with a velocity(U) of 10m/s\n",
+ "D=0.025;#in metre\n",
+ "U=10;\n",
+ "Tin=30;\n",
+ "#Tube is heated so that a constant heat flux(q) of 2kW/m**2 is maintained at the wall whose temprature is deltaT=20°C above the bulk mean air temprature through the length of tube \n",
+ "#Let Tw-Tb=T\n",
+ "q=2000;\n",
+ "deltaT=20;\n",
+ "#The length(L)= 2m\n",
+ "L=2;\n",
+ "#For air density(rho=1.2kg/m**3),specific heat(cp=1000J/(kg*K))\n",
+ "rho=1.2;\n",
+ "cp=1000;\n",
+ "#From an energy balance of a control volume of air we get mdot*cp*(Tb+(dTb/dx)*deltax-Tb)=q*pi*D*deltax or (dTb/dx)=(q*pi*D)/(mdot*cp)\n",
+ "#mass flow rate=mdot\n",
+ "mdot=rho*math.pi*D**2*U;\n",
+ "print\"mdot=\",mdot\n",
+ "#let (dTb/dx)=Y\n",
+ "print\"(dTb/dx)in °C/m is\"\n",
+ "Y=(4*q*math.pi*D)/(mdot*cp)\n",
+ "print\"Y=\",Y\n",
+ "#Tb2 is Exit bulk mean temprature\n",
+ "print\"Therefore Exit bulk mean temprature Tb2 in °C is\"\n",
+ "Tb2=Tin+Y*2\n",
+ "print\"Tb2=\",Tb2\n",
+ "#Again we can write at any section of the tube hx*(Tw-Tb)=q or hx=q/(Tw-Tb)\n",
+ "#hx is heat flux\n",
+ "print\"Heat flux(hx) in W/(m**2*°C) is \"\n",
+ "hx=q/(deltaT)\n",
+ "print\"hx=\",hx\n",
+ "#Since Tw-Tb remains the same,The heat transfer coefficient at all sections are the same\n",
+ "#Now Overall Nusselt number,NuL=hx*D/k\n",
+ "#The thermal conductivity of air at mean temprature of (30+83.4)/2=56.7°C is k=0.0285 W/(m*K)\n",
+ "k=0.0285;\n",
+ "print\"Overall Nusselt number is \"\n",
+ "NuL=hx*D/k\n",
+ "print\"NuL=\",NuL\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex5.7:pg-210"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Introduction to heat transfer by S.K.Som, Chapter 5, Example 7\n",
+ "Beta(The volumetric coefficient of expansion in K**-1 is\n",
+ "Beta= 0\n",
+ "Grashoff number is\n",
+ "Gr= 0.0\n",
+ "The average nusselt number is\n",
+ "NuHbar= 0.13\n",
+ "Heat flux hbar in W/(m**2*°C)\n",
+ "hbar= 0.00169\n",
+ "The heat loss from the plate in W is\n",
+ "Q= 0.4394\n"
+ ]
+ }
+ ],
+ "source": [
+ " \n",
+ "import math\n",
+ " \n",
+ "print\"Introduction to heat transfer by S.K.Som, Chapter 5, Example 7\"\n",
+ "#A wall is exposed to nitrogen at one atmospheric pressure and temprature,Tinf=4°C.\n",
+ "Tinf=4;\n",
+ "#The wall is H=2.0m high and B=2.5m wide and is maintained at temprature,Ts=56°C\n",
+ "Ts=56;\n",
+ "H=2;\n",
+ "B=2.5;\n",
+ "A=H*B;#area is(A)\n",
+ "#The average nusselt number NuHbar over the height of the plate is given by NuHbar=0.13*(Gr*Pr)**(1/3)\n",
+ "#The properties of nitrogen at mean film temprature(Tf) is (56+4)/2=30°C are given as density(rho=1.142kg/m**3) ,conductivity(k=0.026W/(m*K)),\n",
+ "#kinematic viscosity(nu=15.630*10**-6 m**2/s) ,Prandtl number(Pr=0.713)\n",
+ "rho=1.142;\n",
+ "k=0.026;\n",
+ "nu=15.630*10**-6;\n",
+ "Pr=0.713;\n",
+ "Tf=30;\n",
+ "#We first have to detrmine the value of Grashoff number,Gr.In consideration of nitrogen as an ideal gas,we can write\n",
+ "#Beta(The volumetric coefficient of expansion)=1/T\n",
+ "print\"Beta(The volumetric coefficient of expansion in K**-1 is\"\n",
+ "Beta=1/(273+Tf)\n",
+ "print\"Beta=\",Beta\n",
+ "#Now Gr=(g*Beta*(Ts-Tinf)*H**3)/nu**2\n",
+ "g=9.81;#acceleration due to gravity\n",
+ "print\"Grashoff number is\"\n",
+ "Gr=(g*Beta*(Ts-Tinf)*H**3)/nu**2\n",
+ "print\"Gr=\",Gr\n",
+ "print\"The average nusselt number is\"\n",
+ "NuHbar=0.13*(Gr*Pr)**(1/3)\n",
+ "print\"NuHbar=\",NuHbar\n",
+ "#hbar is the heat flux\n",
+ "print\"Heat flux hbar in W/(m**2*°C)\"\n",
+ "hbar=NuHbar*k/H\n",
+ "print\"hbar=\",hbar\n",
+ "#Q is the heat loss from the plate\n",
+ "print\"The heat loss from the plate in W is\"\n",
+ "Q=hbar*A*(Ts-Tinf)\n",
+ "print\"Q=\",Q\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex5.8:pg-211"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Introduction to heat transfer by S.K.Som, Chapter 5, Example 8\n",
+ "The heat flux in W/(m**2*K) is\n",
+ "hbar 120.0\n",
+ "The heat loss from the wire is Q=hbar*pi*D*L*(Twire-Tair) in Watt\n",
+ "Q= 1.88495559215\n",
+ "The current in Ampere is\n",
+ "I= 17.7245385091\n"
+ ]
+ }
+ ],
+ "source": [
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " import math\n",
+ " \n",
+ "print\"Introduction to heat transfer by S.K.Som, Chapter 5, Example 8\"\n",
+ "#Eletric current passes through a L=0.5m long horizontal wire of D=0.1mm diameter.\n",
+ "L=0.5;\n",
+ "D=0.1*10**-3;\n",
+ "#The wire is to be maintained at temprature,Twire=400K and the air is at temprature,Tair=300K.\n",
+ "Twire=400;\n",
+ "Tair=300;\n",
+ "#The resistance of the wire(R) is 0.012ohm per meter.Nusselt number(NuL) over the length of wire to be 0.4.\n",
+ "NuL=0.4;\n",
+ "R=0.012;\n",
+ "#At mean temprature of Tf=350K, The thermal conductivity of air is k=0.03W/(m*K)\n",
+ "k=0.03;\n",
+ "#Nusselt number is NuL=hbar*D/k\n",
+ "#hbar is the heat flux\n",
+ "print\"The heat flux in W/(m**2*K) is\"\n",
+ "hbar=NuL*k/D\n",
+ "print\"hbar\",hbar\n",
+ "#Q is the heat loss from the wire\n",
+ "print\"The heat loss from the wire is Q=hbar*pi*D*L*(Twire-Tair) in Watt\"\n",
+ "Q=hbar*math.pi*D*L*(Twire-Tair)\n",
+ "print\"Q=\",Q\n",
+ "#At steady state the ohmic loss in the wire equals the heat loss from its surface Therfore I**2*R=Q\n",
+ "#I is the current flow.\n",
+ "print\"The current in Ampere is\"\n",
+ "I=(Q/(R*L))**0.5\n",
+ "print\"I=\",I\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}