diff options
author | Jovina Dsouza | 2014-06-18 12:43:07 +0530 |
---|---|---|
committer | Jovina Dsouza | 2014-06-18 12:43:07 +0530 |
commit | 206d0358703aa05d5d7315900fe1d054c2817ddc (patch) | |
tree | f2403e29f3aded0caf7a2434ea50dd507f6545e2 /Introduction_To_Chemical_Engineering/ch8.ipynb | |
parent | c6f0d6aeb95beaf41e4b679e78bb42c4ffe45a40 (diff) | |
download | Python-Textbook-Companions-206d0358703aa05d5d7315900fe1d054c2817ddc.tar.gz Python-Textbook-Companions-206d0358703aa05d5d7315900fe1d054c2817ddc.tar.bz2 Python-Textbook-Companions-206d0358703aa05d5d7315900fe1d054c2817ddc.zip |
adding book
Diffstat (limited to 'Introduction_To_Chemical_Engineering/ch8.ipynb')
-rw-r--r-- | Introduction_To_Chemical_Engineering/ch8.ipynb | 472 |
1 files changed, 472 insertions, 0 deletions
diff --git a/Introduction_To_Chemical_Engineering/ch8.ipynb b/Introduction_To_Chemical_Engineering/ch8.ipynb new file mode 100644 index 00000000..a18b8152 --- /dev/null +++ b/Introduction_To_Chemical_Engineering/ch8.ipynb @@ -0,0 +1,472 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 8 : Measuring Devices" + ] + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "example 8.4 page number 336" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "import math \n", + "\n", + "# Variables\n", + "pressure_difference = 3.4 #in mm water\n", + "pressure = 1.0133*10**5 #in pa\n", + "temperatue = 293. #in K\n", + "mass_of_air = 29. #in Kg\n", + "\n", + "# Calculations and Results\n", + "density_air = pressure/(temperatue*8314)*mass_of_air #in kg/m3\n", + "print \"Density of air = %f kg/cu m\"%(density_air)\n", + "\n", + "delta_p = pressure_difference*9.8 #in pascal, acceleration due to gravity, g=9.8\n", + "Height=4\n", + "density_difference = delta_p/(9.8*Height);\n", + "print \"Density difference = %f kg/cu m\"%(density_difference)\n", + "\n", + "density_mixture= density_air-density_difference; #in kg/m3\n", + "print \"Density of mixture = %f kg/cu m\"%(density_mixture)\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Density of air = 1.206309 kg/cu m\n", + "Density difference = 0.850000 kg/cu m\n", + "Density of mixture = 0.356309 kg/cu m\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "example 8.5 page number 341\n" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#to find viscosity of oil \n", + "\n", + "import math \n", + "\n", + "# Variables\n", + "diameter=0.6; #in m\n", + "disk_distance=1.25*10**-3; #in m\n", + "speed=5.; #revolutions/min\n", + "torque=11.5; #in Joules\n", + "\n", + "# Calculations\n", + "#we know that torque= pi*omega*viscosity*radius**4/2*disc_distance\n", + "viscosity=(2*disk_distance*torque)/(3.14*(10*3.14)*(diameter/2)**4);\n", + "\n", + "# Results\n", + "print \"viscosity = %f Pa-s\"%(viscosity)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "viscosity = 0.035999 Pa-s\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "example 8.6 page number 342\n" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#to find the viscosity of solution using given parameters\n", + "\n", + "import math \n", + "# Variables\n", + "diameter =10.; #in mm\n", + "density_of_solution = 1750.; #in kg/m3\n", + "density_of_air = 1.2; #in kg/m3\n", + "velocity = 0.9; #in mm/s\n", + "\n", + "# Calculations and Results\n", + "viscosity = (density_of_solution-density_of_air)*9.8*(diameter*10**-3)**2/(18*velocity*10**-3); #expression for finding viscosity\n", + "\n", + "print \"viscosity of solution = %f Pa-s\"%(viscosity)\n", + "\n", + "\n", + "#checking stoke's region validity\n", + "v=(0.2*viscosity)/(density_of_solution*diameter*10**-3);\n", + "if v>0.9 :\n", + " print \"system follows stokes law\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "viscosity of solution = 105.791605 Pa-s\n", + "system follows stokes law\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "example 8.7 page number 367\n" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#to find the flow rate in an orifice\n", + "\n", + "import math \n", + "\n", + "# Variables\n", + "density_of_water = 1000.; #in kg/m3\n", + "viscosity = 1*10.**-3; #in Pa-s\n", + "pipe_diameter = 250.; #in mm\n", + "orifice_diameter = 50.; # in mm\n", + "density_of_mercury = 13600.; # in mm\n", + "manometer_height = 242.; #in mm\n", + "\n", + "# Calculations and Results\n", + "height_water_equivalent = (density_of_mercury-density_of_water)*(manometer_height*10**-3)/(density_of_water) #in m\n", + "\n", + "#assuming Re>30000\n", + "Co = 0.61;\n", + "velocity = Co*(2*9.8*height_water_equivalent/(1-(orifice_diameter/pipe_diameter)**4))**0.5; #in m/s\n", + "\n", + "#checking Reynold's number\n", + "Re = (orifice_diameter*10**-3*velocity*density_of_water)/viscosity;\n", + "print \"reynolds number = %f which is greater than 30000\"%(Re)\n", + "\n", + "if Re>30000:\n", + " print \"velocity of water = %f m/s\"%(velocity)\n", + "\n", + "rate_of_flow = (3.14*(orifice_diameter*10.**-3)**2./4)*velocity*density_of_water;\n", + "print \"rate of flow = %f litre/s\"%(rate_of_flow)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "reynolds number = 235976.385359 which is greater than 30000\n", + "velocity of water = 4.719528 m/s\n", + "rate of flow = 9.262073 litre/s\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "example 8.8 page number 368\n" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#to find the coefficient of discharge for converging cone\n", + "\n", + "import math \n", + "# Variables\n", + "pipe_diameter=0.15; #in m\n", + "venturi_diameter=0.05; #in m\n", + "pressure_drop=0.12; #m of water\n", + "flow_rate=3.; #in kg/s\n", + "density = 1000.; #in kg/m3\n", + "viscosity = 0.001 #in Pa-s\n", + "\n", + "# Calculations and Results\n", + "velocity = ((4./3.14)*flow_rate)/(venturi_diameter**2*density);\n", + "print \"velociy = %f m/s\"%(velocity)\n", + "\n", + "#calculating coefficient of discharge\n", + "Cv=velocity*((1-(venturi_diameter/pipe_diameter)**4)/(2*9.8*pressure_drop))**0.5;\n", + "print \"coefficient of discharge = %f\"%(Cv)\n", + "\n", + "#calculating reynold's number\n", + "Re = velocity*(venturi_diameter/pipe_diameter)**2*pipe_diameter*density/viscosity;\n", + "print \"reynolds No = %f\"%(Re)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "velociy = 1.528662 m/s\n", + "coefficient of discharge = 0.990593\n", + "reynolds No = 25477.707006\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "example 8.9 page number 369\n" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#to find pA and pB\n", + "\n", + "import math \n", + "# Variables\n", + "h1=0.66; #in m\n", + "h2=0.203; #in m\n", + "h3=0.305 #in m\n", + "density=1000.; #in kg/m3\n", + "pB=68900.; #in Pa\n", + "s1=0.83;\n", + "s2=13.6;\n", + "\n", + "# Calculations and Results\n", + "print (\"part 1\")\n", + "pA=pB+(h2*s2-(h1-h3)*s1)*density*9.81; #in Pa\n", + "print \"pressure at A = %f Pa\"%(pA)\n", + "\n", + "print (\"part 2\")\n", + "pA1=137800. #in Pa\n", + "pressure=735. #mm Hg\n", + "pB1=pA1-(h2*s2-(h1-h3)*s1)*density*9.81;\n", + "pressure_B=(pB1-pressure*133.3)/9810.; #m of water\n", + "print \"pressure at B = %f m of water\"%(pressure_B)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "part 1\n", + "pressure at A = 93092.931500 Pa\n", + "part 2\n", + "pressure at B = 1.593432 m of water\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "example 8.10 page number 370\n" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#to find the rate of oil flow in l/s\n", + "\n", + "import math \n", + "# Variables\n", + "density_oil=900.; #in kg/m3\n", + "viscosity_oil=38.8*10**-3; #in Pa-s\n", + "density_water = 1000.; #in kg/m3\n", + "diameter=0.102 #in m\n", + "manometer_reading=0.9; #m of water\n", + "\n", + "# Calculations and Results\n", + "delta_H=manometer_reading*(density_water-density_oil)/density_oil;\n", + "print \"manometer reading as m of oil = %f m\"%(delta_H)\n", + "\n", + "maximum_velocity=(2*9.8*delta_H)**0.5;\n", + "print \"maximum_velocityVmax) = %f m/s\"%(maximum_velocity)\n", + "\n", + "Re=diameter*maximum_velocity*density_oil/viscosity_oil;\n", + "print \"if Re<4000 then v=0.5*Vmax Re = %f\"%(Re)\n", + "if Re<4000 :\n", + " velocity=maximum_velocity*0.5;\n", + "\n", + "print \"velocity = %f m/s\"%(velocity)\n", + "\n", + "flow_rate=(3.14/4)*diameter**2*velocity*1000;\n", + "print \"flow rate =%f litre/s\"%(flow_rate)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "manometer reading as m of oil = 0.100000 m\n", + "maximum_velocityVmax) = 1.400000 m/s\n", + "if Re<4000 then v=0.5*Vmax Re = 3312.371134\n", + "velocity = 0.700000 m/s\n", + "flow rate =5.716998 litre/s\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "example 8.11 page number 372\n" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#to find the maximum capacity of keroscene\n", + "\n", + "import math \n", + "# Variables\n", + "flow_rate_steel=1.2; #l/s\n", + "density_steel=7.92;\n", + "density_kerosene=0.82;\n", + "density_water=1;\n", + "\n", + "# Calculations\n", + "flow_rate_kerosene =(((density_steel-density_kerosene)/density_kerosene)/((density_steel-density_water)/density_water))**0.5*flow_rate_steel\n", + "\n", + "\n", + "# Results\n", + "print \"maximum_flow rate of kerosene = %f litre/s\"%(flow_rate_kerosene)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "maximum_flow rate of kerosene = 1.342303 litre/s\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "example 8.12 page number 373\n" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#to find the rate of flow of flue gas\n", + "\n", + "from scipy.optimize import fsolve \n", + "import math \n", + "# Variables\n", + "initial_CO2 = 0.02; #weight fraction\n", + "flow_rate_CO2 = 22.5; #gm/s\n", + "final_CO2=0.031; #weight fraction\n", + "\n", + "#flow rate of flue gas =x\n", + "#amount of CO2 entering = 0.02*x\n", + "#amount of CO2 leaving = 0.02x+0.0225\n", + "#amount of gas leaving = x+0.0225\n", + "#amount of CO2 leaving = 0.031*(x+0.0225)\n", + "\n", + "# Calculations\n", + "def f(x): \n", + "\t return initial_CO2*x+0.0225 - 0.031*(x+0.0225)\n", + "\n", + "flow_rate_flue_gas=fsolve(f,0)\n", + "\n", + "# Results\n", + "print \"flow rate of flue gas = %f kg/s\"%(flow_rate_flue_gas)\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "flow rate of flue gas = 1.982045 kg/s\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file |