summaryrefslogtreecommitdiff
path: root/Introduction_To_Chemical_Engineering/ch4.ipynb
diff options
context:
space:
mode:
authorJovina Dsouza2014-06-18 12:43:07 +0530
committerJovina Dsouza2014-06-18 12:43:07 +0530
commit206d0358703aa05d5d7315900fe1d054c2817ddc (patch)
treef2403e29f3aded0caf7a2434ea50dd507f6545e2 /Introduction_To_Chemical_Engineering/ch4.ipynb
parentc6f0d6aeb95beaf41e4b679e78bb42c4ffe45a40 (diff)
downloadPython-Textbook-Companions-206d0358703aa05d5d7315900fe1d054c2817ddc.tar.gz
Python-Textbook-Companions-206d0358703aa05d5d7315900fe1d054c2817ddc.tar.bz2
Python-Textbook-Companions-206d0358703aa05d5d7315900fe1d054c2817ddc.zip
adding book
Diffstat (limited to 'Introduction_To_Chemical_Engineering/ch4.ipynb')
-rw-r--r--Introduction_To_Chemical_Engineering/ch4.ipynb916
1 files changed, 916 insertions, 0 deletions
diff --git a/Introduction_To_Chemical_Engineering/ch4.ipynb b/Introduction_To_Chemical_Engineering/ch4.ipynb
new file mode 100644
index 00000000..4c312cd2
--- /dev/null
+++ b/Introduction_To_Chemical_Engineering/ch4.ipynb
@@ -0,0 +1,916 @@
+{
+ "metadata": {
+ "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 4 : Flow Of Fluids"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "example 4.1 page number 125"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#to find water compressibility\n",
+ "\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "delta_p=70.; #in bar\n",
+ "Et=20680. #in bar\n",
+ "\n",
+ "# Calculations\n",
+ "compressibility = delta_p/Et;\n",
+ "\n",
+ "# Results\n",
+ "print \"compressibilty of water = %f\"%(compressibility)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "compressibilty of water = 0.003385\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "example 4.3 page number 128\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#to find the viscosity of oil\n",
+ "\n",
+ "import math \n",
+ "# Variables\n",
+ "F=0.5*9.8; #in N\n",
+ "A=3.14*0.05*0.15; #in m2\n",
+ "\n",
+ "# Calculations and Results\n",
+ "shear_stress=F/A; #in Pa\n",
+ "print \"shear_stress = %f Pa\"%(shear_stress)\n",
+ "\n",
+ "velocity_distribution =0.1/(0.05*10**-3);\n",
+ "viscosity=shear_stress/velocity_distribution;\n",
+ "print \"viscosity = %f Pa-s\"%(viscosity) \n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "shear_stress = 208.067941 Pa\n",
+ "viscosity = 0.104034 Pa-s\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "example 4.5 page number 133\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#to find variation of losses with velocity\n",
+ "\n",
+ "import math \n",
+ "# Variables\n",
+ "loss_ratio=3.6; #delta_P2/delta_P1=3.6\n",
+ "velocity_ratio=2.; #u2/u1=2\n",
+ "\n",
+ "# Calculations\n",
+ "n=math.log(loss_ratio,2); #delta_P2/delta_P1=(u2/u1)**n\n",
+ "\n",
+ "# Results\n",
+ "print \"power constant = %f flow is turbulent\"%(n)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "power constant = 1.847997 flow is turbulent\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "example 4.8 page number 137\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#to find the boundary layer properties\n",
+ "\n",
+ "import math \n",
+ "print ('part 1')\n",
+ "\n",
+ "# Variables\n",
+ "x=0.05 #in m\n",
+ "density=1000. #in kg/m3\n",
+ "\n",
+ "# Calculations and Results\n",
+ "viscosity=1.*10**-3 #in Pa-s\n",
+ "u=1. #in m/s\n",
+ "Re=(density*u*x)/viscosity;\n",
+ "\n",
+ "print \"Reynolds Number = %f\"%(Re)\n",
+ "\n",
+ "thickness=4.65*x*(Re)**-0.5;\n",
+ "print \"boundary layer thickness = %f m\"%(thickness)\n",
+ "\n",
+ "print ('part 2')\n",
+ "Re_x=3.2*10**5;\n",
+ "x_cr=(Re_x*viscosity)/(density*u);\n",
+ "print \"transition takes place at x = %f m\"%(x_cr) \n",
+ "\n",
+ "print ('part 3')\n",
+ "x=0.5 #in m\n",
+ "Re=(density*u*x)/viscosity;\n",
+ "thickness=0.367*x*(Re)**-0.2;\n",
+ "print \"boundary layer thickness= %f m\"%(thickness)\n",
+ "\n",
+ "t_sublayer=71.5*x*(Re)**-0.9;\n",
+ "print \"sub layer thickness= %f m\"%(t_sublayer)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "part 1\n",
+ "Reynolds Number = 50000.000000\n",
+ "boundary layer thickness = 0.001040 m\n",
+ "part 2\n",
+ "transition takes place at x = 0.320000 m\n",
+ "part 3\n",
+ "boundary layer thickness= 0.013300 m\n",
+ "sub layer thickness= 0.000266 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "example 4.9 page number 138\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#to find the flow properties\n",
+ "\n",
+ "import math \n",
+ "# Variables\n",
+ "d1=0.05 #in m\n",
+ "A1=(3.14*d1**2)/4.;\n",
+ "density_1=2.1 #in kg/m3\n",
+ "u1=15. #in m/s\n",
+ "P1=1.8; #in bar\n",
+ "P2=1.3; #in bar\n",
+ "\n",
+ "# Calculations and Results\n",
+ "w=density_1*A1*u1;\n",
+ "density_2=density_1*(P2/P1);\n",
+ "print \"density at section 2 = %f kg/cubic meter\"%(density_2)\n",
+ "\n",
+ "u2=u1*(density_1/density_2)*(0.05/0.075)**2;\n",
+ "print \"velocity at section 2 = %f m/s\"%(u2)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "density at section 2 = 1.516667 kg/cubic meter\n",
+ "velocity at section 2 = 9.230769 m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "example 4.10 page number 139\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#to find the temperature increase\n",
+ "\n",
+ "import math \n",
+ "# Variables\n",
+ "Q=0.001*10**5 #in J/s\n",
+ "w=0.001*1000 #in kg/s\n",
+ "density=1000. #in kg/m3\n",
+ "cp=4.19*10**3 #in J/kg K\n",
+ "\n",
+ "# Calculations\n",
+ "delta_T=Q/(w*cp);\n",
+ "\n",
+ "# Results\n",
+ "print \"Temperature increase = %f degree celcius\"%(delta_T)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Temperature increase = 0.023866 degree celcius\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "example 4.11 page number 142\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#to find the pressure\n",
+ "\n",
+ "import math \n",
+ "# Variables\n",
+ "u1=0; #in m/s\n",
+ "ws=0;\n",
+ "P1=0.7*10**5 #in Pa\n",
+ "P3=0\n",
+ "density=1000 #in kg/m3\n",
+ "\n",
+ "# Calculations and Results\n",
+ "u3=((2*(P1-P3))/density)**0.5;\n",
+ "print \"u3 = %f m/s\"%(u3)\n",
+ "\n",
+ "ratio_area=0.5;\n",
+ "u2=u3/ratio_area;\n",
+ "print \"u2 = %f m/s\"%(u2)\n",
+ "\n",
+ "#applying bernoulli's equation\n",
+ "P2=1.7*10**5-((density*u2**2)/2)\n",
+ "print \"P2 = %f Pa\"%(P2)\n",
+ "print \"this flow is physically unreal\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "u3 = 11.832160 m/s\n",
+ "u2 = 23.664319 m/s\n",
+ "P2 = -110000.000000 Pa\n",
+ "this flow is physically unreal\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "example 4.12 page number 143\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#to find the power requirements\n",
+ "\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "Q=3800./(24*3600) #in m3/s\n",
+ "d=0.202 #in m\n",
+ "\n",
+ "# Calculations\n",
+ "u=Q/((3.14/4)*d**2); #in m/s\n",
+ "delta_P=5.3*10**6 #in Pa\n",
+ "density=897. #in kg/m3\n",
+ "F=delta_P/density; #in J/kg\n",
+ "ws=9.8*30+F;\n",
+ "mass_flow_rate= Q*density;\n",
+ "power=(ws*mass_flow_rate)/0.6;\n",
+ "\n",
+ "# Results\n",
+ "print \"power required = %f kW\"%(power/1000)\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "power required = 407.834267 kW\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "example 4.13 page number 146\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#to find the tube length\n",
+ "\n",
+ "import math \n",
+ "# Variables\n",
+ "density=1000 #in kg/m3\n",
+ "viscosity=1*10**-3 #in Pa s\n",
+ "P=100*1000 #in Pa\n",
+ "\n",
+ "# Calculations and Results\n",
+ "vdP=P/density;\n",
+ "\n",
+ "Q=2.5*10**-3/(24*3600)\n",
+ "A=3.14*(0.0005)**2/4;\n",
+ "u=Q/A;\n",
+ "print \"u = %f m/s\"%(u)\n",
+ "\n",
+ "Re=density*u*0.0005/viscosity;\n",
+ "print \"Re = %f\"%(Re)\n",
+ "\n",
+ "#F=18.86*L\n",
+ "L=(-u**2+vdP)/18.86;\n",
+ "print \"L = %f m\"%(L)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "u = 0.147440 m/s\n",
+ "Re = 73.720217\n",
+ "L = 5.301074 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "example 4.14 page number 151\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#to find the discharge pressure\n",
+ "\n",
+ "import math \n",
+ "# Variables\n",
+ "d=0.025 #in m\n",
+ "u=3. #in m/s\n",
+ "density=894. #in kg/m3\n",
+ "viscosity=6.2*10**4 #in Pa-s\n",
+ "\n",
+ "# Calculations and Results\n",
+ "Re=(u*d*density)/viscosity;\n",
+ "f=0.0045;\n",
+ "L=50.;\n",
+ "\n",
+ "delta_P=2*f*density*u**2*(L/d)\n",
+ "print \"frictional head loss = %f kPa\"%(delta_P/1000)\n",
+ "\n",
+ "required_P=25*density*9.8;\n",
+ "total_head=delta_P+required_P;\n",
+ "print \"total pressure head = %f bar\"%(total_head/10**5)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "frictional head loss = 144.828000 kPa\n",
+ "total pressure head = 3.638580 bar\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "example 4.15 page number 152\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#to find the level difference\n",
+ "\n",
+ "import math \n",
+ "# Variables\n",
+ "Q=0.8*10**-3; #in m3/s\n",
+ "d=0.026 #in m\n",
+ "A=(3.14*(d**2))/4 #in m2\n",
+ "\n",
+ "# Calculations\n",
+ "u=Q/A; #in m/s\n",
+ "density=800 #in kg/m3\n",
+ "viscosity=0.0005 #in Pa-s\n",
+ "\n",
+ "Re=(u*density*d)/viscosity;\n",
+ "f=0.079*(Re)**-0.25;\n",
+ "L=60\n",
+ "h_f=2*f*((u**2)/9.8)*(L/d);\n",
+ "\n",
+ "# Results\n",
+ "print \"level difference = %f m\"%(h_f)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "level difference = 5.343360 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "example 4.16 page number 153\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#to find the engery cost\n",
+ "\n",
+ "import math \n",
+ "# Variables\n",
+ "delta_z=50; #in m\n",
+ "L=290.36 #in m\n",
+ "d=0.18 #in m\n",
+ "Q=0.05 #in m3/s\n",
+ "\n",
+ "# Calculations\n",
+ "A=(3.14*d**2)/4; #in m2\n",
+ "u=Q/A; #in m/s\n",
+ "density=1180; #in kg/m3\n",
+ "viscosity=0.0012 #in Pa-s\n",
+ "Re=u*density*d/viscosity;\n",
+ "\n",
+ "f=0.004;\n",
+ "sigma_F=2*f*u**2*L/d;\n",
+ "ws=((9.8*50)+sigma_F)/0.6;\n",
+ "mass_flow_rate=Q*density; #in Kg/s\n",
+ "power=mass_flow_rate*ws/1000; #in KW\n",
+ "energy_cost=power*24*0.8;\n",
+ "\n",
+ "# Results\n",
+ "print \"Energy cost = Rs %f\"%(energy_cost)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Energy cost = Rs 1019.280105\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "example 4.17 page number 154\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#to find the pressure loss\n",
+ "\n",
+ "import math \n",
+ "# Variables\n",
+ "density=998 #in kg/m3\n",
+ "viscosity=0.0008 #in Pa-s\n",
+ "d=0.03 #in m\n",
+ "u=1.2 #in m/s\n",
+ "\n",
+ "# Calculations\n",
+ "Re=density*d*u/viscosity;\n",
+ "\n",
+ "f=0.0088;\n",
+ "D=1 #in m\n",
+ "N=10\n",
+ "L=3.14*D*N;\n",
+ "delta_P=(2*f*u**2*L)/d; #in Pa\n",
+ "delta_P_coil=delta_P*(1+(3.54*(d/D)));\n",
+ "\n",
+ "# Results\n",
+ "print \"frictional pressure drop = %f kPa\"%(delta_P_coil)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "frictional pressure drop = 29.343858 kPa\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "example 4.18 page number 154\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#to find pressure drop per unit length\n",
+ "\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "b=0.050 #in m\n",
+ "a=0.025 #in m\n",
+ "d_eq=b-a #in m\n",
+ "density=1000 #in kg/m3\n",
+ "u=3 #in m/s\n",
+ "viscosity = 0.001\n",
+ "\n",
+ "# Calculations\n",
+ "Re=d_eq*u*density/viscosity;\n",
+ "\n",
+ "e=40*10**6 #in m\n",
+ "f=0.0062;\n",
+ "P_perunit_length=2*f*density*u**2/d_eq; #in Pa/m\n",
+ "\n",
+ "# Results\n",
+ "print \"pressure per unit length = %f Pa/m\"%(P_perunit_length)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "pressure per unit length = 4464.000000 Pa/m\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "example 4.19 page number 155\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#to find the flow rate\n",
+ "\n",
+ "import math \n",
+ "# Variables\n",
+ "d = 0.3 #in m\n",
+ "u = 17.63 #avg velocity in m/s\n",
+ "\n",
+ "# Calculations\n",
+ "q = (3.14/4)*d**2*u;\n",
+ "\n",
+ "# Results\n",
+ "print \"volumetric flow rate = %f cubic meter per second\"%(q)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "volumetric flow rate = 1.245559 cubic meter per second\n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "example 4.20 page number 156\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#to find the size of pipe required\n",
+ "\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "d = 0.15 #in m\n",
+ "\n",
+ "# Calculations\n",
+ "u = (0.0191/0.15**2); #in m/s\n",
+ "q = (3.14/4)*d**2*u;\n",
+ "\n",
+ "# Results\n",
+ "print \"volumetric flow rate = %f cubic meter/s\"%(q)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "volumetric flow rate = 0.014994 cubic meter/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "example 4.21 page number 160\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#to find the pressure gradient\n",
+ "\n",
+ "import math \n",
+ "# Variables\n",
+ "Q=0.0003 #in m3/s\n",
+ "d=0.05 #in m\n",
+ "A=(3.14*d**2)/4;\n",
+ "\n",
+ "# Calculations\n",
+ "u=Q/A;\n",
+ "\n",
+ "density=1000; #in kg/m3\n",
+ "viscosity=0.001; #in Pa-s\n",
+ "e=0.3;\n",
+ "dp=0.00125; #particle diameter in m\n",
+ "\n",
+ "Re=(dp*u*density)/(viscosity*(1-e));\n",
+ "fm=(150/Re)+1.75;\n",
+ "L=0.5 #in m\n",
+ "delta_Pf=fm*((density*L*u**2)/dp)*((1-e)/e**3); #in Pa\n",
+ "\n",
+ "#applying bernoulli's equation, we get\n",
+ "delta_P=delta_Pf-(density*9.8*L);\n",
+ "pressure_gradient=delta_P/(L*1000); #in kPa/m\n",
+ "\n",
+ "# Results\n",
+ "print \"required pressure gradient = %f kPa/m of packed height\"%(pressure_gradient)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "required pressure gradient = 1104.702008 kPa/m of packed height\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "example 4.22 page number 163\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#to find minimum fluidization velocity\n",
+ "\n",
+ "from scipy.optimize import fsolve \n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "d=120*10**-6 #in m\n",
+ "density=2500 #particle density in kg/m3\n",
+ "e_min=0.45;\n",
+ "density_water=1000 #in kg/m3\n",
+ "\n",
+ "# Calculations and Results\n",
+ "viscosity=0.9*10**-3; #in Pa-s\n",
+ "umf=(d**2*(density-density_water)*9.8*e_min**3)/(150*viscosity*(1-e_min));\n",
+ "print \"minimum fludization velocity = %f m/s\"%(umf)\n",
+ "\n",
+ "Re_mf=(d*umf*density_water)/(viscosity*(1-e_min));\n",
+ "\n",
+ "\n",
+ "#given that uo/umf=10\n",
+ "def F(e):\n",
+ " return e**3+1.657*e-1.675;\n",
+ "\n",
+ "#initial guess\n",
+ "x = 10.;\n",
+ "e = fsolve(F,x)\n",
+ "\n",
+ "print \"e = %f\"%(e)\n",
+ "length_ratio=(1-e_min)/(1-e);\n",
+ "print \"ratio of heights = %f\"%(length_ratio)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "minimum fludization velocity = 0.000260 m/s\n",
+ "e = 0.753096\n",
+ "ratio of heights = 2.227583\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "example 4.23 page number 167\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#to find the power requirements\n",
+ "\n",
+ "import math \n",
+ "# Variables\n",
+ "P=9807. #in Pa\n",
+ "density=1000. #in kg/m3\n",
+ "Q=250./(60.*density)\n",
+ "head=25. #in m\n",
+ "\n",
+ "# Calculations\n",
+ "w= head*Q*P; #in kW\n",
+ "power_delivered=w/0.65;\n",
+ "power_taken=power_delivered/0.9;\n",
+ "\n",
+ "# Results\n",
+ "print \"power_delivered = %f kW\"%(power_delivered/1000)\n",
+ "print \"power taken by motor = %f kW\"%(power_taken/1000)\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "power_delivered = 1.571635 kW\n",
+ "power taken by motor = 1.746261 kW\n"
+ ]
+ }
+ ],
+ "prompt_number": 19
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file