diff options
author | debashisdeb | 2014-06-20 15:42:42 +0530 |
---|---|---|
committer | debashisdeb | 2014-06-20 15:42:42 +0530 |
commit | 83c1bfceb1b681b4bb7253b47491be2d8b2014a1 (patch) | |
tree | f54eab21dd3d725d64a495fcd47c00d37abed004 /Introduction_To_Chemical_Engineering/ch2.ipynb | |
parent | a78126bbe4443e9526a64df9d8245c4af8843044 (diff) | |
download | Python-Textbook-Companions-83c1bfceb1b681b4bb7253b47491be2d8b2014a1.tar.gz Python-Textbook-Companions-83c1bfceb1b681b4bb7253b47491be2d8b2014a1.tar.bz2 Python-Textbook-Companions-83c1bfceb1b681b4bb7253b47491be2d8b2014a1.zip |
removing problem statements
Diffstat (limited to 'Introduction_To_Chemical_Engineering/ch2.ipynb')
-rw-r--r-- | Introduction_To_Chemical_Engineering/ch2.ipynb | 132 |
1 files changed, 0 insertions, 132 deletions
diff --git a/Introduction_To_Chemical_Engineering/ch2.ipynb b/Introduction_To_Chemical_Engineering/ch2.ipynb index 7f49d9ae..845b485b 100644 --- a/Introduction_To_Chemical_Engineering/ch2.ipynb +++ b/Introduction_To_Chemical_Engineering/ch2.ipynb @@ -27,21 +27,17 @@ "cell_type": "code", "collapsed": false, "input": [ - "#to find the volume of oxygen that can be obtained\n", "\n", "import math \n", "\n", - "# Variables\n", "p1=15. #in bar\n", "p2=1.013 #in bar\n", "t1=283. #in K\n", "t2=273. #in K\n", "v1=10. #in l\n", "\n", - "# Calculations\n", "v2=p1*v1*t2/(t1*p2);\n", "\n", - "# Results\n", "print \"volume of oxygen = %f liters\"%(v2)\n" ], "language": "python", @@ -69,16 +65,13 @@ "cell_type": "code", "collapsed": false, "input": [ - "#to find volumetric composition,partial pressue of each gas and total pressure of mixture\n", "\n", "import math \n", "\n", - "# Variables\n", "nCO2 = 2./44; #moles of CO2\n", "nO2 = 4./32; #moles of O2\n", "nCH4 = 1.5/16; #moles of CH4\n", "\n", - "# Calculations and Results\n", "total_moles = nCO2+nO2+nCH4;\n", "yCO2 = nCO2/total_moles;\n", "yO2 = nO2/total_moles;\n", @@ -122,21 +115,17 @@ "cell_type": "code", "collapsed": false, "input": [ - "#to find equivalent mass of metal\n", "\n", "import math \n", "\n", - "# Variables\n", "P=104.3 #total pressure in KPa\n", "pH2O=2.3 #in KPa\n", "pH2=P-pH2O; #in KPa\n", "\n", - "# Calculations and Results\n", "VH2=209*pH2*273/(293*101.3)\n", "\n", "print \"volume of hydrogen obtained = %f ml\"%(VH2)\n", "\n", - "#calculating amount of metal having 11.2l of hydrogen\n", "\n", "m=350/196.08*11.2 #mass of metal in grams\n", "print \"mass of metal equivalent to 11.2 litre/mol of hydrogen = %f gm\"%(m)\n" @@ -167,15 +156,11 @@ "cell_type": "code", "collapsed": false, "input": [ - "#to find NaCl content in NaOH solution\n", "\n", "import math \n", - "# Variables\n", "w=2 #in gm\n", "m=0.287 #in gm\n", "\n", - "# Calculations and Results\n", - "#precipitate from 58.5gm of NaCl=143.4gm\n", "mNaCl=58.5/143.4*m;\n", "\n", "print \"mass of NaCl = %f gm\"%(mNaCl )\n", @@ -209,20 +194,16 @@ "cell_type": "code", "collapsed": false, "input": [ - "#to find the carbon content in sample\n", "\n", "import math \n", "\n", - "# Variables\n", "w=4.73 #in gm5\n", "VCO2=5.30 #in liters\n", "\n", - "# Calculations\n", "weight_CO2=44/22.4*VCO2;\n", "carbon_content=12./44*weight_CO2;\n", "percentage_content=(carbon_content/w)*100;\n", "\n", - "# Results\n", "print \"percentage amount of carbon in sample = %f\"%(percentage_content)\n" ], "language": "python", @@ -250,19 +231,15 @@ "cell_type": "code", "collapsed": false, "input": [ - "#to find the volume of air\n", "\n", "import math \n", "\n", - "# Variables\n", "volume_H2=0.5 #in m3\n", "volume_CH4=0.35 #in m3\n", "volume_CO=0.08 #in m3\n", "volume_C2H4=0.02 #in m3\n", "volume_oxygen=0.21 #in m3 in air\n", "\n", - "# Calculations\n", - "#required oxygen for various gases\n", "H2=0.5*volume_H2;\n", "CH4=2*volume_CH4;\n", "CO=0.5*volume_CO;\n", @@ -271,7 +248,6 @@ "total_O2=H2+CH4+CO+C2H4;\n", "oxygen_required=total_O2/volume_oxygen;\n", "\n", - "# Results\n", "print \"amount of oxygen required = %f cubic meter\"%(oxygen_required)\n" ], "language": "python", @@ -299,23 +275,19 @@ "cell_type": "code", "collapsed": false, "input": [ - "#to find the volume of sulphuric acid and mass of water consumed\n", "\n", "import math \n", "\n", "\n", - "# Variables\n", "density_H2SO4 = 1.10 #in g/ml\n", "mass_1 = 100*density_H2SO4; #mass of 100ml of 15% solution\n", "mass_H2SO4 = 0.15*mass_1;\n", "density_std = 1.84 #density of 96% sulphuric acid\n", "mass_std = 0.96*density_std; #mass of H2SO4 in 1ml 96% H2SO4\n", "\n", - "# Calculations\n", "volume_std = mass_H2SO4/mass_std; #volume of 96%H2SO4\n", "mass_water = mass_1 - mass_H2SO4;\n", "\n", - "# Results\n", "print \"volume of 0.96 H2SO4 required = %f ml\"%(volume_std)\n", "print \"mass of water required = %f g\"%(mass_water)\n" ], @@ -345,18 +317,15 @@ "cell_type": "code", "collapsed": false, "input": [ - "#to find molarity,molality and normality\n", "\n", "import math \n", "\n", - "# Variables\n", "w_H2SO4=0.15 #in gm/1gm solution\n", "density=1.10 #in gm/ml\n", "m=density*1000; #mass per liter\n", "weight=m*w_H2SO4; #H2SO4 per liter solution\n", "molar_mass=98;\n", "\n", - "# Calculations and Results\n", "Molarity=weight/molar_mass;\n", "print \"Molarity = %f mol/l\"%(Molarity)\n", "\n", @@ -394,18 +363,14 @@ "cell_type": "code", "collapsed": false, "input": [ - "#to find normality\n", "\n", "import math \n", "\n", - "# Variables\n", "molar_mass_BaCl2=208.3; #in gm\n", "equivalent_H2SO4=0.144;\n", "\n", - "# Calculations\n", "normality=equivalent_H2SO4*1000/28.8;\n", "\n", - "# Results\n", "print \"Normality = %f N\"%(normality)\n" ], "language": "python", @@ -433,20 +398,16 @@ "cell_type": "code", "collapsed": false, "input": [ - "#to find amount of KClO3 precipitated\n", "\n", "import math \n", "\n", - "# Variables\n", "solubility_70=30.2 #in gm/100gm\n", "w_solute=solubility_70*350/130.2; #in gm\n", "\n", - "# Calculations\n", "w_water=350-w_solute;\n", "solubility_30=10.1 #in gm/100gm\n", "precipitate=(solubility_70-solubility_30)*w_water/100\n", "\n", - "# Results\n", "print \"amount precipitated = %f gm\"%(precipitate)\n" ], "language": "python", @@ -474,19 +435,15 @@ "cell_type": "code", "collapsed": false, "input": [ - "#to find the pressure for solubility of CO2\n", "\n", "import math \n", "\n", - "# Variables\n", "absorbtion_coefficient=1.71 #in liters\n", "molar_mass=44;\n", "\n", - "# Calculations\n", "solubility=absorbtion_coefficient*molar_mass/22.4; #in gm\n", "pressure=8/solubility*101.3;\n", "\n", - "# Results\n", "print \"pressure required = %f kPa\"%(pressure)\n" ], "language": "python", @@ -514,23 +471,19 @@ "cell_type": "code", "collapsed": false, "input": [ - "#to find the vapor pressure of water\n", "\n", "import math \n", "\n", "\n", - "# Variables\n", "w_water=540. #in gm\n", "w_glucose=36. #in gm\n", "m_water=18.; #molar mass of water\n", "m_glucose=180.; #molar mass of glucose\n", "\n", - "# Calculations\n", "x=(w_water/m_water)/(w_water/m_water+w_glucose/m_glucose);\n", "p=8.2*x;\n", "depression=8.2-p;\n", "\n", - "# Results\n", "print \"depression in vapor pressure = %f Pa\"%(depression*1000)\n" ], "language": "python", @@ -558,21 +511,17 @@ "cell_type": "code", "collapsed": false, "input": [ - "#to find the boiling point of solution\n", "\n", "import math \n", "\n", - "# Variables\n", "w_glucose=9. #in gm\n", "w_water=100. #in gm\n", "E=0.52;\n", "m=90/180.; #moles/1000gm water\n", "\n", - "# Calculations\n", "delta_t=E*m;\n", "boiling_point=100+delta_t;\n", "\n", - "# Results\n", "print \"boiling_point of water = %f degreeC\"%(boiling_point)\n" ], "language": "python", @@ -600,16 +549,13 @@ "cell_type": "code", "collapsed": false, "input": [ - "#to find the molar mass and osmotic pressure\n", "\n", "import math \n", "\n", - "# Variables\n", "K=1.86;\n", "c=15 #concentration of alcohol\n", "delta_t=10.26;\n", "\n", - "# Calculations and Results\n", "m=delta_t/K; #molality\n", "M=c/(m*85); #molar mass\n", "print \"molar mass = %f gm\"%(M*1000)\n", @@ -648,22 +594,18 @@ "cell_type": "code", "collapsed": false, "input": [ - "#to find u_in, M_v, k'\n", "\n", "import math \n", "\n", - "# Variables\n", "u_in = 0.575 #from the graph\n", "u_s = 0.295 #in mPa-s\n", "\n", - "# Calculations\n", "M_v = (u_in/(5.80*10**-5))**(1/0.72);\n", "u_red = 0.628; #in dl/g\n", "\n", "c = 0.40 #in g/dl\n", "k = (u_red-u_in)/((u_in**2)*c);\n", "\n", - "# Results\n", "print \"k = %f Mv = %fu_in = %f dl/gm\"%(k,M_v,u_in)\n" ], "language": "python", @@ -691,11 +633,9 @@ "cell_type": "code", "collapsed": false, "input": [ - "#to find the molecular formula\n", "\n", "import math \n", "\n", - "# Variables\n", "C=54.5 #% of carbon\n", "H2=9.1 #% of hydrogen\n", "O2=36.4 #% of oxygen\n", @@ -705,13 +645,11 @@ "molar_mass=88.;\n", "density=44.;\n", "\n", - "# Calculations\n", "ratio=molar_mass/density;\n", "x=ratio*2;\n", "y=ratio*1;\n", "z=ratio*4;\n", "\n", - "# Results\n", "print \"x = %f y = %f z = %f\"%(x,y,z)\n", "print \"formula of butyric acid is = C4H8O2\"\n" ], @@ -741,11 +679,9 @@ "cell_type": "code", "collapsed": false, "input": [ - "#to find molecular foemula \n", "\n", "import math \n", "\n", - "# Variables\n", "C=93.75 #% of carbon\n", "H2=6.25 #% of hydrogen\n", "x=C/12 #number of carbon atoms\n", @@ -753,12 +689,10 @@ "molar_mass=64\n", "density=4.41*29;\n", "\n", - "# Calculations\n", "ratio=density/molar_mass;\n", "x=round(ratio*5);\n", "y=round(ratio*4);\n", "\n", - "# Results\n", "print \"x = %f y = %f\"%(x,y)\n", "print \"formula of butyric acid is = C10H8\"\n", "\n" @@ -789,11 +723,9 @@ "cell_type": "code", "collapsed": false, "input": [ - "#to find molecular formula\n", "\n", "import math \n", "\n", - "# Variables\n", "C=50.69 #% of carbon\n", "H2=4.23 #% of hydrogen\n", "O2=45.08 #% of oxygen\n", @@ -802,7 +734,6 @@ "b=H2/2; #number of hydrogen molecules\n", "molar_mass=71;\n", "\n", - "# Calculations and Results\n", "def f(m):\n", " return (2.09*1000)/(60*m);\n", "\n", @@ -849,18 +780,15 @@ "cell_type": "code", "collapsed": false, "input": [ - "#to find the molecular formula\n", "\n", "import math \n", "\n", - "# Variables\n", "C=64.6 #% of carbon\n", "H2=5.2 #% of hydrogen\n", "O2=12.6 #% of oxygen\n", "N2=8.8 #% of nitrogen\n", "Fe=8.8 #% of iron\n", "\n", - "# Calculations\n", "a=C/12; #number of carbon molecules\n", "c=8.8/14; #number of nitrogen molecules\n", "b=H2; #number of hydrogen molecules\n", @@ -871,7 +799,6 @@ "\n", "molar_mass=63.3/cm;\n", " \n", - "# Results \n", "print \"a = %d, b = %d, c = %d, d = %d, e = %d\"%(a*6.5,b*6.5,c*6.5,d*6.5,e*6.5)\n", "print \"formula of butyric acid is = C34H33N4O5Fe\"\n", "\n" @@ -902,20 +829,16 @@ "cell_type": "code", "collapsed": false, "input": [ - "#to find sequence of deposition\n", "\n", "import math \n", "\n", - "# Variables\n", "E1=-0.25;\n", "E2=0.80;\n", "E3=0.34;\n", "\n", - "# Calculations\n", "a=[E1,E2,E3];\n", "sorted(a)\n", "\n", - "# Results\n", "print \"sorted potential in volts =\"\n", "print (a)\n", "print (\"E2>E3>E1\")\n", @@ -951,22 +874,18 @@ "cell_type": "code", "collapsed": false, "input": [ - "#to find the emf of cell\n", "\n", "import math \n", "\n", - "# Variables\n", "E0_Zn=-0.76;\n", "E0_Pb=-0.13;\n", "c_Zn=0.1;\n", "c_Pb=0.02;\n", "\n", - "# Calculations\n", "E_Zn=E0_Zn+(0.059/2)*math.log10(c_Zn);\n", "E_Pb=E0_Pb+(0.059/2)*math.log10(c_Pb);\n", "E=E_Pb-E_Zn;\n", "\n", - "# Results\n", "print \"emf of cell = %f V\"%(E)\n", "print \"Since potential of lead is greater than that of zinc thus reduction will occur at\\\n", " lead electrode and oxidation will occur at zinc electrode\"\n" @@ -997,22 +916,18 @@ "cell_type": "code", "collapsed": false, "input": [ - "#to find the emf of cell\n", "\n", "import math \n", "\n", - "# Variables\n", "E0_Ag=0.80;\n", "E0_AgNO3=0.80;\n", "c_Ag=0.001;\n", "c_AgNO3=0.1;\n", "\n", - "# Calculations\n", "E_Ag=E0_Ag+(0.059)*math.log10(c_Ag);\n", "E_AgNO3=E0_AgNO3+(0.059)*math.log10(c_AgNO3);\n", "E=E_AgNO3-E_Ag;\n", "\n", - "# Results\n", "print \"emf of cell = %f V\" %(E)\n", "print \"since E is positive, the left hand electrode will be anode and\\\n", " the electron will travel in the external circuit from the left hand to the right hand electrode\"\n" @@ -1043,18 +958,14 @@ "cell_type": "code", "collapsed": false, "input": [ - "#to find emf of cell\n", "\n", "import math \n", - "# Variables\n", "pH=12; #pH of solution\n", "E_H2=0;\n", "\n", - "# Calculations\n", "E2=-0.059*pH;\n", "E=E_H2-E2;\n", "\n", - "# Results\n", "print \"EMF of cell = %f V\"%(E)\n" ], "language": "python", @@ -1082,20 +993,16 @@ "cell_type": "code", "collapsed": false, "input": [ - "#to find amount of silver deposited\n", "\n", "import math \n", "\n", - "# Variables\n", "I=3 #in Ampere\n", "t=900 #in s\n", "m_eq=107.9 #in gm/mol\n", "F=96500;\n", "\n", - "# Calculations\n", "m=(I*t*m_eq)/F;\n", "\n", - "# Results\n", "print \"mass = %f gm\"%(m)\n" ], "language": "python", @@ -1123,24 +1030,20 @@ "cell_type": "code", "collapsed": false, "input": [ - "#to find the time for electroplating\n", "\n", "import math \n", "\n", - "# Variables\n", "volume=10*10*0.005; #in cm3\n", "mass=volume*8.9;\n", "F=96500;\n", "atomic_mass=58.7 #in amu\n", "current=2.5 #in Ampere\n", "\n", - "# Calculations\n", "charge=(8.9*F*2)/atomic_mass;\n", "yield_=0.95;\n", "actual_charge=charge/(yield_*3600);\n", "t=actual_charge/current;\n", "\n", - "# Results\n", "print \"time required = %f hours\"%(t)\n" ], "language": "python", @@ -1168,17 +1071,13 @@ "cell_type": "code", "collapsed": false, "input": [ - "#to find hardness of water\n", "\n", - "# Variables\n", "m_MgSO4=90. #in ppm\n", "MgSO4_parts=120.;\n", "CaCO3_parts=100.;\n", "\n", - "# Calculations\n", "hardness=(CaCO3_parts/MgSO4_parts)*m_MgSO4;\n", "\n", - "# Results\n", "print \"hardness of water = %f mg/l\"%(hardness)\n" ], "language": "python", @@ -1214,7 +1113,6 @@ "\n", "import math \n", "\n", - "# Variables\n", "m1 = 162. #mass of calcium bi carbonate in mg\n", "m2 = 73. #mass of magnesium bi carbonate in mg\n", "m3 = 136. # mass of calsium sulfate in mg\n", @@ -1222,19 +1120,16 @@ "m5 = 500. #mass of sodium cloride in mg\n", "m6 = 50. # mass of potassium cloride in mg\n", "\n", - "# Calculations and Results\n", "content_1 = m1*100/m1; #content of calcium bi carbonate in mg\n", "content_2 = m2*100/(2*m2); #content of magnesium bi carbonate in mg\n", "content_3 = m3*100/m3; # content of calsium sufate in mg\n", "content_4 = m4*100/m4; # content of magnesium cloride\n", "\n", - "#part_1\n", "\n", "temp_hardness = content_1 + content_2; #depends on bicarbonate only\n", "total_hardness = content_1+content_2+content_3+content_4;\n", "print \"total hardness = %.0f mg/l temporary hardness = %.0f mg/l\"%(temp_hardness,total_hardness)\n", "\n", - "#part 2\n", "wt_lime = (74./100)*(content_1+2*content_2+content_4);\n", "actual_lime = wt_lime/0.85;\n", "print \"amount of lime required = %.1f mg/l\"%(actual_lime)\n", @@ -1270,19 +1165,15 @@ "cell_type": "code", "collapsed": false, "input": [ - "#to find hardness of water\n", "\n", - "# Variables\n", "volume_NaCl=50. #in l\n", "c_NaCl=5000. #in mg/l\n", "\n", - "# Calculations\n", "m=volume_NaCl*c_NaCl;\n", "equivalent_NaCl=50/58.5;\n", "\n", "hardness=equivalent_NaCl*m;\n", "\n", - "# Results\n", "print \"hardness of water = %f mg/l\"%(hardness/1000.)\n" ], "language": "python", @@ -1310,16 +1201,13 @@ "cell_type": "code", "collapsed": false, "input": [ - "#to find the total vapor pressure and molar compositions\n", "\n", "import math \n", "\n", - "# Variables\n", "m_benzene = 55. #in kg\n", "m_toluene = 28. #in kg\n", "m_xylene = 17. # in kg\n", "\n", - "# Calculations and Results\n", "mole_benzene = m_benzene/78.;\n", "mole_toluene = m_toluene/92.;\n", "mole_xylene = m_xylene/106.;\n", @@ -1364,22 +1252,17 @@ "cell_type": "code", "collapsed": false, "input": [ - "#to find the mixture composition\n", "\n", "import math \n", "\n", - "# Variables\n", "vapor_pressure=8. #in kPa\n", "pressure=100. #in kPa\n", "\n", - "# Calculations and Results\n", - "#part 1\n", "volume=1 #in m3\n", "volume_ethanol=volume*(vapor_pressure/pressure);\n", "volume_air=1-volume_ethanol;\n", "print \"volumetric composition:- air composition = %f ethanol compostion = %f\"%(volume_air*100,volume_ethanol*100)\n", "\n", - "#part 2\n", "molar_mass_ethanol=46;\n", "molar_mass_air=28.9;\n", "mass_ethanol=0.08*molar_mass_ethanol; #in kg\n", @@ -1388,16 +1271,13 @@ "fraction_air=(mass_air*100)/(mass_air+mass_ethanol);\n", "print \"composition by weight:-Air = %f Ethanol vapor = %f\"%(fraction_air,fraction_ethanol)\n", "\n", - "#part 3\n", "mixture_volume=22.3*(101.3/100)*(299./273); #in m3\n", "weight_ethanol=mass_ethanol/mixture_volume;\n", "print \"weight of ethanol/cubic meter = %f Kg\"%(weight_ethanol)\n", "\n", - "#part 4\n", "w_ethanol=mass_ethanol/mass_air;\n", "print \"weight of ethanol/kg vapor free air = %f Kg\"%(w_ethanol)\n", "\n", - "#part 5\n", "moles_ethanol=0.08/0.92;\n", "print \"kmol of ethanol per kmol of vapor free air = %f\"%(moles_ethanol)\n" ], @@ -1430,23 +1310,18 @@ "cell_type": "code", "collapsed": false, "input": [ - "#to find relative saturation and dew point\n", "\n", "import math \n", "\n", - "# Variables\n", "vapor_pressure=8. #in kPa\n", "volume_ethanol=0.05;\n", "\n", "\n", - "# Calculations and Results\n", - "#basis 1kmol of mixture\n", "partial_pressure=volume_ethanol*100;\n", "relative_saturation=partial_pressure/vapor_pressure;\n", "mole_ratio=volume_ethanol/(1-volume_ethanol);\n", "print \"mole ratio = %f \\nrelative saturation = %f %%\"%(mole_ratio,relative_saturation*100)\n", "\n", - "#basis 1kmol saturated gas mixture at 100kPa\n", "volume_vapor=(8./100)*100;\n", "ethanol_vapor=volume_vapor/100.;\n", "air_vapor=1-ethanol_vapor;\n", @@ -1455,7 +1330,6 @@ "\n", "print \"percentage saturation = %f %%\"%(percentage_saturation*100)\n", "\n", - "#dew point\n", "print \"corresponding to partial pressure of 5kPa we get a dew point of 17.3 degree celcius\"\n" ], "language": "python", @@ -1486,26 +1360,21 @@ "cell_type": "code", "collapsed": false, "input": [ - "#to find the properties of humid air\n", "\n", "import math \n", "\n", - "# Variables\n", "p = 4.24 #in kPa\n", "H_rel = 0.8;\n", "\n", - "# Calculations and Results\n", "p_partial = p*H_rel;\n", "molal_H = p_partial/(100-p_partial);\n", "print \"initial molal humidity = %.3f\"%(molal_H)\n", "\n", - "#part 2\n", "P = 200. #in kPa\n", "p_partial = 1.70 #in kPa\n", "final_H = p_partial/(P-p_partial);\n", "print \"final molal humidity = %.4f\"%(final_H)\n", "\n", - "#part 3\n", "p_dryair = 100 - 3.39;\n", "v = 100*(p_dryair/101.3)*(273./303);\n", "moles_dryair = v/22.4;\n", @@ -1514,7 +1383,6 @@ "water_condensed = (vapor_initial-vapor_final)*18;\n", "print \"amount of water condensed = %f kg\"%(water_condensed)\n", "\n", - "#part 4\n", "total_air = moles_dryair+vapor_final;\n", "final_v = 22.4*(101.3/200)*(288./273)*total_air;\n", "print \"final volume of wety air = %f m**3\"%(final_v)\n" |