summaryrefslogtreecommitdiff
path: root/Higher_Engineering_Mathematics_by_B._S._Grewal/chapter10.ipynb
diff options
context:
space:
mode:
authorTrupti Kini2016-05-03 23:30:25 +0600
committerTrupti Kini2016-05-03 23:30:25 +0600
commit196b049bed4dc62feb00c721a6a0e06376262699 (patch)
tree3022e1169c3017cc28fd907ab6d8975c3920c5f2 /Higher_Engineering_Mathematics_by_B._S._Grewal/chapter10.ipynb
parentad3d2768ba4839a3488a6d2f89e24a6b039ce59f (diff)
downloadPython-Textbook-Companions-196b049bed4dc62feb00c721a6a0e06376262699.tar.gz
Python-Textbook-Companions-196b049bed4dc62feb00c721a6a0e06376262699.tar.bz2
Python-Textbook-Companions-196b049bed4dc62feb00c721a6a0e06376262699.zip
Added(A)/Deleted(D) following books
A Engineering_Thermodynamics_by_Dr._S._S._Khandare/README.txt A Higher_Engineering_Mathematics_by_B._S._Grewal/chapter1.ipynb A Higher_Engineering_Mathematics_by_B._S._Grewal/chapter10.ipynb A Higher_Engineering_Mathematics_by_B._S._Grewal/chapter13.ipynb A Higher_Engineering_Mathematics_by_B._S._Grewal/chapter2.ipynb A Higher_Engineering_Mathematics_by_B._S._Grewal/chapter21.ipynb A Higher_Engineering_Mathematics_by_B._S._Grewal/chapter22.ipynb A Higher_Engineering_Mathematics_by_B._S._Grewal/chapter23.ipynb A Higher_Engineering_Mathematics_by_B._S._Grewal/chapter24.ipynb A Higher_Engineering_Mathematics_by_B._S._Grewal/chapter26.ipynb A Higher_Engineering_Mathematics_by_B._S._Grewal/chapter27.ipynb A Higher_Engineering_Mathematics_by_B._S._Grewal/chapter28.ipynb A Higher_Engineering_Mathematics_by_B._S._Grewal/chapter34.ipynb A Higher_Engineering_Mathematics_by_B._S._Grewal/chapter35.ipynb A Higher_Engineering_Mathematics_by_B._S._Grewal/chapter4.ipynb A Higher_Engineering_Mathematics_by_B._S._Grewal/chapter5.ipynb A Higher_Engineering_Mathematics_by_B._S._Grewal/chapter6.ipynb A Higher_Engineering_Mathematics_by_B._S._Grewal/chapter9.ipynb A Higher_Engineering_Mathematics_by_B._S._Grewal/screenshots/screen1.png A Higher_Engineering_Mathematics_by_B._S._Grewal/screenshots/screen2.png A Higher_Engineering_Mathematics_by_B._S._Grewal/screenshots/screen3.png A sample_notebooks/ManikandanD/Chapter_2_Light_propagation_in_optical_fiber.ipynb
Diffstat (limited to 'Higher_Engineering_Mathematics_by_B._S._Grewal/chapter10.ipynb')
-rw-r--r--Higher_Engineering_Mathematics_by_B._S._Grewal/chapter10.ipynb720
1 files changed, 720 insertions, 0 deletions
diff --git a/Higher_Engineering_Mathematics_by_B._S._Grewal/chapter10.ipynb b/Higher_Engineering_Mathematics_by_B._S._Grewal/chapter10.ipynb
new file mode 100644
index 00000000..d91055ed
--- /dev/null
+++ b/Higher_Engineering_Mathematics_by_B._S._Grewal/chapter10.ipynb
@@ -0,0 +1,720 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 10 : Fourier Series"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.1, page no. 327"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "finding the fourier series of given function\n",
+ "enter the no of terms up to each of sin or cos terms in the expansion : 3\n",
+ "0.158857730350203*sin(x) + 0.127086184280162*sin(2*x) + 0.0953146382101218*sin(3*x) + 0.158857730350203*cos(x) + 0.0635430921400812*cos(2*x) + 0.0317715460700406*cos(3*x) + 0.158857730350203\n"
+ ]
+ }
+ ],
+ "source": [
+ "import sympy,math,numpy\n",
+ "\n",
+ "print \"finding the fourier series of given function\"\n",
+ "x = sympy.Symbol('x')\n",
+ "ao = 1/math.pi*sympy.integrate(sympy.exp(-1*x),(x,0,2*math.pi))\n",
+ "s = ao/2\n",
+ "n = int(raw_input(\"enter the no of terms up to each of sin or cos terms in the expansion : \"))\n",
+ "for i in range (1,n+1):\n",
+ " ai = 1/math.pi*sympy.integrate(sympy.exp(-x)*sympy.cos(i*x),(x,0,2*math.pi))\n",
+ " bi = 1/math.pi*sympy.integrate(sympy.exp(-x)*sympy.sin(i*x),(x,0,2*math.pi))\n",
+ " s = s+float(ai)*sympy.cos(i*x)+float(bi)*sympy.sin(i*x)\n",
+ "print s"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.2, page no. 328"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "To find the fourier transform of given function\n",
+ "Piecewise((2, s == 0), (1.0*I*exp(-1.0*I*s)/s - 1.0*I*exp(1.0*I*s)/s, True))\n",
+ "1.57079632679490\n"
+ ]
+ }
+ ],
+ "source": [
+ "import numpy,math,sympy\n",
+ "\n",
+ "print \"To find the fourier transform of given function\"\n",
+ "x = sympy.Symbol('x')\n",
+ "s = sympy.Symbol('s')\n",
+ "F = sympy.integrate(sympy.exp(1j*s*x),(x,-1,1))\n",
+ "print F\n",
+ "F1 = sympy.integrate(sympy.sin(x)/x,(x,0,numpy.inf))\n",
+ "print F1"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.3, page no. 328"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "finding the fourier series of given function\n",
+ "enter the no of terms up to each of sin or cos terms in the expansion : 3\n",
+ "3.0*sin(x) - 0.5*sin(2*x) + 1.0*sin(3*x) - 0.636619772367581*cos(x) - 0.0707355302630646*cos(3*x) - 0.785398163397448\n"
+ ]
+ }
+ ],
+ "source": [
+ "import numpy,sympy,math\n",
+ "\n",
+ "print \"finding the fourier series of given function\"\n",
+ "x = sympy.Symbol('x')\n",
+ "ao = 1/math.pi*(sympy.integrate(-1*math.pi*x**0,(x,-math.pi,0))+sympy.integrate(x,(x,0,math.pi)))\n",
+ "s = ao/2\n",
+ "n = int(raw_input(\"enter the no of terms up to each of sin or cos terms in the expansion : \"))\n",
+ "for i in range (1,n+1):\n",
+ " ai = 1/math.pi*(sympy.integrate(-1*math.pi*sympy.cos(i*x),(x,-1*math.pi,0))+sympy.integrate(x*sympy.cos(i*x),(x,0,math.pi)))\n",
+ " bi = 1/math.pi*(sympy.integrate(-1*math.pi*x**0*sympy.sin(i*x),(x,-1*math.pi,0))+sympy.integrate(x*sympy.sin(i*x),(x,0,math.pi)))\n",
+ " s = s+float(ai)*sympy.cos(i*x)+float(bi)*sympy.sin(i*x)\n",
+ "print s"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.4, page no. 329"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "finding the fourier series of given function\n",
+ "enter the no of terms up to each of sin or cos terms in the expansion :3\n",
+ "(exp(l) - exp(-l))/(2*l)\n"
+ ]
+ }
+ ],
+ "source": [
+ "import sympy,math\n",
+ "\n",
+ "print \"finding the fourier series of given function\"\n",
+ "x = sympy.Symbol('x')\n",
+ "l = sympy.Symbol('l')\n",
+ "ao = 1/l*sympy.integrate(sympy.exp(-1*x),(x,-l,l))\n",
+ "s = ao/2\n",
+ "n = int(raw_input(\"enter the no of terms up to each of sin or cos terms in the expansion :\"))\n",
+ "for i in range (1,n+1):\n",
+ " ai = 1/l*sympy.integrate(sympy.exp(-x)*sympy.cos(i*math.pi*x/l),(x,-l,l))\n",
+ " bi = 1/l*sympy.integrate(sympy.exp(-x)*sympy.sin(i*math.pi*x/l),(x,-l,l))\n",
+ " s = s+float(ai)*sympy.cos(i*math.pi*x/l)+float(bi)*sympy.sin(i*math.pi*x/l)\n",
+ "print s"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.5, page no. 330"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "finding the fourier series of given function\n",
+ "enter the no of terms up to each of terms in the expansion : 3\n",
+ "2.0*sin(x) - 1.0*sin(2*x) + 0.666666666666667*sin(3*x)\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math,sympy\n",
+ "\n",
+ "print \"finding the fourier series of given function\"\n",
+ "x = sympy.Symbol('x')\n",
+ "l = sympy.Symbol('l')\n",
+ "s = 0\n",
+ "n = int(raw_input(\"enter the no of terms up to each of terms in the expansion : \"))\n",
+ "for i in range(1,n+1):\n",
+ " bi = 2/math.pi*sympy.integrate(x*sympy.sin(i*x),(x,0,math.pi))\n",
+ " s = s+float(bi)*sympy.sin(i*x)\n",
+ "print s"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.6, page no. 332"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "finding the fourier series of given function\n",
+ "enter the no of terms up to each of sin or cos terms in the expansion :3\n",
+ "l**2/3\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math,sympy\n",
+ "\n",
+ "print \"finding the fourier series of given function\"\n",
+ "x = sympy.Symbol('x')\n",
+ "l = sympy.Symbol('l')\n",
+ "ao = 2/l*sympy.integrate(x**2,(x,0,l))\n",
+ "s = ao/2\n",
+ "n = int(raw_input(\"enter the no of terms up to each of sin or cos terms in the expansion :\"))\n",
+ "for i in range(1,n+1):\n",
+ " ai = 2/l*sympy.integrate(x**2*sympy.cos(i*math.pi*x/l),(x,0,l))\n",
+ " s = s+float(ai)*sympy.cos(i*math.pi*x/l)\n",
+ "print s"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Example 10.7, page no. 333"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "finding the fourier series of given function\n",
+ "enter the no of terms up to each of sin or cos terms in the expansion :2\n",
+ "7.06789929214115e-17*cos(x) + 0.424413181578387*cos(2*x) + 0.636619772367581\n"
+ ]
+ }
+ ],
+ "source": [
+ "import sympy,math\n",
+ "\n",
+ "print \"finding the fourier series of given function\"\n",
+ "x = sympy.Symbol('x')\n",
+ "ao = 2/math.pi*(sympy.integrate(sympy.cos(x),(x,0,math.pi/2))+sympy.integrate(-sympy.cos(x),(x,math.pi/2,math.pi)))\n",
+ "s = ao/2\n",
+ "n = int(raw_input(\"enter the no of terms up to each of sin or cos terms in the expansion :\"))\n",
+ "for i in range(1,n+1):\n",
+ " ai = 2/math.pi*(sympy.integrate(sympy.cos(x)*sympy.cos(i*x),(x,0,math.pi/2))+sympy.integrate(-sympy.cos(x)*sympy.cos(i*x),(x,math.pi/2,math.pi)))\n",
+ " s = s+float(ai)*sympy.cos(i*x)\n",
+ "print s"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Example 10.8, page no. 334"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "finding the fourier series of given function\n",
+ "enter the no of terms up to each of sin or cos terms in the expansion : 3\n",
+ "0.810569469138702*cos(x) + 7.79634366503875e-17*cos(2*x) + 0.0900632743487446*cos(3*x)\n"
+ ]
+ }
+ ],
+ "source": [
+ "import sympy,math\n",
+ "\n",
+ "print \"finding the fourier series of given function\"\n",
+ "x = sympy.Symbol('x')\n",
+ "ao = 2/math.pi*(sympy.integrate((1-2*x/math.pi),(x,0,math.pi)))\n",
+ "s = ao/2\n",
+ "n = int(raw_input(\"enter the no of terms up to each of sin or cos terms in the expansion : \"))\n",
+ "for i in range(1,n+1):\n",
+ " ai = 2/math.pi*(sympy.integrate((1-2*x/math.pi)*sympy.cos(i*x),(x,0,math.pi)))\n",
+ " s = s+float(ai)*sympy.cos(i*x)\n",
+ "print s"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.9, page no. 336"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "finding the fourier series of given function\n",
+ "enter the no of terms up to each of sin or cos terms in the expansion : 3\n",
+ "0.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "import sympy,math\n",
+ "\n",
+ "print \"finding the fourier series of given function\"\n",
+ "x = sympy.Symbol('x')\n",
+ "l = sympy.Symbol('l')\n",
+ "s = 0\n",
+ "n = int(raw_input(\"enter the no of terms up to each of sin or cos terms in the expansion : \"))\n",
+ "for i in range(1,n+1):\n",
+ " bi = sympy.integrate(x*sympy.sin(i*math.pi*x/2),(x,0,2)) \n",
+ " s = s+float(bi)*sympy.sin(i*math.pi*x/2)\n",
+ "print float(s)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.10, page no. 337"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "finding the fourier series of given function\n",
+ "enter the no of terms up to each of sin or cos terms in the expansion : 5\n",
+ "1.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "import sympy,math\n",
+ "\n",
+ "print \"finding the fourier series of given function\"\n",
+ "x = sympy.Symbol('x')\n",
+ "ao = 2/2*(sympy.integrate(x,(x,0,2)))\n",
+ "s = ao/2\n",
+ "n = int(raw_input(\"enter the no of terms up to each of sin or cos terms in the expansion : \"))\n",
+ "for i in range(1,n+1):\n",
+ " ai = 2/2*(sympy.integrate(x*sympy.cos(i*math.pi*x/2),(x,0,2)))\n",
+ " s = s +float(ai)*sympy.cos(i*math.pi*x/2)\n",
+ "print float(s)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.11, page no. 338"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "finding the fourier series of given function\n",
+ "enter the no of terms up to each of sin or cos terms in the expansion : 2\n",
+ "0.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "import sympy,math\n",
+ "\n",
+ "print \"finding the fourier series of given function\"\n",
+ "x = sympy.Symbol('x')\n",
+ "ao = 0\n",
+ "s = ao\n",
+ "n = int(raw_input(\"enter the no of terms up to each of sin or cos terms in the expansion : \"))\n",
+ "for i in range(1,n+1):\n",
+ " bi = 2/1*(sympy.integrate((1/4-x)*sympy.sin(i*math.pi*x),(x,0,1/2))+sympy.integrate((x-3/4)*sympy.sin(i*math.pi*x),(x,1/2,1)))\n",
+ " s = s+float(bi)*sympy.sin(i*math.pi*x)\n",
+ "print float(s)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.12, page no. 339"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "finding the fourier series of given function\n",
+ "enter the no of terms up to each of sin or cos terms in the expansion : 3\n",
+ "-4.0*cos(x) + 0.999999999999999*cos(2*x) - 0.444444444444444*cos(3*x) + 3.28986813369645\n"
+ ]
+ }
+ ],
+ "source": [
+ "import sympy,math\n",
+ "\n",
+ "print \"finding the fourier series of given function\"\n",
+ "x = sympy.Symbol('x')\n",
+ "ao = 1/math.pi*sympy.integrate(x**2,(x,-math.pi,math.pi))\n",
+ "s = ao/2\n",
+ "n = int(raw_input(\"enter the no of terms up to each of sin or cos terms in the expansion : \"))\n",
+ "for i in range(1,n+1):\n",
+ " ai = 1/math.pi*sympy.integrate((x**2)*sympy.cos(i*x),(x,-math.pi,math.pi))\n",
+ " bi = 1/math.pi*sympy.integrate((x**2)*sympy.sin(i*x),(x,-math.pi,math.pi))\n",
+ " s = s+float(ai)*sympy.cos(i*x)+float(bi)*sympy.sin(i*x)\n",
+ "print s"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.13, page no. 341"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The complex form of series is summation of f(n,x) where n varies from −%inf to %inf and f(n,x) is given by : \n",
+ "0\n"
+ ]
+ }
+ ],
+ "source": [
+ "import sympy,math\n",
+ "\n",
+ "print \"The complex form of series is summation of f(n,x) where n varies from −%inf to %inf and f(n,x) is given by : \"\n",
+ "n = sympy.Symbol('n')\n",
+ "x = sympy.Symbol('x')\n",
+ "a = sympy.exp(-x)\n",
+ "b = sympy.exp(-1j*math.pi*n*x)\n",
+ "cn = 1/2*sympy.Integral(sympy.exp(-x)*sympy.exp(-1j*math.pi*n*x),(x, -sympy.oo, sympy.oo))\n",
+ "fnx = float(cn)*sympy.exp(1j*n*math.pi*x) \n",
+ "print fnx"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.14, page no. 342"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Practical harmoninc analysis\n",
+ "No of sin or cos term in expansion : 5\n",
+ "-0.522944001594253*sin(x) - 0.410968418886797*sin(2*x) + 0.0927272727272729*sin(3*x) + 0.111796006670355*sin(4*x) - 0.126146907496654*sin(5*x) - 0.373397459621556*cos(x) + 0.159090909090909*cos(2*x) - 0.258181818181819*cos(3*x) - 0.257272727272728*cos(4*x) - 0.546602540378445*cos(5*x) + 1.30454545454545\n"
+ ]
+ }
+ ],
+ "source": [
+ "import sympy, math, numpy\n",
+ "\n",
+ "print \"Practical harmoninc analysis\"\n",
+ "x = sympy.Symbol('x')\n",
+ "xo = numpy.array([math.pi/6, math.pi/3, math.pi/2, 2*math.pi/3, 5*math.pi/6, math.pi, 7*math.pi/6, 4*math.pi/3, \\\n",
+ " 3*math.pi/2, 5*math.pi/3, 11*math.pi/6])\n",
+ "yo = numpy.array([1.10, 0.30, 0.16, 1.50, 1.30, 2.16, 1.25, 1.30, 1.52, 1.76, 2.00])\n",
+ "ao = 2*numpy.sum(yo)/len(xo)\n",
+ "s = ao/2\n",
+ "n = int(raw_input('No of sin or cos term in expansion : '))\n",
+ "for i in range(1,n+1):\n",
+ " an = 2*sum(yo*numpy.cos(i*xo))/len(yo)\n",
+ " bn = 2*sum(yo*numpy.sin(i*xo))/len(yo)\n",
+ " s = s+float(an)*sympy.cos(i*x)+float(bn)*sympy.sin(i*x)\n",
+ "print s"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Example 10.15, page no. 342"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Practical harmonic analysis\n",
+ "No of sin or cos term in expansion :5\n",
+ "-1.61653377487451e-16*sin(6.28318530717959*x/T) + 1.5*cos(6.28318530717959*x/T) + 0.75\n",
+ "1.5 -1.61653377487e-16\n",
+ "Direct current :\n",
+ "1.5\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math,sympy,numpy\n",
+ "\n",
+ "print \"Practical harmonic analysis\"\n",
+ "x = sympy.Symbol('x')\n",
+ "T = sympy.Symbol('T')\n",
+ "xo = numpy.array([1/6,1/3,1/2,2/3,5/6,1])\n",
+ "yo = numpy.array([1.30,1.05,1.30,-0.88,-0.25,1.98])\n",
+ "ao = 2*sum(yo)/len(xo)\n",
+ "s = ao/2\n",
+ "n = int(raw_input(\"No of sin or cos term in expansion :\"))\n",
+ "i = 1\n",
+ "an = 2*sum(yo*numpy.cos(i*xo*2*math.pi))/len(yo)\n",
+ "bn = 2*sum(yo*numpy.sin(i*xo*2*math.pi))/len(yo)\n",
+ "s = s+float(an)*sympy.cos(i*x*2*math.pi/T)+float(bn)*sympy.sin(i*x*2*math.pi/T)\n",
+ "print s\n",
+ "print \"Direct current :\"\n",
+ "i = math.sqrt(an**2+bn**2)\n",
+ "print i"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.16, page no. 343"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Practical harmonic analysis\n",
+ "Input xo matrix (in factor of T):1\n",
+ "No of sin or cos term in expansion :5\n",
+ "-3.67394039744206e-16*sin(6.28318530717959*x/T) + 1.5*cos(6.28318530717959*x/T) + 4.5\n",
+ "Direct current :\n",
+ "1.5\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math,sympy,numpy\n",
+ "\n",
+ "print \"Practical harmonic analysis\"\n",
+ "x = sympy.Symbol('x')\n",
+ "T = sympy.Symbol('T')\n",
+ "xo = int(raw_input(\"Input xo matrix (in factor of T):\"))\n",
+ "yo = numpy.array([1.30,1.05,1.30,-0.88,-0.25,1.98])\n",
+ "ao = 2*sum(yo)/xo \n",
+ "s = ao/2\n",
+ "n = int(raw_input(\"No of sin or cos term in expansion :\"))\n",
+ "i = 1\n",
+ "an = 2*sum(yo*numpy.cos(i*xo*2*math.pi))/len(yo)\n",
+ "bn = 2*sum(yo*numpy.sin(i*xo*2*math.pi))/len(yo)\n",
+ "s = s+float(an)*sympy.cos(i*x*2*math.pi/T)+float(bn)*sympy.sin(i*x*2*math.pi/T)\n",
+ "print s\n",
+ "print \"Direct current :\"\n",
+ "i = math.sqrt(an**2+bn**2)\n",
+ "print i"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.17, page no. 344"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Practical harmonic analysis\n",
+ "Input xo matrix (in factor of T):1\n",
+ "No of sin or cos term in expansion :4\n",
+ "-3.67394039744206e-16*sin(6.28318530717959*x/T) + 1.5*cos(6.28318530717959*x/T) + 4.5\n",
+ "Direct current :\n",
+ "1.5\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math,sympy,numpy\n",
+ "\n",
+ "print \"Practical harmonic analysis\"\n",
+ "x = sympy.Symbol('x')\n",
+ "T = sympy.Symbol('T')\n",
+ "xo = int(raw_input(\"Input xo matrix (in factor of T):\"))\n",
+ "yo = numpy.array([1.30,1.05,1.30,-0.88,-0.25,1.98])\n",
+ "ao = 2*sum(yo)/xo \n",
+ "s = ao/2\n",
+ "n = int(raw_input(\"No of sin or cos term in expansion :\"))\n",
+ "i = 1\n",
+ "an = 2*sum(yo*numpy.cos(i*xo*2*math.pi))/len(yo)\n",
+ "bn = 2*sum(yo*numpy.sin(i*xo*2*math.pi))/len(yo)\n",
+ "s = s+float(an)*sympy.cos(i*x*2*math.pi/T)+float(bn)*sympy.sin(i*x*2*math.pi/T)\n",
+ "print s\n",
+ "print \"Direct current :\"\n",
+ "i = math.sqrt(an**2+bn**2)\n",
+ "print i"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.10"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}