summaryrefslogtreecommitdiff
path: root/Heat_Transfer_in_SI_units_by_Holman/Chapter11.ipynb
diff options
context:
space:
mode:
authorTrupti Kini2016-09-09 23:30:25 +0600
committerTrupti Kini2016-09-09 23:30:25 +0600
commit5e4af9aebb389109363666017f67e986e96a9906 (patch)
treec742461131f848fc6bc7a1938672eba69f20ceb2 /Heat_Transfer_in_SI_units_by_Holman/Chapter11.ipynb
parentcd810407802a7f89116285be29c37f8e4c477111 (diff)
downloadPython-Textbook-Companions-5e4af9aebb389109363666017f67e986e96a9906.tar.gz
Python-Textbook-Companions-5e4af9aebb389109363666017f67e986e96a9906.tar.bz2
Python-Textbook-Companions-5e4af9aebb389109363666017f67e986e96a9906.zip
Added(A)/Deleted(D) following books
A Heat_Transfer_Principles_And_Applications_by_Dutta/README.txt A Heat_Transfer_Principles_And_Applications_by_Dutta/ch10.ipynb A Heat_Transfer_Principles_And_Applications_by_Dutta/ch11.ipynb A Heat_Transfer_Principles_And_Applications_by_Dutta/ch2.ipynb A Heat_Transfer_Principles_And_Applications_by_Dutta/ch3.ipynb A Heat_Transfer_Principles_And_Applications_by_Dutta/ch4.ipynb A Heat_Transfer_Principles_And_Applications_by_Dutta/ch5.ipynb A Heat_Transfer_Principles_And_Applications_by_Dutta/ch6.ipynb A Heat_Transfer_Principles_And_Applications_by_Dutta/ch7.ipynb A Heat_Transfer_Principles_And_Applications_by_Dutta/ch8.ipynb A Heat_Transfer_Principles_And_Applications_by_Dutta/ch9.ipynb A Heat_Transfer_Principles_And_Applications_by_Dutta/screenshots/10.png A Heat_Transfer_Principles_And_Applications_by_Dutta/screenshots/5.png A Heat_Transfer_Principles_And_Applications_by_Dutta/screenshots/51.png A Heat_Transfer_in_SI_units_by_Holman/Chapter1.ipynb A Heat_Transfer_in_SI_units_by_Holman/Chapter10.ipynb A Heat_Transfer_in_SI_units_by_Holman/Chapter11.ipynb A Heat_Transfer_in_SI_units_by_Holman/Chapter2.ipynb A Heat_Transfer_in_SI_units_by_Holman/Chapter3.ipynb A Heat_Transfer_in_SI_units_by_Holman/Chapter4.ipynb A Heat_Transfer_in_SI_units_by_Holman/Chapter5.ipynb A Heat_Transfer_in_SI_units_by_Holman/Chapter6.ipynb A Heat_Transfer_in_SI_units_by_Holman/Chapter7.ipynb A Heat_Transfer_in_SI_units_by_Holman/Chapter8.ipynb A Heat_Transfer_in_SI_units_by_Holman/Chapter9.ipynb A Heat_Transfer_in_SI_units_by_Holman/README.txt A Heat_Transfer_in_SI_units_by_Holman/screenshots/9.1.png A Heat_Transfer_in_SI_units_by_Holman/screenshots/9.2.png A Heat_Transfer_in_SI_units_by_Holman/screenshots/9.4.png A Power_Electronics_Principles_and_Applications_by_Jacob/Chapter1.ipynb A Power_Electronics_Principles_and_Applications_by_Jacob/Chapter2.ipynb A Power_Electronics_Principles_and_Applications_by_Jacob/Chapter3.ipynb A Power_Electronics_Principles_and_Applications_by_Jacob/Chapter4.ipynb A Power_Electronics_Principles_and_Applications_by_Jacob/Chapter5.ipynb A Power_Electronics_Principles_and_Applications_by_Jacob/Chapter6.ipynb A Power_Electronics_Principles_and_Applications_by_Jacob/Chapter7.ipynb A Power_Electronics_Principles_and_Applications_by_Jacob/Chapter8.ipynb A Power_Electronics_Principles_and_Applications_by_Jacob/Chapter9.ipynb A Power_Electronics_Principles_and_Applications_by_Jacob/README.txt A Power_Electronics_Principles_and_Applications_by_Jacob/screenshots/4.png A Power_Electronics_Principles_and_Applications_by_Jacob/screenshots/5.png A Power_Electronics_Principles_and_Applications_by_Jacob/screenshots/6.png A sample_notebooks/AviralYadav/Chapter5.ipynb
Diffstat (limited to 'Heat_Transfer_in_SI_units_by_Holman/Chapter11.ipynb')
-rw-r--r--Heat_Transfer_in_SI_units_by_Holman/Chapter11.ipynb254
1 files changed, 254 insertions, 0 deletions
diff --git a/Heat_Transfer_in_SI_units_by_Holman/Chapter11.ipynb b/Heat_Transfer_in_SI_units_by_Holman/Chapter11.ipynb
new file mode 100644
index 00000000..764a2588
--- /dev/null
+++ b/Heat_Transfer_in_SI_units_by_Holman/Chapter11.ipynb
@@ -0,0 +1,254 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 11 Mass Transfer"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 11.1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "value of diffusion coefficient for co2 in air is 0.132 square centimeter/s\n",
+ "From Table A-8,D=0.164 sq cm/s\n",
+ " So,they are in fair agreement\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Example Number 11.1\n",
+ "# diffusion coefficient for co2\n",
+ "\n",
+ "# Variable declaration\n",
+ "\n",
+ "T =298.0\t\t\t# [K] temperature of air\n",
+ "Vco2 = 34.0 \t\t\t# molecular volume of co2\n",
+ "Vair = 29.9 \t\t\t# molecular volume of air\n",
+ "Mco2 = 44.0 \t\t\t# molecular weight of co2\n",
+ "Mair = 28.9 \t\t\t# molecular weight of air\n",
+ "P = 1.0132*10**(5) \t\t# [Pa] atmospheric pressure\n",
+ "\t# using equation (11-2)\n",
+ "#Calculation\n",
+ "D = 435.7*T**(3.0/2.0)*(((1/Mco2)+(1/Mair))**(1.0/2.0))/(P*(Vco2**(1.0/3.0)+Vair**(1.0/3.0))**(2)) \n",
+ "\n",
+ "#Result\n",
+ "print \"value of diffusion coefficient for co2 in air is\",round(D,3),\"square centimeter/s\" \n",
+ "print \"From Table A-8,D=0.164 sq cm/s\\n So,they are in fair agreement\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 11.3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Temperature of dry air is 53.66 degree celsius\n",
+ " recalculate the density at the arithmetic-average temperature between wall and free-stream conditions\n",
+ "With this adjustments these results are RHO = 1.143 kg/m**(3) and Tinf = 55.8 degree celcius\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Example Number 11.3\n",
+ "# Wet-bulb temperature\n",
+ "\n",
+ "#Variable declaration\n",
+ "\n",
+ "Pg = 2107.0\t\t\t# [Pa] from steam table at 18.3 degree celcius\n",
+ "Pw = Pg*18.0 \t\t\t# [Pa]\n",
+ "Rw = 8315.0 \t\t\t# [J/mol K] gas constant\n",
+ "Tw = 273+18.3\t \t\t# [K]\n",
+ "\n",
+ "RHOw = Pw/(Rw*Tw) \t\t# [kg/cubic meter]\n",
+ "\n",
+ "\n",
+ "Cw = RHOw \t\t\t# [kg/cubic meter]\n",
+ "RHOinf = 0.0 \t\t\t# since the free stream is dry air\n",
+ "Cinf = 0.0 \n",
+ "P = 1.01325*10**(5) \t\t# [Pa]\n",
+ "R = 287 \t\t\t# [J /kg  K]\n",
+ "T = Tw \t\t\t\t# [K]\n",
+ "RHO = P/(R*T) \t\t\t# [kg/cubic meter]\n",
+ "\n",
+ "Cp = 1004.0 \t\t\t# [J/kg degree celsius]\n",
+ "Le = 0.845 \n",
+ "Hfg = 2.456*10**(6) \t\t# [J/kg]\n",
+ "#Calculations\n",
+ "# now using equation(11-31)\n",
+ "\n",
+ "Tinf = (((Cw-Cinf)*Hfg)/(RHO*Cp*(Le**(2.0/3.0))))+Tw \t# [K]\n",
+ "Tin = Tinf-273 \t\t\t\t\t# [degree celsius]\n",
+ "\n",
+ "print \"Temperature of dry air is\",round(Tin,2),\"degree celsius\" \n",
+ "print \" recalculate the density at the arithmetic-average temperature between wall and free-stream conditions\" \n",
+ "print \"With this adjustments these results are RHO = 1.143 kg/m**(3) and Tinf = 55.8 degree celcius\"\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 11.4"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Relative humidity is therefore 27.8 percentage\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Example Number 11.4\n",
+ "# relative humidity of air stream\n",
+ "\n",
+ "#Variable declaration\n",
+ "\n",
+ "\t\t# these data were taken from previous example\n",
+ "Rho = 1.212 \t\t\t\t\t# [kg/cubic meter]\n",
+ "Cp = 1004 \t\t\t\t\t# [J/kg]\n",
+ "Le = 0.845 \n",
+ "Tw = 18.3 \t\t\t\t\t# [degree celsius]\n",
+ "Tinf = 32.2 \t\t\t\t\t# [degree celsius]\n",
+ "Rhow = 0.015666 \t\t\t\t# [kg/cubic meter]\n",
+ "Cw = Rhow \t\t\t\t\t# [kg/cubic meter]\n",
+ "\n",
+ "#calculation\n",
+ "\n",
+ "Hfg = 2.456*10**(6) \t\t\t\t# [J/kg]\n",
+ "\t\t# we use eqn 11-31\n",
+ "Cinf = Cw-(Rho*Cp*Le**(2.0/3.0)*(Tinf-Tw)/Hfg) \t# [kg/cubic meter]\n",
+ "Rhoinf = Cinf \t\t\t\t\t# [kg/cubic meter]\n",
+ "Rhog = 0.0342 \t\t\t\t\t# [kg/cubic meter]\n",
+ "RH = (Rhoinf/Rhog)*100 \n",
+ "\n",
+ "#Result\n",
+ "\n",
+ "print \"Relative humidity is therefore\",round(RH,1),\"percentage\" \n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 11.5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Evaporation rate on the land under these conditions is 0.0028 kg/h square meter\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Example Number 11.5\n",
+ "# water evaporation rate\n",
+ "\n",
+ "# Variable declaration\n",
+ "\n",
+ "Ta = 38+273 \t\t\t# [K] temperature of atmospheric air\n",
+ "RH = 0.30 \t\t\t# relative humidity\n",
+ "u = 10.0\t\t\t# [mi/h] mean wind speed\n",
+ "R = 0.287 \t\t\t# universal gas constant\n",
+ "Dw = 0.256*10**(-4) \t\t# [square meter/s] from table A-8(page no.-610)\n",
+ "rho_w = 1000 \t\t\t# [kg/cubic meter]\n",
+ "\t# for this calculation we can make use of equation(11-36). from thermodynamic \tsteam tables\n",
+ "p_g = 6.545 \t\t\t# [kPa] at 38 degree celsius\n",
+ "p_s = p_g \t\t\t# [kPa]\n",
+ "p_w = RH*p_s \t\t\t# [kPa]\n",
+ "p_s = 1.933 \t\t\t# [in Hg]\n",
+ "p_w = 0.580 \t\t\t# [in Hg]\n",
+ "\t# also \n",
+ "u_bar = u*24 \t\t\t# [mi/day]\n",
+ "\t# equation(11-36) yields, with the application of the 0.7 factor\n",
+ "\n",
+ "E_lp = 0.7*(0.37+0.0041*u_bar)*(p_s-p_w)**(0.88) \t\t# [in/day]\n",
+ "E_lp = E_lp*2.54/100 \t\t\t\t\t\t# [m/day]\n",
+ "\n",
+ "\t# noting that standard pan has the diameter of 1.2m, we can use the figure to \t\tcalculate the mass evaporation rate per unit area as\n",
+ "m_dot_w_by_A = E_lp*rho_w/24 \t\t\t\t# [kg/h square meter]\n",
+ "\n",
+ "\n",
+ "\t# as a matter of interest, we might calculate the molecular-diffusion rate of \t\twater vapour from equation(11-35), taking z1 as the 1.5m dimension above the \t\tstandard pan.\n",
+ "z1 = 1.5 \t\t\t\t\t\t\t# [m]\n",
+ "\n",
+ "\t# since rho = p/(R*T)\n",
+ "\t# equation(11-35) can be written as \n",
+ "m_dot_w_by_A1 = 0.622*Dw*p_g*3600/(R*Ta*z1) \t\t\t# [kg/h square meter]\n",
+ "\n",
+ "#Result\n",
+ "\n",
+ "print \"Evaporation rate on the land under these conditions is\",round(m_dot_w_by_A1,4),\"kg/h square meter\"\n",
+ "\n",
+ "\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}