summaryrefslogtreecommitdiff
path: root/Heat_Transfer_by_K._A._Gavhane/Chapter_6.ipynb
diff options
context:
space:
mode:
authorTrupti Kini2016-06-03 23:30:26 +0600
committerTrupti Kini2016-06-03 23:30:26 +0600
commitc81ee7f8d5911775a445ab9e610de10a78eabb44 (patch)
treecac62735297e0fae3a34192c910b2004d5b26a8d /Heat_Transfer_by_K._A._Gavhane/Chapter_6.ipynb
parent17e0dd59b78eb116006038ea64da8f7148da9125 (diff)
downloadPython-Textbook-Companions-c81ee7f8d5911775a445ab9e610de10a78eabb44.tar.gz
Python-Textbook-Companions-c81ee7f8d5911775a445ab9e610de10a78eabb44.tar.bz2
Python-Textbook-Companions-c81ee7f8d5911775a445ab9e610de10a78eabb44.zip
Added(A)/Deleted(D) following books
A Heat_Transfer_by_K._A._Gavhane/Chapter_2.ipynb A Heat_Transfer_by_K._A._Gavhane/Chapter_3.ipynb A Heat_Transfer_by_K._A._Gavhane/Chapter_4.ipynb A Heat_Transfer_by_K._A._Gavhane/Chapter_5.ipynb A Heat_Transfer_by_K._A._Gavhane/Chapter_6.ipynb A Heat_Transfer_by_K._A._Gavhane/README.txt A Heat_Transfer_by_K._A._Gavhane/screenshots/1.png A Heat_Transfer_by_K._A._Gavhane/screenshots/2.png A Heat_Transfer_by_K._A._Gavhane/screenshots/3.png A Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter1.ipynb A Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter1_1.ipynb A Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter2.ipynb A Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter2_1.ipynb A Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter3.ipynb A Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter3_1.ipynb A Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter4.ipynb A Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter4_1.ipynb A Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter5.ipynb A Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter5_1.ipynb A Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter6.ipynb A Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter6_1.ipynb A Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter7.ipynb A Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter7_1.ipynb A Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter8.ipynb A Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter8_1.ipynb A Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter9.ipynb A Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter9_1.ipynb A Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/README.txt A Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/screenshots/1.png A Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/screenshots/1_1.png A Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/screenshots/1_2.png A Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/screenshots/2.png A Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/screenshots/2_1.png A Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/screenshots/3.png A Principles_of_Data_structures_using_C_and_C++_by_Vinu_V_Das/README.txt A Strength_Of_Materials_by_S_S_Bhavikatti/chapter_no.10_5.ipynb A Strength_Of_Materials_by_S_S_Bhavikatti/chapter_no.2_5.ipynb A Strength_Of_Materials_by_S_S_Bhavikatti/chapter_no.3_5.ipynb A Strength_Of_Materials_by_S_S_Bhavikatti/chapter_no.4_5.ipynb A Strength_Of_Materials_by_S_S_Bhavikatti/chapter_no.5_5.ipynb A Strength_Of_Materials_by_S_S_Bhavikatti/chapter_no.6_5.ipynb A Strength_Of_Materials_by_S_S_Bhavikatti/chapter_no.7_5.ipynb A Strength_Of_Materials_by_S_S_Bhavikatti/chapter_no.8_5.ipynb A Strength_Of_Materials_by_S_S_Bhavikatti/chapter_no.9_5.ipynb A Strength_Of_Materials_by_S_S_Bhavikatti/screenshots/B.M.D_1_1.png A Strength_Of_Materials_by_S_S_Bhavikatti/screenshots/S.F.D_1.png A Strength_Of_Materials_by_S_S_Bhavikatti/screenshots/S.F.D_3_1.png A sample_notebooks/VinayBadhan/chapter7.ipynb
Diffstat (limited to 'Heat_Transfer_by_K._A._Gavhane/Chapter_6.ipynb')
-rw-r--r--Heat_Transfer_by_K._A._Gavhane/Chapter_6.ipynb1098
1 files changed, 1098 insertions, 0 deletions
diff --git a/Heat_Transfer_by_K._A._Gavhane/Chapter_6.ipynb b/Heat_Transfer_by_K._A._Gavhane/Chapter_6.ipynb
new file mode 100644
index 00000000..6cbb928f
--- /dev/null
+++ b/Heat_Transfer_by_K._A._Gavhane/Chapter_6.ipynb
@@ -0,0 +1,1098 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter6: Evaporation"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example no:6.1,Page no:6.19"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Boiling point of elevation of the solution is 7 K\n",
+ "Driving forve for heat transfer is 19 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Boiling point Elevation\n",
+ "#Variable declaration\n",
+ "T=380 #B.P of solution[K]\n",
+ "T_dash=373 #B.P of water [K]\n",
+ "Ts=399 #Saturating temperature in [K]\n",
+ "#Calculation\n",
+ "BPE=T-T_dash #Boiling point elevation in [K]\n",
+ "DF=Ts-T #Driving force in [K]\n",
+ "#Result\n",
+ "print\"Boiling point of elevation of the solution is\",BPE,\"K\"\n",
+ "print\"Driving forve for heat transfer is\",DF,\"K\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example no:6.2 ,Page no:6.20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 38,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Capacity of evaporator is 8400.0 kg/h\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Capacity of evaporator\n",
+ "#Variable declaration\n",
+ "m_dot=10000 #Weak liquor entering in [kg/h]\n",
+ "fr_in=0.04 #Fraciton of caustic soda IN i.e 4%\n",
+ "fr_out=0.25 #Fraciton of caustic soda OUT i.e 25%\n",
+ "#Let mdash_dot be the kg/h of thick liquor leaving\n",
+ "\n",
+ "#Calculation\n",
+ "mdash_dot=fr_in*m_dot/fr_out #[kg/h]\n",
+ "\n",
+ "#Overall material balance\n",
+ "#kg/h of feed=kg/h of water evaporated +kg/h of thick liquor\n",
+ "#we=water evaporated in kg/h\n",
+ "#Therefore\n",
+ "we=m_dot-mdash_dot #[kg/h]\n",
+ "\n",
+ "#Result\n",
+ "\n",
+ "print\"Capacity of evaporator is\",we,\"kg/h\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example no: 6.3,Page no:6.20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "ANSWER:Economoy pf evaporator is 0.808\n",
+ "Heat tarnsfer area to be provided = 57.07 m^2\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Economy of Evaporator\n",
+ "#Variable declaration\n",
+ "ic=0.05 #Initial concentration (5%)\n",
+ "fc=0.2 #Final concentration (20%)\n",
+ "T_dash=373 #B.P of water in [K]\n",
+ "bpe=5 #Boiling point elevation[K]\n",
+ "mf_dot=5000 #[Basis] feed to evaporator in [kg/h]\n",
+ "\n",
+ "#Calculation\n",
+ "\n",
+ "#Material balance of solute\n",
+ "mdash_dot=ic*mf_dot/fc #[kg/h]\n",
+ "#Overall material balance\n",
+ "mv_dot=mf_dot-mdash_dot #Water evaporated [kg/h]\n",
+ "lambda_s=2185 #Latent heat of condensation of steam[kJ/kg]\n",
+ "lambda_v=2257 #Latent heat of vaporisation of water [kJ/kg]\n",
+ "lambda1=lambda_v #[kJ/kg]\n",
+ "T=T_dash+bpe #Temperature of thick liquor[K]\n",
+ "Tf=298 #Temperature of feed [K]\n",
+ "Cpf=4.187 #Sp. heat of feed in [kJ/kg.K]\n",
+ "#Heat balance over evaporator=ms_dot\n",
+ "ms_dot=(mf_dot*Cpf*(T-Tf)+mv_dot*lambda1)/lambda_s #Steam consumption [kg/h]\n",
+ "Eco=mv_dot/ms_dot #Economy of evaporator\n",
+ "Ts=399 #Saturation temperature of steam in [K]\n",
+ "dT=Ts-T #Temperature driving force [K] \n",
+ "U=2350 #[W/sq m.K]\n",
+ "Q=ms_dot*lambda_s #Rate of heat transfer in [kJ/kg]\n",
+ "Q=Q*1000/3600 #[J/s]=[W]\n",
+ "A=Q/(U*dT) #Heat transfer area in [sq m]\n",
+ "\n",
+ "#Result\n",
+ "print\"ANSWER:Economoy pf evaporator is \",round(Eco,3)\n",
+ "print\"Heat tarnsfer area to be provided = \",round(A,2),\"m^2\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example no: 6.4,Page no:6.22"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "When Feed introduced at 293 K ,Steam economy is 0.87\n",
+ "ANSWER-(i) At 293 K,Heat transfer area required is 83.16 m^2\n",
+ "ANSWER-(ii) When T=308 K,Economy of evaporator is 0.896\n",
+ "ANSWER-(iii) When T=308 K,Heat transfer Area required is 80.71 m^2\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Steam economy\n",
+ "\n",
+ "#Variable declaration\n",
+ "\n",
+ "Cpf=3.98 #Specific heat of feed in kJ/(kg.K)\n",
+ "lambda_s=2202 #Latent heat of conds of heat at 0.2MPa in [kJ/kg]\n",
+ "lambda1=2383 #Latent heat of vaporisation of water aty 323 [kJ/kg\n",
+ "ic=0.1 #Initial concentration of soilds in [%]\n",
+ "fc=0.5 #Final concentration\n",
+ "m_dot=30000 #Feed to evaporator in [kg/h]\n",
+ "\n",
+ "#Calculation\n",
+ "\n",
+ "mdash_dot=ic* m_dot/fc #Mass flow rate of thick liquor in [kg/h]\n",
+ "mv_dot=m_dot-mdash_dot #Water evaporated in [kg/h]\n",
+ "\n",
+ "#Case 1: Feed at 293K\n",
+ "mf_dot=30000 #[kg/h]\n",
+ "mv_dot=24000 #[kg/h]\n",
+ "Cpf=3.98 #[kJ/(kg.K)]\n",
+ "Ts=393 #Saturation temperature of steam in [K]\n",
+ "T=323 #Boiling point of solution [K]\n",
+ "lambda_s=2202 #Latent heat of condensation [kJ/kg]\n",
+ "lambda1=2383 #Latent heat of vaporisation[kJ/kg]\n",
+ "Tf=293 #Feed temperature\n",
+ "#Enthalpy balance over the evaporator:\n",
+ "ms_dot=(mf_dot*Cpf*(T-Tf)+mv_dot*lambda1)/lambda_s #Steam consumption[kg/h]\n",
+ "eco=(mv_dot/ms_dot) #Steam economy\n",
+ "print\"When Feed introduced at 293 K ,Steam economy is \",round(eco,2) \n",
+ "dT=Ts-T #[K]\n",
+ "U=2900 #[W/sq m.K]\n",
+ "Q=ms_dot*lambda_s #Heat load =Rate of heat transfer in [kJ/h]\n",
+ "Q=Q*1000/3600 #[J/s]\n",
+ "A=Q/(U*dT) #Heat transfer area required [sq m]\n",
+ "\n",
+ "#Result\n",
+ "print\"ANSWER-(i) At 293 K,Heat transfer area required is\",round(A,2),\"m^2\"\n",
+ "\n",
+ "#Case2: Feed at 308K\n",
+ "Tf=308 #[Feed temperature][K]\n",
+ "\n",
+ "#Calculation\n",
+ "ms_dot=(mf_dot*Cpf*(T-Tf)+mv_dot*lambda1)/lambda_s #Steam consumption in [kg/h]\n",
+ "eco=mv_dot/ms_dot #Economy of evaporator\n",
+ "Q=ms_dot*lambda_s #[kJ/h]\n",
+ "Q=Q*1000/3600 #[J/s]\n",
+ "A=Q/(U*dT) #Heat transfer area required [sq m]\n",
+ "#Result\n",
+ "print\"ANSWER-(ii) When T=308 K,Economy of evaporator is \",round(eco,3)\n",
+ "print\"ANSWER-(iii) When T=308 K,Heat transfer Area required is \",round(A,2),\"m^2\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example no: 6.5,Page no:6.24"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Heat transfer area to be provided is 45.33 m^2\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Evaporator economy\n",
+ "#Variable declaration\n",
+ "m_dot=5000 #Feed to the evaporator [kg/h]\n",
+ "Cpf=4.187 #Cp of feed in [kJ/kg.K]\n",
+ "ic=0.10 #Initial concentration\n",
+ "fc=0.4 #Final concentration\n",
+ "lambda_s=2162 #Latent heat of condensing steam [kJ/kg]\n",
+ "P=101.325 #Pressure in the evaporator[kPa]\n",
+ "bp=373 #[K]\n",
+ "Hv=2676 #Enthalpy of water vapor [kJ/kg]\n",
+ "H_dash=419 #[kJ/kg]\n",
+ "Hf=170 #[kJ/kg]\n",
+ "U=1750 #[W/sq m.K]\n",
+ "dT=34 #[K]\n",
+ "#Calculation\n",
+ "mdash_dot=m_dot*ic/fc #[kg/h] of thick liquor\n",
+ "mv_dot=m_dot-mdash_dot #Water evaporated in[kg/h]\n",
+ "ms_dot=(mv_dot*Hv+mdash_dot*H_dash-m_dot*Hf)/lambda_s #Steam consumption in [kg/h]\n",
+ "eco=mv_dot/ms_dot #Steam economy of evaporator\n",
+ "Q=ms_dot*lambda_s #[kJ/h]\n",
+ "Q=Q*1000/3600 #[J/s]\n",
+ "A=Q/(U*dT) #[sq m]\n",
+ "#Result\n",
+ "print\"Heat transfer area to be provided is\",round(A,2),\"m^2\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example no:6.6 ,Page no:6.26"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 54,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Steam economy is 0.784\n",
+ "Overall heat transfer coefficient is 2862.0 W/m^2.K\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Single effect Evaporator\n",
+ "#Variable declaration\n",
+ "mf_dot=5000 #[kg/h]\n",
+ "ic=0.01 #Initial concentration [kg/h]\n",
+ "fc=0.02 #Final concentration [kg/h]\n",
+ "T=373 #Boiling pt of saturation in [K]\n",
+ "Ts=383 #Saturation temperature of steam in [K] \n",
+ "Hf=125.79 #[kJ/kg]\n",
+ "Hdash=419.04 #[kJ/kg]\n",
+ "Hv=2676.1 #[kJ/kg]\n",
+ "lambda_s=2230.2 #[kJ/kg]\n",
+ "#Calculation\n",
+ "mdash_dot=ic*mf_dot/fc #[kg/h]\n",
+ "mv_dot=mf_dot-mdash_dot #Water evaporated in [kg/h]\n",
+ "ms_dot=(mdash_dot*Hdash+mv_dot*Hv-mf_dot*Hf)/lambda_s #Steam flow rate in [kg/h]\n",
+ "eco=mv_dot/ms_dot #Steam economy\n",
+ "Q=ms_dot*lambda_s #Rate of heat transfer in [kJ/h]\n",
+ "Q=Q*1000/3600 #[J/s]\n",
+ "dT=Ts-T #[K]\n",
+ "\n",
+ "A=69 #Heating area of evaporator in [sq m]\n",
+ "U=Q/(A*dT) #Overall heat transfer coeff in [W/sq m.K]\n",
+ "\n",
+ "#Result\n",
+ "print\"Steam economy is\",round(eco,3)\n",
+ "print\"Overall heat transfer coefficient is\",round(U),\"W/m^2.K\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example no: 6.7,Page no:6.27"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The heat transfer area in this case is 18.7 m^2\n",
+ "NOTE :There is a calculation mistake in the book at the line12 of this code,ms_dot value is written as 2320.18,which is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Single efect evaporator reduced pressure\n",
+ "#From previous example:\n",
+ "#Variable declaration\n",
+ "mf_dot=5000 #[kg/h]\n",
+ "Hf=125.79 #[kJ/kg]\n",
+ "lambda_s=2230.2 #[kJ/kg]\n",
+ "mdash_dot=2500 #[kg/h]\n",
+ "Hdash=313.93 #[kJ/kg]\n",
+ "mv_dot=2500 #[kg/h]\n",
+ "Hv=2635.3 #[kJ/kg]\n",
+ "U=2862 #[W/sq m.K]\n",
+ "dT=35 #[K]\n",
+ "#Calculation\n",
+ "ms_dot=(mdash_dot*Hdash+mv_dot*Hv-mf_dot*Hf)/lambda_s #Steam flow rate in [kg/h]\n",
+ "Q=ms_dot*lambda_s #[kJ/h]\n",
+ "Q=Q*1000/3600 #[W]\n",
+ "A=Q/(U*dT) #[sq m]\n",
+ "#Result\n",
+ "print\"The heat transfer area in this case is\",round(A,2),\"m^2\"\n",
+ "print\"NOTE :There is a calculation mistake in the book at the line12 of this code,ms_dot value is written as 2320.18,which is wrong\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example no: 6.8,Page no:6.27"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 44,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Mass flow rate of product is 3629.9 kg/h\n",
+ "The product concentration is 1.653 % by weight\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Mass flow rate\n",
+ "#Variable declaration\n",
+ "mf_dot=6000 #Feed rate in [kg/h]\n",
+ "#Taking the given values from previous example(6.6)\n",
+ "Hf=125.79 #[kJ/kg]\n",
+ "ms_dot=3187.56 #[kg/h]\n",
+ "lambda_s=2230.2 #[kJ/kg]\n",
+ "Hdash=419.04 #[kJ/kg]\n",
+ "Hv=2676.1 #[kJ/kg]\n",
+ "#Calculation\n",
+ "mv_dot=(mf_dot*Hf+ms_dot*lambda_s-6000*Hdash)/(Hv-Hdash) #Water evaporated in [kg/h]\n",
+ "mdash_dot=6000-mv_dot #Mass flow rate of product [kg/h]\n",
+ "x=(0.01*mf_dot)*100/mdash_dot #Wt % of solute in products\n",
+ "#Result\n",
+ "print\"Mass flow rate of product is\",round(mdash_dot,1),\"kg/h\"\n",
+ "print\"The product concentration is\",round(x,3),\"% by weight\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example no:6.9 ,Page no:6.28"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 45,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Heat load is 11226389.0 W or J/s\n",
+ "Economy of evaporator is 0.811\n",
+ "NOTE:Again there is a calcualtion mistake in book at line 19 of code,it is written as 4041507.1 instead of 40415071\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Heat load in single effect evaporator\n",
+ "#Variable declaration\n",
+ "Tf=298 #Feed temperature in [K]\n",
+ "T_dash=373 #[K]\n",
+ "Cpf=4 #[kJ/kg.K]\n",
+ "fc=0.2 #Final concentration of salt\n",
+ "ic=0.05 #Initial concentration\n",
+ "mf_dot=20000 #[kg/h] Feed to evaporator\n",
+ "#Calculation\n",
+ "mdash_dot=ic*mf_dot/fc #Thick liquor [kg/h]\n",
+ "mv_dot=mf_dot-mdash_dot #Water evaporated in [kg/h]\n",
+ "lambda_s=2185 #[kJ/kg]\n",
+ "lambda1=2257 #[kJ/kg]\n",
+ "bpr=7 #Boiling point rise[K]\n",
+ "T=T_dash+bpr #Boiling point of solution in[K]\n",
+ "Ts=39 #Temperature of condensing steam in [K]\n",
+ "ms_dot=(mf_dot*Cpf*(T-Tf)+mv_dot*lambda1)/lambda_s #Steam consumption in [kg/h]\n",
+ "eco=mv_dot/ms_dot #Economy of evaporator \n",
+ "Q=ms_dot*lambda_s #[kJ/h]\n",
+ "Q=Q*1000/3600 #[J/s]\n",
+ "#Result\n",
+ "print\"Heat load is\",round(Q),\"W or J/s\"\n",
+ "print\"Economy of evaporator is \",round(eco,3)\n",
+ "print\"NOTE:Again there is a calcualtion mistake in book at line 19 of code,it is written as 4041507.1 instead of 40415071\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example no:6.10 ,Page no:6.32"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Boiling point of solution in first effect = 369.55 K\n",
+ "Boiling point of solution in second effect = 354.6 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Triple efect evaporator\n",
+ "#Variable declaration\n",
+ "Ts=381.3 #[K]\n",
+ "dT=56.6 #[K]\n",
+ "U1=2800.0 #Overall heat transfer coeff in first effect\n",
+ "U2=2200.0 #Overall heat transfer coeff in first effect\n",
+ "U3=1100.0 #Overall heat transfer coeff in first effect\n",
+ "#Calculation\n",
+ "dT1=dT/(1+(U1/U2)+(U1/U3)) #/[K]\n",
+ "dT2=dT/(1+(U2/U1)+(U2/U3)) #/[K]\n",
+ "dT3=dT-(dT1+dT2) #[K]\n",
+ "#dT1=Ts-T1_dash #[K]\n",
+ "T1dash=Ts-dT1\n",
+ "#dT2=T1_dash-T2_dash #[K]\n",
+ "T2_dash=T1dash-dT2 #[K]\n",
+ "#Result\n",
+ "print\"Boiling point of solution in first effect =\",round(T1dash,2),\"K\"\n",
+ "print\"Boiling point of solution in second effect =\",round(T2_dash,1),\"K\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example no:6.11,Page no:6.33"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "A1( 24.9 )=A2( 23.0 ),So the area in each effect can be 24.9 m^2\n",
+ "Heat transfer surface in each effect is 24.9 m^2\n",
+ "Steam consumption= 5517.0 (approx)kg/h\n",
+ "Evaporation in the first effect is 4343.0 kg/h\n",
+ "Evaporation in 2nd effect is 3742.0 kg/h\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Double effect evaporator\n",
+ "#Variable declaration\n",
+ "mf_dot=10000.0 #[kg/h] of feed\n",
+ "ic=0.09 #Initial concentration \n",
+ "fc=0.47 #Final concentration\n",
+ "m1dot_dash=ic*mf_dot/fc #[kg/h]\n",
+ "Ps=686.616 #Steam pressure [kPa.g]\n",
+ "Ps=Ps+101.325 #[kPa]\n",
+ "Ts=442.7 #Saturation temperature in [K]\n",
+ "P2=86.660 #Vacuum in second effect in [kPa]\n",
+ "U1=2326.0 #Overall heat transfer in first effect [W/sq m.K]\n",
+ "U2=1744.5 #Overall heat transfer in 2nd effect [W/sqm.K]\n",
+ "P2_abs=101.325-P2 #Absolute pressure in second effect[kPa]\n",
+ "T2=326.3 #Temperature in 2nd effect in [K]\n",
+ "dT=Ts-T2 #[K]\n",
+ "Tf=309.0 #Feed temperature in[K]\n",
+ "T=273.0 #[K]\n",
+ "Cpf=3.77 #kJ/kg.K Specific heat for all caustic streams\n",
+ "#Q1=Q2\n",
+ "#U1*A1*dT1=U2*A2*dT2\n",
+ "#Calculation\n",
+ "dT2=dT/1.75 #[K]\n",
+ "dT1=(U2/U1)*dT2 #[K]\n",
+ "#Since there is no B.P.R\n",
+ "Tv1=Ts-dT1 #Temperature in vapor space of first effect in [K]\n",
+ "Tv2=Tv1-dT2 #Second effect [K]\n",
+ "Hf=Cpf*(Tf-T) #Feed enthalpy[kJ/kg]\n",
+ "H1dash=Cpf*(Tv1-T) #Enthalpy of final product[kJ/kg]\n",
+ "H2dash=Cpf*(Tv2-T) #kJ/kg\n",
+ "#For steam at 442.7 K\n",
+ "lambda_s=2048.7 #[kJ/kg]\n",
+ "#For vapour at 392.8 K\n",
+ "Hv1=2705.22 #[kJ/kg]\n",
+ "lambda_v1=2202.8 #[kJ/kg]\n",
+ "#for vapour at 326.3 K:\n",
+ "Hv2=2597.61 #[kJ/kg]\n",
+ "lambda_v2=2377.8 #[kJ/kg]\n",
+ "\n",
+ "#Overall material balance:\n",
+ "mv_dot=mf_dot-m1dot_dash #[kg/h]\n",
+ "\n",
+ "#Equation 4 becomes:\n",
+ "#mv1_dot*lambda_v1+mf_dot*Hf=(mv_dot-mv1_dot)*Hv2+(mf_dot-mv2_dot)*H2_dash\n",
+ "mv1_dot=(H2dash*(mf_dot-mv_dot)-mf_dot*Hf+mv_dot*Hv2)/(Hv2+lambda_v1-H2dash) \n",
+ "mv2_dot=mv_dot-mv1_dot #[kg/h]\n",
+ "\n",
+ "#From equation 2\n",
+ "\n",
+ "m2dot_dash=m1dot_dash+mv1_dot #First effect material balance[kg/h]\n",
+ "ms_dot=(mv1_dot*Hv1+m1dot_dash*H1dash-m2dot_dash*H2dash)/lambda_s #[kg/h]\n",
+ "\n",
+ "\n",
+ "#Heat transfer Area\n",
+ "#First effect\n",
+ "A1=ms_dot*lambda_s*(10.0**3.0)/(3600.0*U1*dT1) #[sq m]\n",
+ "\n",
+ "#Second effect\n",
+ "lambda_v1=lambda_v1*(10**3.0)/3600.0\n",
+ "A2=mv1_dot*lambda_v1/(U2*dT2) #[sq m]\n",
+ "\n",
+ "#Since A1 not= A2\n",
+ "\n",
+ "#SECOND TRIAL\n",
+ "Aavg=(A1+A2)/2 #[sq m]\n",
+ "dT1_dash=dT1*A1/Aavg #[K]\n",
+ "dT2_dash=dT-dT1 #/[K]\n",
+ "\n",
+ "#Temperature distribution\n",
+ "Tv1=Ts-dT1_dash #[K]\n",
+ "Tv2=Tv1-dT2_dash #[K]\n",
+ "Hf=135.66 #[kJ/kg]\n",
+ "H1dash=Cpf*(Tv1-T) #[kJ/kg]\n",
+ "H2dash=200.83 #[kJ/kg]\n",
+ "\n",
+ "#Vapour at 388.5 K\n",
+ "Hv1=2699.8 #[kJ/kg]\n",
+ "lambda_v1=2214.92 #[kJ/kg]\n",
+ "mv1_dot=(H2dash*(mf_dot-mv_dot)-mf_dot*Hf+mv_dot*Hv2)/(Hv2+lambda_v1-H2dash) \n",
+ "mv2_dot=mv_dot-mv1_dot #[kg/h]\n",
+ "\n",
+ "#First effect Energy balance\n",
+ "ms_dot=((mv1_dot*Hv1+m1dot_dash*H1dash)-(mf_dot-mv2_dot)*H2dash)/lambda_s #[kg/h]\n",
+ "\n",
+ "#Area of heat transfer\n",
+ "lambda_s=lambda_s*1000.0/3600.0 \n",
+ "A1=ms_dot*lambda_s/(U1*dT1_dash) #[sq m]\n",
+ "\n",
+ "#Second effect:\n",
+ "A2=(mv1_dot*lambda_v1*1000)/(3600.0*U2*dT2_dash) #[sq m]\n",
+ "\n",
+ "#Result\n",
+ "\n",
+ "print\"A1(\",round(A1,1),\")=A2(\",round(A2),\"),So the area in each effect can be\",round(A1,1),\"m^2\"\n",
+ "print\"Heat transfer surface in each effect is\",round(A1,1),\"m^2\"\n",
+ "print\"Steam consumption=\",round(ms_dot),\"(approx)kg/h\"\n",
+ "print\"Evaporation in the first effect is\",round(mv1_dot),\"kg/h\"\n",
+ "print\"Evaporation in 2nd effect is\",round(mv2_dot),\"kg/h\" \n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example no:6.12 ,Page no:6.37"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "ANSWER:Area in each effect 200.2 sq m\n",
+ "Steam economy is 2.55\n",
+ "Cooling water rate is 66.63 t/h\n"
+ ]
+ }
+ ],
+ "source": [
+ "#lye in Triple effect evaporator\n",
+ "#Variable declaration\n",
+ "Tf=353.0 #[K]\n",
+ "T=273.0 #[K]\n",
+ "mf_dot=10000.0 #Feed [kg/h]\n",
+ "ic=0.07 #Initial conc of glycerine \n",
+ "fc=0.4 #FinaL CONC OF GLYCERINE\n",
+ "#Overall glycerine balance\n",
+ "P=313.0 #Steam pressure[kPa]\n",
+ "Ts=408.0 #[from steam table][K]\n",
+ "P1=15.74 #[Pressure in last effect][kPa]\n",
+ "Tv3=328.0 #[Vapour temperature]\n",
+ "#Calculation\n",
+ "m3dot_dash=(ic/fc)*mf_dot #[kg/h]\n",
+ "mv_dot=mf_dot-m3dot_dash #/[kg/h]\n",
+ "dT=Ts-Tv3 #Overall apparent [K]\n",
+ "bpr1=10.0 #[K]\n",
+ "bpr2=bpr1 \n",
+ "bpr3=bpr2 \n",
+ "sum_bpr=bpr1+bpr2+bpr3 #[K]\n",
+ "dT=dT-sum_bpr #True_Overall\n",
+ "dT1=14.5 #[K]\n",
+ "dT2=16.0 #[K]\n",
+ "dT3=19.5 #[K]\n",
+ "Cpf=3.768 #[kJ/(kg.K)]\n",
+ "#Enthalpies of various streams\n",
+ "Hf=Cpf*(Tf-T) #[kJ/kg]\n",
+ "H1=Cpf*(393.5-T) #[kJ/kg]\n",
+ "H2=Cpf*(367.5-T) #[kJ/kg]\n",
+ "H3=Cpf*(338.0-T) #[kJ/kg]\n",
+ "#For steam at 40K\n",
+ "lambda_s=2160.0 #[kJ/kg]\n",
+ "Hv1=2692.0 #[kJ/kg]\n",
+ "lambda_v1=2228.3 #[kJ/kg]\n",
+ "Hv2=2650.8 #[kJ/kg]\n",
+ "lambda_v2=2297.4 #[kJ/kg]\n",
+ "Hv3=2600.5 #[kJ/kg]\n",
+ "lambda_v3=2370.0 #[kJ/kg]\n",
+ "\n",
+ "#MATERIAL AND EBERGY BALANCES\n",
+ "#First effect\n",
+ "#Material balance\n",
+ "\n",
+ "#m1dot_dash=mf_dot-mv1_dot\n",
+ "#m1dot_dash=1750+mv2_dot+mv3_dot \n",
+ "\n",
+ "#Energy balance\n",
+ "#ms_dot*lambda_s+mf_Dot*hf=mv1_dot*Hv1+m1dot_dash*H1\n",
+ "#2160*ms_dot+2238*(mv2_dot+mv3_dot)=19800500\n",
+ "\n",
+ "#Second effect\n",
+ "#Energy balance:\n",
+ "#mv3_dot=8709.54-2.076*mv2_dot\n",
+ "\n",
+ "#Third effect:\n",
+ "#m2dot_dash=mv3_dot+m3dot_dash\n",
+ "#m2dot_dash=mv3_dot+1750\n",
+ "#From eqn 8 we get\n",
+ "mv2_dot=(8709.54*2600.5+1750*244.92-8790.54*356.1-356.1*1750)/(-2.076*356.1+2297.4+2600.5*2.076)\n",
+ "#From eqn 8:\n",
+ "mv3_dot=8709.54-2.076*mv2_dot #[kg/h]\n",
+ "mv1_dot=mv_dot-(mv2_dot+mv3_dot) #[kg/h]\n",
+ "#From equation 4:\n",
+ "#m1dot_dash=mf_dot-mv1_dot\n",
+ "#ms_dot=(mv1_dot*Hv1+m1dot_dash*H1-mf_dot*Hf)/lambda_s #[kg/h]\n",
+ "ms_dot=(19800500.0-2238.0*(mv2_dot+mv3_dot))/2160.0 #[kg/h]\n",
+ "\n",
+ "#Heat transfer Area is\n",
+ "U1=710.0 #[W/sq m.K]\n",
+ "U2=490.0 #[W/sq m.K]\n",
+ "U3=454.0 #[W/sq m.K]\n",
+ "A1=(ms_dot*lambda_s*1000.0)/(3600.0*U1*dT1) #[sq m]\n",
+ "A2=mv1_dot*lambda_v1*1000.0/(3600.0*U2*dT2) #[sq m]\n",
+ "A3=mv2_dot*lambda_v2*1000.0/(3600.0*U3*dT3) #[sq m]\n",
+ "#The deviaiton is within +-10%\n",
+ "#Hence maximum A1 area can be recommended\n",
+ "\n",
+ "eco=(mv_dot/ms_dot) #[Steam economy]\n",
+ "\n",
+ "Qc=mv3_dot*lambda_v3 #[kJ/h]\n",
+ "dT=25.0 #Rise in water temperature\n",
+ "Cp=4.187\n",
+ "mw_dot=Qc/(Cp*dT)\n",
+ "#Result\n",
+ "print\"ANSWER:Area in each effect\",round(A3,1),\"sq m\" \n",
+ "print\"Steam economy is\",round(eco,2) \n",
+ "print\"Cooling water rate is\",round(mw_dot/1000,2),\"t/h\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example no:6.13 ,Page no:6.42"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Steam economy is 2.0\n",
+ "Area pf heat transfer in each effect is 65.3 m^2\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Triple effect unit\n",
+ "#Variable declaration\n",
+ "Cpf=4.18 #[kJ/kg.K]\n",
+ "dT1=18 #[K]\n",
+ "dT2=17 #[K]\n",
+ "dT3=34 #[K]\n",
+ "mf_dot=4 #[kg/s]\n",
+ "Ts=394 #[K]\n",
+ "bp=325 #Bp of water at 13.172 kPa [K]\n",
+ "dT=Ts-bp #[K]\n",
+ "lambda_s=2200 #[kJ/kg]\n",
+ "T1=Ts-dT1 #[K]\n",
+ "lambda1=2249 #[kJ/kg]\n",
+ "lambda_v1=lambda1 #[kJ/kg]\n",
+ "#Calculation\n",
+ "T2=T1-dT2 #[K]\n",
+ "lambda2=2293 #[kJ/kg]\n",
+ "lambda_v2=lambda2 #[kJ/kg]\n",
+ "\n",
+ "T3=T2-dT3 #[K]\n",
+ "lambda3=2377 #[kJ/kg]\n",
+ "lambda_v3=lambda3 #[kJ/kg]\n",
+ "\n",
+ "ic=0.1 #Initial conc of solids\n",
+ "fc=0.5 #Final conc of solids\n",
+ "m3dot_dash=(ic/fc)*mf_dot #[kg/s]\n",
+ "mv_dot=mf_dot-m3dot_dash #Total evaporation in [kg/s]\n",
+ "#Material balance over first effect\n",
+ "#mf_dot=mv1_dot_m1dot_dash\n",
+ "#Energy balance:\n",
+ "#ms_dot*lambda_s=mf_dot*(Cpf*(T1-Tf)+mv1_dot*lambda_v1)\n",
+ "\n",
+ "#Material balance over second effect\n",
+ "#m1dot_dash=mv2_dot+m2dot_dash\n",
+ "#Enthalpy balance:\n",
+ "#mv1_dot*lambda_v1+m1dot_dash(cp*(T1-T2)=mv2_dot*lambda_v2)\n",
+ "\n",
+ "#Material balance over third effect\n",
+ "#m2dot_dash=mv3_dot+m3dot+dash\n",
+ "\n",
+ "#Enthalpy balance:\n",
+ "#mv2_lambda_v2+m2dot_dash*cp*(T2-T3)=mv3_dot*lambda_v3\n",
+ "294\n",
+ "mv2_dot=3.2795/3.079 #[kg/s]\n",
+ "mv1_dot=1.053*mv2_dot-0.1305 #[kg/s]\n",
+ "mv3_dot=1.026*mv2_dot+0.051 #[kg/s]\n",
+ "ms_dot=(mf_dot*Cpf*(T1-294)+mv1_dot*lambda_v1)/lambda_s #[kg/s]\n",
+ "eco=mv_dot/ms_dot #Steam economy \n",
+ "eco=round(eco)\n",
+ "U1=3.10 #[kW/sq m.K]\n",
+ "U2=2 #[kW/sq m.K]\n",
+ "U3=1.10 #[kW/sq m.K]\n",
+ "#First effect:\n",
+ "A1=ms_dot*lambda_s/(U1*dT1) #[sq m]\n",
+ "A2=mv1_dot*lambda_v1/(U2*dT2) #[sq m]\n",
+ "A3=mv2_dot*lambda_v2/(U3*dT3) #[sq m]\n",
+ "#Areas are calculated witha deviation of +-10%\n",
+ "#Result\n",
+ "print\"Steam economy is\",eco \n",
+ "print\"Area pf heat transfer in each effect is\",round(A3,1),\"m^2\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example no: 6.14,Page no:6.45"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Steam economy is 1.957 evaporation/kg steam\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Quadruple effect evaporator\n",
+ "#Variable declaration\n",
+ "mf_dot=1060 #[kg/h]\n",
+ "ic=0.04 #Initial concentration\n",
+ "fc=0.25 #Final concentration\n",
+ "m4dot_dash=(ic/fc)*mf_dot #[kg/h]\n",
+ "#Total evaporation=\n",
+ "mv_dot=mf_dot-m4dot_dash #[kg/h]\n",
+ "\n",
+ "#Fromsteam table:\n",
+ "P1=370 #[kPa.g]\n",
+ "T1=422.6 #[K]\n",
+ "lambda1=2114.4 #[kJ/kg]\n",
+ "\n",
+ "P2=235 #[kPa.g]\n",
+ "T2=410.5 #[K]\n",
+ "lambda2=2151.5 #[kJ/kg]\n",
+ "\n",
+ "P3=80 #[kPa.g]\n",
+ "T3=390.2 #[K]\n",
+ "lambda3=2210.2 #[kJ/kg]\n",
+ "\n",
+ "P4=50.66 #[kPa.g]\n",
+ "T4=354.7 #[K]\n",
+ "lambda4=2304.6 #[kJ/kg]\n",
+ "\n",
+ "P=700 #Latent heat of steam[kPa .g]\n",
+ "lambda_s=2046.3 #[kJ/kg]\n",
+ "\n",
+ "#Calculation\n",
+ "#FIRST EFFECT\n",
+ "#Enthalpy balance:\n",
+ "#ms_dot=mf_dot*Cpf*(T1-Tf)+mv1_dot*lambda1\n",
+ "#ms_dot=1345.3-1.033*m1dot_dash\n",
+ "\n",
+ "#SECOND EFFECT\n",
+ "#m1dot_dash=m2dot_dash+mdot_v2\n",
+ "#Enthalpy balance:\n",
+ "#m1dot_dash=531.38+0.510*m2dot_dash\n",
+ "\n",
+ "#THIRD EFFECT\n",
+ "#Material balance:\n",
+ "#m2dot_dash-m3dot_dash+mv3_dot\n",
+ "\n",
+ "#FOURTH EFFECT\n",
+ "#m3dot_dash=m4dot_dash+mv4_dot\n",
+ "mv4dot_dash=169.6 #[kg/h]\n",
+ "m3dot_dash=416.7 #[kg/h]\n",
+ "\n",
+ "#From eq n 4:\n",
+ "m2dot_dash=-176.84+1.98*m3dot_dash #[kg/h]\n",
+ "\n",
+ "#From eqn 2:\n",
+ "m1dot_dash=531.38+0.510*m2dot_dash #[kg/h]\n",
+ "\n",
+ "#From eqn 1:\n",
+ "ms_dot=1345.3-1.033*m1dot_dash\n",
+ "eco=mv_dot/ms_dot #[kg evaporation /kg steam]\n",
+ "#Result\n",
+ "print\"Steam economy is\",round(eco,3),\"evaporation/kg steam\" \n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example no:6.15 ,Page no:6.48"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "NOTE:In textbook this value of hio is wrongly calculated as 3975.5..So we will take this\n",
+ "Steam consumption is 24531.0 kg/h\n",
+ "Capacity is 20000.0 kg/h\n",
+ "Steam economy is 0.815\n",
+ " No. of tubes required is 722.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Single effect Calendria\n",
+ "import math\n",
+ "#Variable declaration\n",
+ "m1_dot=5000 #[kg/h]\n",
+ "ic=0.1 #Initial concentration\n",
+ "fc=0.5 #Final concentration\n",
+ "mf_dot=(fc/ic)*m1_dot #[kg/h]\n",
+ "mv_dot=mf_dot-m1_dot #Water evaporated[kg/h]\n",
+ "P=357 #Steam pressure[kN/sq m]\n",
+ "Ts=412 #[K]\n",
+ "H=2732 #[kJ/kg]\n",
+ "lambda1=2143 #[kJ/kg]\n",
+ "bpr=18.5 #[K]\n",
+ "T_dash=352+bpr #[K]\n",
+ "Hf=138 #[kJ/kg]\n",
+ "lambda_s=2143 #[kJ/kg]\n",
+ "Hv=2659 #[kJ/kg]\n",
+ "H1=568 #[kJ/kg]\n",
+ "#Calculation\n",
+ "ms_dot=(mv_dot*Hv+m1_dot*H1-mf_dot*Hf)/lambda_s #Steam consumption in kg/h\n",
+ "eco=mv_dot/ms_dot #Economy\n",
+ "dT=Ts-T_dash #[K]\n",
+ "hi=4500 #[W/sq m.K]\n",
+ "ho=9000 #[W/sq m.K]\n",
+ "Do=0.032 #[m]\n",
+ "Di=0.028 #[m]\n",
+ "x1=(Do-Di)/2 #[m]\n",
+ "Dw=(Do-Di)/math.log(32.0/28.0) #[m]\n",
+ "x2=0.25*10**-3 #[m]\n",
+ "L=2.5 #Length [m]\n",
+ "hio=hi*(Di/Do) #[W/sq m.K]\n",
+ "print\"NOTE:In textbook this value of hio is wrongly calculated as 3975.5..So we will take this\"\n",
+ "hio=3975.5\n",
+ "k1=45.0 #Tube material in [W/sq m.K]\n",
+ "k2=2.25 #For scale[W/m.K]\n",
+ "Uo=1.0/(1.0/ho+1.0/hio+(x1*Dw)/(k1*Do)+(x2/k2)) #Overall heat transfer coeff in W/sq m.K\n",
+ "Q=ms_dot*lambda_s #[kJ/h]\n",
+ "Q=Q*1000.0/3600.0 #[W]\n",
+ "\n",
+ "A=Q/(Uo*dT) #[sq m]\n",
+ "n=A/(math.pi*Do*L) #from A=n*math.pi*Do*L \n",
+ "#Result\n",
+ "print\"Steam consumption is\",round(ms_dot),\"kg/h\" \n",
+ "print\"Capacity is\",round(mv_dot),\"kg/h\"\n",
+ "print\"Steam economy is \",round(eco,3)\n",
+ "print\" No. of tubes required is \",round(n)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "slideshow": {
+ "slide_type": "subslide"
+ }
+ },
+ "source": [
+ "## Example no:6.16 ,Page no:6.50"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Steam consumption is 3159.6 kg/h\n",
+ "Heat transfer area is 47.91 m^2\n",
+ " Now,Steam consumption is 3253.42 kg/h\n",
+ "Economy of evaporator 0.84\n",
+ "Now,Area is 49.33\n",
+ "If enthalpy of water vapour Hv were based on the saturated vapour at the pressure\n",
+ "the error introduced is only 2.97 percent\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Single effect evaporator\n",
+ "#Variable declaration\n",
+ "bpr=40.6 #[K]\n",
+ "Cpf=1.88 #[kJ/kg.K]\n",
+ "Hf=214 #[kJ/kg]\n",
+ "H1=505 #[kJ/kg]\n",
+ "mf_dot=4536 #[kg/h] of feed solution\n",
+ "ic=0.2 #Initial conc\n",
+ "fc=0.5 #Final concentration\n",
+ "m1dot_dash=(ic/fc)*mf_dot #Thisck liquor flow arte[kg/h]\n",
+ "mv_dot=mf_dot-m1dot_dash #[kg/H]\n",
+ "Ts=388.5 #Saturation temperature of steam in [K]\n",
+ "bp=362.5 #b.P of solution in [K]\n",
+ "lambda_s=2214 #[kJ/kg]\n",
+ "P=21.7 #Vapor space in [kPa]\n",
+ "Hv=2590.3 #[kJ/kg]\n",
+ "\n",
+ "#Calculation\n",
+ "#Enthalpy balance over evaporator\n",
+ "ms_dot=(m1dot_dash*H1+mv_dot*Hv-mf_dot*Hf)/lambda_s #[kg/h\n",
+ "print\"Steam consumption is\",round(ms_dot,1),\"kg/h\" \n",
+ "dT=Ts-bp #[K]\n",
+ "U=1560 #[W/sq m.K]\n",
+ "Q=ms_dot*lambda_s #[kJ/h]\n",
+ "Q=Q*1000/3600 #[W]\n",
+ "A=Q/(U*dT) #[sq m]\n",
+ "print\"Heat transfer area is\",round(A,2),\"m^2\"\n",
+ "\n",
+ "#Calculations considering enthalpy of superheated vapour\n",
+ "\n",
+ "Hv=Hv+Cpf*bpr #[kJ/kg]\n",
+ "ms_dot=(m1dot_dash*H1+mv_dot*Hv-mf_dot*Hf)/lambda_s #[kg/h]\n",
+ "print\" Now,Steam consumption is\",round(ms_dot,2),\"kg/h\" \n",
+ "eco=mv_dot/ms_dot #Steam economy\n",
+ "print\"Economy of evaporator \",round(eco,2)\n",
+ "Q=ms_dot*lambda_s #[kJ/h]\n",
+ "Q=Q*1000.0/3600.0 #[w]\n",
+ "A2=Q/(U*dT) #Area\n",
+ "print\"Now,Area is\",round(A2,2) \n",
+ "perc=(A2-A)*100/A #%error in the heat transfer area \n",
+ "#Result\n",
+ "print\"If enthalpy of water vapour Hv were based on the saturated vapour at the pressure\\nthe error introduced is only\",round(perc,2),\"percent\"\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}