summaryrefslogtreecommitdiff
path: root/Generation_Of_Electrical_Energy_by_B._R._Gupta/Chapter9.ipynb
diff options
context:
space:
mode:
authorTrupti Kini2016-02-08 23:30:15 +0600
committerTrupti Kini2016-02-08 23:30:15 +0600
commitefe6636e4f2e6355a247753260890e746af053be (patch)
treeca95e0d7086e1476ff4f367cc86ffa11699e1dc7 /Generation_Of_Electrical_Energy_by_B._R._Gupta/Chapter9.ipynb
parentd8e941a792d6ed7a34e6cb719c8d8ea5bb26a303 (diff)
downloadPython-Textbook-Companions-efe6636e4f2e6355a247753260890e746af053be.tar.gz
Python-Textbook-Companions-efe6636e4f2e6355a247753260890e746af053be.tar.bz2
Python-Textbook-Companions-efe6636e4f2e6355a247753260890e746af053be.zip
Added(A)/Deleted(D) following books
A Generation_Distribution_and_Utilization_of_Electrical_Energy_by_C._L._Wadhwa/README.txt A Generation_Of_Electrical_Energy_by_B._R._Gupta/Chaper12.ipynb A Generation_Of_Electrical_Energy_by_B._R._Gupta/Chapter10.ipynb A Generation_Of_Electrical_Energy_by_B._R._Gupta/Chapter11.ipynb A Generation_Of_Electrical_Energy_by_B._R._Gupta/Chapter13.ipynb A Generation_Of_Electrical_Energy_by_B._R._Gupta/Chapter14.ipynb A Generation_Of_Electrical_Energy_by_B._R._Gupta/Chapter15.ipynb A Generation_Of_Electrical_Energy_by_B._R._Gupta/Chapter17.ipynb A Generation_Of_Electrical_Energy_by_B._R._Gupta/Chapter2.ipynb A Generation_Of_Electrical_Energy_by_B._R._Gupta/Chapter20.ipynb A Generation_Of_Electrical_Energy_by_B._R._Gupta/Chapter23.ipynb A Generation_Of_Electrical_Energy_by_B._R._Gupta/Chapter3.ipynb A Generation_Of_Electrical_Energy_by_B._R._Gupta/Chapter4.ipynb A Generation_Of_Electrical_Energy_by_B._R._Gupta/Chapter5.ipynb A Generation_Of_Electrical_Energy_by_B._R._Gupta/Chapter7.ipynb A Generation_Of_Electrical_Energy_by_B._R._Gupta/Chapter8.ipynb A Generation_Of_Electrical_Energy_by_B._R._Gupta/Chapter9.ipynb A Generation_Of_Electrical_Energy_by_B._R._Gupta/screenshots/EnergyLoadnMassCurve.png A Generation_Of_Electrical_Energy_by_B._R._Gupta/screenshots/loadCurve2.png A Generation_Of_Electrical_Energy_by_B._R._Gupta/screenshots/loadDurnECur.png A Thyristors_Theory_And_Applications_by_R._K._Sugandhi_And_K._K._Sugandhi/Chapter11_Control_of_DC_Motors.ipynb A Thyristors_Theory_And_Applications_by_R._K._Sugandhi_And_K._K._Sugandhi/Chapter12_Controllers_and_Their_Optimisation.ipynb A Thyristors_Theory_And_Applications_by_R._K._Sugandhi_And_K._K._Sugandhi/Chapter13_Choppers_and_Transportation_system_Application.ipynb A Thyristors_Theory_And_Applications_by_R._K._Sugandhi_And_K._K._Sugandhi/Chapter15_The_AC_motor_control.ipynb A Thyristors_Theory_And_Applications_by_R._K._Sugandhi_And_K._K._Sugandhi/Chapter16_Faults_and_Protection.ipynb A Thyristors_Theory_And_Applications_by_R._K._Sugandhi_And_K._K._Sugandhi/Chapter3_Fabrication_and_Thermal_characteristics.ipynb A Thyristors_Theory_And_Applications_by_R._K._Sugandhi_And_K._K._Sugandhi/Chapter4_Series_and_Parallel_Connection_of_Thyristors.ipynb A Thyristors_Theory_And_Applications_by_R._K._Sugandhi_And_K._K._Sugandhi/Chapter5_Line_Commutated_converters.ipynb A Thyristors_Theory_And_Applications_by_R._K._Sugandhi_And_K._K._Sugandhi/Chapter7_Inverter_Circuits.ipynb A Thyristors_Theory_And_Applications_by_R._K._Sugandhi_And_K._K._Sugandhi/Chapter8_Harmonic_and_PowerFactor_with_the_converter_system.ipynb A Thyristors_Theory_And_Applications_by_R._K._Sugandhi_And_K._K._Sugandhi/Chapter_2_The_Device_.ipynb A Thyristors_Theory_And_Applications_by_R._K._Sugandhi_And_K._K._Sugandhi/screenshots/11.png A Thyristors_Theory_And_Applications_by_R._K._Sugandhi_And_K._K._Sugandhi/screenshots/13.png A Thyristors_Theory_And_Applications_by_R._K._Sugandhi_And_K._K._Sugandhi/screenshots/8.png A Turbomachines_by_A._V._Arasu/README.txt A sample_notebooks/UmangAgarwal/Sample_Notebook_Umang.ipynb A "sample_notebooks/Vishwajith VRao/Chapter1_1.ipynb"
Diffstat (limited to 'Generation_Of_Electrical_Energy_by_B._R._Gupta/Chapter9.ipynb')
-rw-r--r--Generation_Of_Electrical_Energy_by_B._R._Gupta/Chapter9.ipynb296
1 files changed, 296 insertions, 0 deletions
diff --git a/Generation_Of_Electrical_Energy_by_B._R._Gupta/Chapter9.ipynb b/Generation_Of_Electrical_Energy_by_B._R._Gupta/Chapter9.ipynb
new file mode 100644
index 00000000..fab737f3
--- /dev/null
+++ b/Generation_Of_Electrical_Energy_by_B._R._Gupta/Chapter9.ipynb
@@ -0,0 +1,296 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:5804a8cf03ec2dc9fe48e7282fc5bb2ad9c57bb262c9f4fea9720f853cbc6882"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Ch-9, Nuclear Power Stations"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "example 9.1 Page 169"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "m=1*10**-3#mass of 1 grm in kgs\n",
+ "c=3*10**8\n",
+ "e=m*c**2 \n",
+ "E=e/(1000*3600)\n",
+ "print \"energy equivalent of 1 gram is %dkWh\"%E"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "energy equivalent of 1 gram is 25000000kWh\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "example 9.2 Page 169"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "amu=1.66*10**-27#mass equvalent in kgs\n",
+ "c=3*10**8\n",
+ "j=6.242*10**12\n",
+ "e=amu*c**2\n",
+ "E=e*j \n",
+ "print \" energy evalent in joules is %ejoules \\n energy equvalent in Mev is %dMeV \\n hense shown\"%(e,E)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " energy evalent in joules is 1.494000e-10joules \n",
+ " energy equvalent in Mev is 932MeV \n",
+ " hense shown\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "example 9.3 Page 169"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "hm=2.0141\n",
+ "hp=1.007825\n",
+ "hn=1.008665\n",
+ "nm=58.9342\n",
+ "np=28\n",
+ "nn=59\n",
+ "um=235.0439\n",
+ "up=92\n",
+ "un=235\n",
+ "hmd=hp+hn-hm ;nmd=np*hp+(nn-np)*hn-nm ;umd=up*hp+(un-up)*hn-um \n",
+ "hbe=931*hmd ;nbe=931*nmd; ube=931*umd \n",
+ "ahbe=hbe/2 ;anbe=nbe/nn ;aube=ube/un \n",
+ "print \"\\t(a)\\n mass defect is for hydrogen %famu \\n total binding energy for hydrogens %fMev \\n average binding energy for hydrogen is %fMeV\"%(hmd,hbe,ahbe)\n",
+ "print \"\\n\\t(b)\\n mass defect is for nickel %famu \\n total binding energy for nickel is %fMev \\n average binding energy for nickelis %fMeV\"%(nmd,nbe,anbe)\n",
+ "print \"\\n\\t(c)\\n mass defect of uranium is %famu \\n total binding energy uranium is %fMev \\n average binding energy uranium is %fMeV\"%(umd,ube,aube)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "\t(a)\n",
+ " mass defect is for hydrogen 0.002390amu \n",
+ " total binding energy for hydrogens 2.225090Mev \n",
+ " average binding energy for hydrogen is 1.112545MeV\n",
+ "\n",
+ "\t(b)\n",
+ " mass defect is for nickel 0.553515amu \n",
+ " total binding energy for nickel is 515.322465Mev \n",
+ " average binding energy for nickelis 8.734279MeV\n",
+ "\n",
+ "\t(c)\n",
+ " mass defect of uranium is 1.915095amu \n",
+ " total binding energy uranium is 1782.953445Mev \n",
+ " average binding energy uranium is 7.587036MeV\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "example 9.4 Page 170"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import exp\n",
+ "no=1.7*10**24\n",
+ "hl=7.1*10**8\n",
+ "t=10*10**8\n",
+ "lm=0.693/(hl)\n",
+ "lmda=lm/(8760*3600)\n",
+ "ia=lmda*no\n",
+ "n=no*(exp(-lm*t))\n",
+ "print \"(lamda) disintegrations per sec is %ebq \\n initial activity is lamda*na is %ebq \\n final number of atoms is %eatoms\"%(lmda,ia,n)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(lamda) disintegrations per sec is 3.095054e-17bq \n",
+ " initial activity is lamda*na is 5.261592e+07bq \n",
+ " final number of atoms is 6.405500e+23atoms\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "example 9.5 Page 170"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "um=5\n",
+ "owp=2.6784*10**15\n",
+ "an=6.023*10**23\n",
+ "na1g=an/235\n",
+ "na5g=an*5/235\n",
+ "p=na5g/owp\n",
+ "print \" 1 watt power requvires %efussions per day \\n number of atoms in 5 gram is %eatoms \\n power is %eMW \"%(owp,na5g,p)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " 1 watt power requvires 2.678400e+15fussions per day \n",
+ " number of atoms in 5 gram is 1.281489e+22atoms \n",
+ " power is 4.784533e+06MW \n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "example 9.6 Page 171"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "pp=235\n",
+ "pe=0.33\n",
+ "lf=1\n",
+ "teo=pp*8760*3600*10**6\n",
+ "ei=teo/pe\n",
+ "nfr=3.1*10**10#fessions required\n",
+ "tnfr=nfr*ei\n",
+ "t1gu=2.563*10**21 #total uranium atoms in 1 grm\n",
+ "fure=tnfr/t1gu\n",
+ "print \"total energy input %eWatt sec \\n energy input is %eWatt-sec\\n total number of fissions required is %efissions \\n fuel required is %e grams %dkg\"%(teo,ei,tnfr,fure,fure/1000)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "total energy input 7.410960e+15Watt sec \n",
+ " energy input is 2.245745e+16Watt-sec\n",
+ " total number of fissions required is 6.961811e+26fissions \n",
+ " fuel required is 2.716274e+05 grams 271kg\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "example 9.7 Page 171"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from __future__ import division\n",
+ "from math import log\n",
+ "en=3*10**6\n",
+ "a=12\n",
+ "fen=0.1\n",
+ "Es=2/(12+2/3)\n",
+ "re=exp(Es)\n",
+ "print \"(a)\\nratio of energies per collision is %f\"%(re)\n",
+ "rietf=en/fen\n",
+ "ldie=log(rietf)\n",
+ "nc=ldie/Es\n",
+ "print \"(b)\\npatio of iniial to final energies is %e \\nlogarithemic decrement in energy is %f \\nnumber of collisions is %d\"%(rietf,ldie,nc)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(a)\n",
+ "ratio of energies per collision is 1.171043\n",
+ "(b)\n",
+ "patio of iniial to final energies is 3.000000e+07 \n",
+ "logarithemic decrement in energy is 17.216708 \n",
+ "number of collisions is 109\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}