summaryrefslogtreecommitdiff
path: root/Fundamentals_of_Fluid_Mechanics/Ch_2.ipynb
diff options
context:
space:
mode:
authorHardik Ghaghada2014-06-20 15:52:25 +0530
committerHardik Ghaghada2014-06-20 15:52:25 +0530
commite1e59ca3a50d9f93e8b7bc0693b8081d5db77771 (patch)
treef54eab21dd3d725d64a495fcd47c00d37abed004 /Fundamentals_of_Fluid_Mechanics/Ch_2.ipynb
parenta78126bbe4443e9526a64df9d8245c4af8843044 (diff)
parent83c1bfceb1b681b4bb7253b47491be2d8b2014a1 (diff)
downloadPython-Textbook-Companions-e1e59ca3a50d9f93e8b7bc0693b8081d5db77771.tar.gz
Python-Textbook-Companions-e1e59ca3a50d9f93e8b7bc0693b8081d5db77771.tar.bz2
Python-Textbook-Companions-e1e59ca3a50d9f93e8b7bc0693b8081d5db77771.zip
Merge pull request #1 from debashisdeb/master
removing problem statements from all the chapters to avoid copyright violations
Diffstat (limited to 'Fundamentals_of_Fluid_Mechanics/Ch_2.ipynb')
-rw-r--r--Fundamentals_of_Fluid_Mechanics/Ch_2.ipynb46
1 files changed, 12 insertions, 34 deletions
diff --git a/Fundamentals_of_Fluid_Mechanics/Ch_2.ipynb b/Fundamentals_of_Fluid_Mechanics/Ch_2.ipynb
index f19146e9..41a4696d 100644
--- a/Fundamentals_of_Fluid_Mechanics/Ch_2.ipynb
+++ b/Fundamentals_of_Fluid_Mechanics/Ch_2.ipynb
@@ -1,6 +1,7 @@
{
"metadata": {
- "name": "Ch 2"
+ "name": "",
+ "signature": "sha256:0be2e552cff1c39387b1a182161229da6bb9f764cb6f5a785cae5a3f7334b401"
},
"nbformat": 3,
"nbformat_minor": 0,
@@ -27,9 +28,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "#example 2.1\n",
- "#calculate pressure at interface and pressure head and at bottom.\n",
- "#given\n",
+ "\n",
"sg=0.68 #specific gravity of gasoline\n",
"htg=17 #ft (height of gasoline)\n",
"htw=3 #ft (height of water)\n",
@@ -103,9 +102,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "#Example 2.2\n",
- "#Calculate ratio of pressure at the top to that at the base considering air to be incompressible.\n",
- "#Given\n",
+ "\n",
"h=1250 #ft , height\n",
"T=59 #degree farenheit, Temprature\n",
"p=14.7 #psi (abs), pressure\n",
@@ -170,9 +167,6 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "#Example 2.3\n",
- "#Calculate The local barometric pressure.\n",
- "#The absolute pressure at a depth of 40 m in the lake.\n",
"\n",
"#Given \n",
"T=10 #degree C, Temprature\n",
@@ -216,9 +210,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "#Example 2.4\n",
- "#calculate pressure reading of gage.\n",
- "#Given\n",
+ "\n",
"sg1=0.90 #specific gravity of oil\n",
"sg2=13.6 #specific gravity of Hg\n",
"#height of column at different section\n",
@@ -261,9 +253,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "#Example 2.5\n",
- "#calculate The difference in pressures at A and B.\n",
- "#Given\n",
+ "\n",
"gamma1=9.8 #kN/m**3, specific wt of gage \n",
"gamma2=15.6 #kN/m**3\n",
"h1=1 #m, height\n",
@@ -300,10 +290,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "#Example 2.6\n",
- "#Calculate \"The resultant force acting on the gate of the reservoir.\n",
- "#The resultant force acts through a point along the diameter of the gate at a distance of?? \n",
- "#given\n",
+ "\n",
"dia=4 #m, diameter\n",
"sw=9.8 #kN/m**3 specific weight of water\n",
"hc=10 #m, height\n",
@@ -341,6 +328,7 @@
]
},
{
+ "metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEMCAYAAADal/HVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtwVHWa//F3A+EixEAIlwiYBMiQBCWJkAQcjG3YSlJm\nw21wFWed2sHSxgtRwFnHYSzDuFOrTLkbJuNqcMXFAafYWQaJM+7E4NhpQXIBsvKTi5RAdESiAYaA\nRDAJ5/dHm5aYdCeddOd0dz6vKsq+nO/hOXWsfjjf53ueYzEMw0BERMSNAWYHICIigU2JQkREPFKi\nEBERj5QoRETEIyUKERHxSIlCREQ88muicDgcJCYmEh8fT3FxsdvtampqGDRoENu2bXN9Fhsby4wZ\nM0hNTSU9Pd2fYYqIiAeD/LnzRx55hJKSEmJiYsjJyWHp0qVERUW126a1tZXHH3+c3Nzcdp9bLBbs\ndjuRkZH+DFFERLrgtyuKxsZGADIzM4mJiSE7O5uqqqoO2xUXF7NkyRLGjBnT4TvdCygiYj6/JYqa\nmhoSEhJc75OSkqisrGy3zcmTJ9mxYwcPPPAA4LyKaGOxWMjKymLhwoWUlpb6K0wREemCX6eeuvLo\no4/yzDPPYLFYMAyj3RXE7t27iY6O5vDhw+Tn55Oens748ePbjb86sYiISPd5NWNj+Mm5c+eMlJQU\n1/uHH37Y+OMf/9hum7i4OCM2NtaIjY01RowYYYwdO9bYsWNHh32tXLnS2LBhQ4fP/Rh+QHjqqafM\nDsGvdHzBK5SPzTBC//i8/e3029RTREQE4Fz5VFdXR3l5ORkZGe22OX78OCdOnODEiRMsWbKEF154\ngfnz59PU1MSFCxcAaGhooKysrEOxW0RE+oZfp56Kioqw2Ww0NzdTUFBAVFQUJSUlANhsNrfj6uvr\nWbx4MQCjR49m9erVTJo0yZ+htnPlCgzQHSYiIgBYvrkMCUpttQ1fam6G2Fg4ehSGD/fprr1mt9ux\nWq3mBuFHOr7gFcrHBqF/fN7+dipRdCIzE372M9Bsl4iEIm9/OzXB0ol58+AvfzE7ChGRwKBE0Yms\nLHj7bbOjEBEJDJp66sTXX0NUFNTVgTqIiEio0dSTDwweDDffDHa72ZGIiJhPicIN1SlERJyUKNxQ\nnUJExEmJwo2UFPj8c/jsM7MjERExlxKFGwMHgtUK77xjdiQiIuZSovBg3jxNP4mIKFF40FanCN4F\nxCIivadE4UFCgrP30/HjZkciImIeJQoPLBbnVYWWyYpIf6ZE0QUtkxWR/k4tPLrw8ceQluZcKqsn\nr4pIKFALDx+LiYHwcPjgA7MjERExh18ThcPhIDExkfj4eIqLi91uV1NTw6BBg9i2bZvXY/uC2nmI\nSH/m10TxyCOPUFJSws6dO3n++ec5ffp0h21aW1t5/PHHOzwTuztj+4rqFCLSn/ktUTQ2NgKQmZlJ\nTEwM2dnZVFVVddiuuLiYJUuWMGbMGK/H9pXbbgOHA1paTAtBRMQ0g/y145qaGhISElzvk5KSqKys\nJC8vz/XZyZMn2bFjB3/5y1+oqanB8k21uDtj2xQWFrpeW61Wvzzndtw4mDQJ9u+H9HSf715ExK/s\ndjv2Xjw3wW+JojseffRRnnnmGVcFvicrmK5OFP7U1s5DiUJEgs13/xG9du1ar8b7beopLS2NI0eO\nuN4fPHiQ2bNnt9tm37593HXXXcTFxbFt2zYefPBBSktLuzW2r+nGOxHpr/yWKCIiIgDn6qW6ujrK\ny8vJyMhot83x48c5ceIEJ06cYMmSJbzwwgvMnz+/W2P72q23QmUlXLpkahgiIn3Or1NPRUVF2Gw2\nmpubKSgoICoqipKSEgBsNpvXY80UEQFJSc5k4YcyiIhIwNKd2V742c+cz6l4+uk++ytFRHxOd2b7\nkeoUItIf6YrCC01NMHYsnDrlbOshIhKMdEXhR9dc42wQ+O67ZkciItJ3lCi8pHYeItLfKFF4SQ0C\nRaS/UY3CS83NEBUFx445/ysiEmxUo/CzsDCYOxd60TZFRCSoKFH0gJbJikh/okTRA20NAkVE+gMl\nih6YMQPOnIFPPzU7EhER/1Oi6IEBA5wPM9L0k4j0B0oUPaQ6hYj0F0oUPdRWpwjexcUiIt2jRNFD\n8fHOJPHRR2ZHIiLiX0oUPWSxqJ2HiPQPfk0UDoeDxMRE4uPjKS4u7vD9jh07SE5OJiUlhby8PGpq\nalzfxcbGMmPGDFJTU0kP0AdVq52HiPQHfm3hkZqayvr164mJiSEnJ4ddu3a1e1LdxYsXGT58OAAV\nFRU8+eSTOBwOAOLi4ti3bx+RkZHugzehhcfV/vpXuOkm+Pxz50ooEZFgEDAtPBobGwHIzMwkJiaG\n7Oxsqqqq2m3TliTath86dGi77wO9DdWkSTBqFPy//2d2JCIi/uO3RFFTU0NCQoLrfVJSEpWVlR22\n2759O7GxsSxbtowNGza4PrdYLGRlZbFw4UJKS0v9FWavaZmsiIS6QWYHsGjRIhYtWsTWrVtZtGgR\ntbW1AOzevZvo6GgOHz5Mfn4+6enpjB8/vsP4wsJC12ur1YrVau2jyJ3mzYNNm2Dlyj79a0VEus1u\nt2PvRSdTv9UoGhsbsVqtrh/+FStWkJubS15entsx48aNo66ujmHDhrX7fNWqVSQmJnLfffe1+9zs\nGgVAQwNMnQqnTzs7y4qIBLqAqVFEREQAzpVPdXV1lJeXk5GR0W6bY8eOuYJ98803mTlzJsOGDaOp\nqYkLFy4A0NDQQFlZGbm5uf4KtVfGjIG4ONi71+xIRET8w69TT0VFRdhsNpqbmykoKCAqKoqSkhIA\nbDYb27Zt49VXXyUsLIzU1FTWrVsHQH19PYsXLwZg9OjRrF69mkmTJvkz1F5pq1PMmWN2JCIivqcn\n3PnAn/4Ezz2noraIBAdvfzuVKHzg/Hm47jpnveI75RURkYATMDWK/uTaa53PqHjvPbMjERHxPSUK\nH9H9FCISqpQofESPRxWRUKUahY9cugRRUXDyJHyzMlhEJCCpRmGSoUMhIwO+6WkoIhIylCh8SG3H\nRSQUKVH4kAraIhKKVKPwoZYWZ53i6FEYO9bsaEREOqcahYkGDYJbboFeNGkUEQk4ShQ+pmWyIhJq\nlCh8THUKEQk1ShQ+dsMN0NgIn3xidiQiIr6hROFjAwbAbbfpqkJEQocShR+oTiEioUSJwg/a6hQB\ntHJXRKTH/JooHA4HiYmJxMfHU1xc3OH7HTt2kJycTEpKCnl5edTU1HR7bCCbMsW5VPbDD82ORESk\n9/x6w11qairr168nJiaGnJwcdu3aRVRUlOv7ixcvMnz4cAAqKip48skncXzTLKmrsRB4N9xd7cc/\nhrQ0ePBBsyMREWkvYG64a2xsBCAzM5OYmBiys7Opqqpqt01bkmjbfujQod0eG+i0TFZEQoXfEkVN\nTQ0JCQmu90lJSVRWVnbYbvv27cTGxrJs2TJeeuklr8YGsqwseOcduHLF7EhERHpnkNkBLFq0iEWL\nFrF161YWLlxIbW2tV+MLCwtdr61WK1ar1bcB9tCECTBmDLz/PqSmmh2NiPRndrsdey96C/mtRtHY\n2IjVanX98K9YsYLc3Fzy8vLcjhk3bhx1dXVcvnyZ2267rcuxgVyjAHjoIYiLg8ceMzsSEZFvBUyN\nIuKbx7w5HA7q6uooLy8nIyOj3TbHjh1zBfvmm28yc+ZMhg0bxsiRI7scGwxUpxCRUODXqaeioiJs\nNhvNzc0UFBQQFRVFSUkJADabjW3btvHqq68SFhZGamoq69at8zg22FitztVPX38NgwebHY2ISM/o\neRR+dtNNUFwM3/++2ZGIiDgFzNSTOKmdh4gEOyUKP1OdQkSCnaae/OzLL2H8ePjiC7jmGrOjERHR\n1FPAGTECUlJg926zIxER6Rklij4wb56mn0QkeClR9IGsLBW0RSR4qUbRBy5fhqgo+Otf4Zt7CUVE\nTKMaRQAaMgTmzIGKCrMjERHxnhJFH9EyWREJVt1q4XH69GkqKyu5fPky4LxsWbx4sV8DCzXz5jnb\neYiIBJsuaxSFhYX893//N6mpqQy+qmHRK6+84vfguhIsNQqA1lZnneLIERg3zuxoRKQ/8/a3s8tE\nMX36dGpra9sliUARTIkCYOFCuPNOWLrU7EhEpD/zeTH7+9//Pnv27OlVUOKkOoWIBKMuryhqa2vJ\nzMxk5MiRrudEWCwWDhw40CcBehJsVxQHD0J+Phw/bnYkItKfefvb2WUx+6677uI3v/kNc+bMCcjp\np2CSlARNTXDihPPJdyIiwaDLRBEREcHSpUuVJHzAYvl2+unee82ORkSke7qsUWRmZrJw4UI2btzI\ntm3b2LZtG3/4wx+6tXOHw0FiYiLx8fEUFxd3+H7Lli0kJyeTnJzM3XffzdGjR13fxcbGMmPGDFJT\nU0lPT/fikAKb6hQiEmy6rFH80z/9ExaLpcPn3Vkem5qayvr164mJiSEnJ4ddu3a1e6Tpnj17SEpK\nIiIigk2bNrFz505++9vfAhAXF8e+ffuIjIx0H3yQ1SjAOe10883w2WfOKwwRkb7m8+WxPdXY2IjV\naqW2thaAgoICcnJyyMvL63T706dPc9NNN/HJJ58AzkSxd+9eRo8e7fbvCMZEAc76xJ/+5KxZiIj0\ntYDp9VRTU0NCQoLrfVJSEpWVlW6337BhA/n5+a73FouFrKwsFi5cSGlpqb/CNIWmn0QkmHSrhYe/\n7dy5k82bN/Pee++5Ptu9ezfR0dEcPnyY/Px80tPTGT9+fIexhYWFrtdWqxWr1doHEffOvHnw+9/D\nww+bHYmI9Ad2ux273d7j8X029bRixQpyc3M7TD0dOHCAxYsX8+c//5mpU6d2uq9Vq1aRmJjIfffd\n1z74IJ16OnUKpk+HhgYYONDsaESkv/H5fRRHjx5l//79fPjhh1gsFqZNm0Zqairf+973PI6LiIgA\nnCufrr/+esrLy3nqqafabfPJJ5/wgx/8gC1btrRLEk1NTbS2thIeHk5DQwNlZWWsXLmy2wcV6KKj\nnX9qa2HWLLOjERHxzG2i+P3vf8+LL77IwIEDSUhIYMqUKRiGwe7du/nP//xPWltbefDBB1myZInb\nnRcVFWGz2WhubqagoICoqChKSkoAsNls/OIXv+Ds2bMsX74cgLCwMKqrq6mvr3d1px09ejSrV69m\n0qRJvjxu07XVKZQoRCTQuZ16WrduHT/60Y86rQsAnDp1it/+9rf88z//s18D9CRYp54AXn8dXngB\nysrMjkRE+puAWR7bF4I5Ufztb3D99XDmDOimdxHpSz6vUXz66ads3bqVPXv2tHtwUagtWe1ro0ZB\nQgJUVkJmptnRiIi412WiuO+++5g9ezY2m42wsDCATu/UFu+11SmUKEQkkHU59TRr1iyqq6sZMCDw\nHq8dzFNPAG+9Bf/yL+BwmB2JiPQnPq9RbN++HbvdzoIFC1zPowC46aabeh6ljwR7orh40flY1M8/\nh+HDzY5GRPoLn9coPvzwQ1599VX27t3brtX4O++807MIxWX4cJg5E3btgpwcs6MREelcl1cUU6dO\n5f/+7/8YMWJEX8XUbcF+RQGwdq3zymLdOrMjEZH+wudNAZOTk/n88897FZS4pwaBIhLoupx6Onfu\nHElJSaSnp7d7ZraWx/pGRgYcPQpnz4KHR2+IiJimy0Tx5JNPdvhMy2N9Z/Bg54OMKipg0SKzoxER\n6chtjWL58uU8++yzruZ+gSgUahQAv/oVfPwx/OY3ZkciIv2Bz2oUU6ZMYebMmWzZssUngYl7qlOI\nSCDzuOrp5MmTrFy5kjNnzvDAAw+4ppwsFouru6uZQuWKorUVxoyBDz6A664zOxoRCXU+vY9iwoQJ\n5OXlsWbNGt544412d2cHQqIIFQMHgtUK77wDP/yh2dGIiLTnNlF88MEHPPjgg0RHR1NTU0N0dHRf\nxtXvzJsHb7+tRCEigcdtjeKOO+5gzZo1bN261ZUkNmzY0GeB9TdZWc5EEQIzaSISYtwmitraWnK+\n01fihRde8GrnDoeDxMRE4uPjKS4u7vD9li1bSE5OJjk5mbvvvpujR492e2yoSUiA5mY4ccLsSERE\n2nObKIYOHdrrnT/yyCOUlJSwc+dOnn/+eU6fPt3u+8mTJ+NwOHj//ffJycnh6aef7vbYUGOxfHtV\nISISSDy28GhpaSExMdH13pu7sRsbGwHIzMwkJiaG7Oxsqqqq2m0zZ84c130aeXl5VFRUdHtsKJo3\nT8tkRSTweEwUgwYNIikpidraWgAmTZrU7R3X1NSQkJDgep+UlERlZaXb7Tds2EB+fn6PxoaKtvsp\nVKcQkUDSZQuPs2fPMmvWLFJSUrjum0X+vu71tHPnTjZv3sx7773n9djCwkLXa6vVitVq9VlcfS0m\nBsLD4eBBuOEGs6MRkVBht9ux2+09Ht9lm/HOdm6xWLj11ls97rixsRGr1eq6GlmxYgW5ubnk5eW1\n2+7AgQMsXryYP//5z0ydOtWrsaFyw93V7r8fpk+HRx4xOxIRCVVe/3YabthsNuPcuXPuvu6WlJQU\no6Kiwjhx4oQxbdo0o6Ghod33H3/8sTF16lSjsrLS67HfJLhexReIfvc7w5g/3+woRCSUefvb6Xbq\nqa3X09q1a/lhD+8CKyoqwmaz0dzcTEFBAVFRUZSUlABgs9n4xS9+wdmzZ1m+fDkAYWFhVFdXux3b\nH9x2GyxfDi0tMKjLiUEREf9Tr6cAdOON8PLLkJ5udiQiEorU6ykEtLXzUKIQkUCgXk8BKCsLiovh\niSfMjkRExMPUU2JiIkVFRR3aeASSUJ16amyEiRPh9GkYMsTsaEQk1Phs6mnfvn1cc801HgcbhqHH\novpBRAQkJcGePc724yIiZnJ7Z3Z2djY///nPOXToEK2tra7PW1paOHjwIGvWrGHu3Ll9EmR/dPvt\n8PTTcO6c2ZGISH/nduqptbWV0tJSXnrpJQ4cOMDAgQMxDIPW1lZmzJjB/fffz4IFC9oVuPtaqE49\ngbOT7OrVUFYGO3Y4u8uKiPiCt7+dXd6Z3eb8+fNYLBbCw8N7HJyvhXKiaPPyy86i9iuvwHduTBcR\n6RG/JYpA1B8SBcB778Edd8CKFfD4486W5CIiPaVEEaI+/RQWLYIpU2DjRuhinYGIiFve/naaV2AQ\nr0ycCA4HDB4Mc+fCJ5+YHZGI9BdKFEFk2DDYtAnuuQcyMpyJQ0TE35QogozFAitXwquvOusWL75o\ndkQiEupUowhiH30ECxbALbfAr3/tnJYSEemKahT9yNSpUFkJ9fXORoJffGF2RCISipQoglx4OPzh\nD87nWKSlwf79ZkckIqFGU08h5H/+Bx54wDkNtXSp2dGISKAKqKknh8NBYmIi8fHxFBcXd/j+yJEj\nzJkzh6FDh/Lcc8+1+y42NpYZM2aQmppKuh7M0C1LljifY7FmDfz0p3BViy4RkR7z6xVFamoq69ev\nJyYmhpycHHbt2tXukaYNDQ18/PHHvP7664waNYrVq1e7vouLi2Pfvn1ERka6D15XFJ06fRr+4R9g\n6FB47TUYOdLsiEQkkATMFUVjYyMAmZmZxMTEkJ2dTVVVVbttxowZw6xZswgLC+t0H0oCPRMV5Wwm\nOHWq836LI0fMjkhEgpnHR6H2Rk1NDQlXtTxNSkqisrKSvG52trNYLGRlZREXF8eyZcuYP39+p9sV\nFha6XlutVqx6gAMAYWHOWsXLL0NmppoKivRndrsdu93e4/F+SxS9tXv3bqKjozl8+DD5+fmkp6cz\nfvz4DttdnSiko3vvdT4EackSNRUU6a+++4/otWvXejXeb1NPaWlpHLlqzuPgwYPMnj272+PbntGd\nmJjI/PnzeeONN3weY38xZw5UVzuX0S5dCk1NZkckIsHEb4kiIiICcK58qquro7y8nIyMjE63/W4t\noqmpiQsXLgDOgndZWRm5ubn+CrVfmDBBTQVFpGf8uuqpoqKC5cuX09zcTEFBAQUFBZSUlABgs9mo\nr68nLS2N8+fPM2DAAMLDwzl06BBffPEFixcvBmD06NH88Ic/ZNmyZR2D16onrxkGFBXBunWwdauz\nfiEi/YueRyHdUl4O//iPsHYtLF9udjQi0peUKKTb1FRQpH8KmPsoJPB9t6ng55+bHZGIBCIlin7u\n6qaC6elqKigiHWnqSVzUVFCkf1CNQnrlwAFYuNDZK+qXv4SBA82OSER8TYlCek1NBUVCm4rZ0mtq\nKigiV1OikE61NRV8/HHnTXl/+pPZEYmIWTT1JF3as0dNBUVCiWoU4hcnT8KiRTB5MmzcCNdcY3ZE\nItJTqlGIX6ipoEj/pUQh3TZ0KGzaBPfc4yxyOxxmRyQifUGJQrxiscDKlfDqq3DHHfDii2ZHJCL+\nphqF9JiaCooEJ9UopM+oqaBI/+DXROFwOEhMTCQ+Pp7i4uIO3x85coQ5c+YwdOhQnnvuOa/GSmBQ\nU0GR0OfXqafU1FTWr19PTEwMOTk57Nq1i6ioKNf3DQ0NfPzxx7z++uuMGjWK1atXd3ssaOop0Kip\noEhwCJipp8bGRgAyMzOJiYkhOzubqqqqdtuMGTOGWbNmERYW5vVYCTxLlsDbb8OaNfDTn0Jrq9kR\niYgv+C1R1NTUkJCQ4HqflJREZWWl38eKuWbMgOpq55/8fDh3zuyIRKS3BpkdQG8VFha6XlutVqxW\nq2mxiFNbU8HHHnPeb7FjB1yV90Wkj9ntdux2e4/H+y1RpKWl8ZOf/MT1/uDBg+Tm5vp87NWJQgJH\nWBisX+9s95GZCa+8Anl5Zkcl0j999x/Ra9eu9Wq836aeIiIiAOfqpbq6OsrLy8nIyOh02+8WVbwZ\nK4Ft2TLnFcX998Mzz4DWHogEH7+ueqqoqGD58uU0NzdTUFBAQUEBJSUlANhsNurr60lLS+P8+fMM\nGDCA8PBwDh06xIgRIzod2yF4rXoKGmoqKBI41D1WAtalS84riw8+gNdfh+uvNzsikf5JiUICmmFA\nURGsW+dcTjtxorMz7cSJ374eNszsKEVCmxKFBIWaGnjvPeeU1KefOv+cPOn8M3x45wnk6tcREXqA\nkkhPKVFIUDMMOH362wTy3UTS9vrKlfYJpLOkMmYMDFA3M5EOlCikXzh/vutkcv48REe7vyqZONH5\n/XcaA4iEPCUKkW9cugSffeY+kZw86ex4O3p011NdWqUloUSJQsQLLS3OZOEpmXz6qTNRuEsmbf8d\nOVJ1EwkOShQiPmYYcOZM5wnk6s9aWjxflUycCGPHqm4i5lOiEDHJhQtd100aG2H8ePdXJW11Ez0t\nUPxJiUIkgF2+3HXdpL4eIiO7rpsMH2720UiwUqIQCXKtrd2rmwwd2vVU16hRqptIR0oUIv2AYcDZ\ns13XTb7+unt1k4EDzT4i6UtKFCLi8uWXXddN/va3b+sm7pLKddepbhJKlChExCuXL8OpU56TSX29\ncxqrqyXCI0aYfTTSHUoUIuJzra3wxRdd100GD+56qisyUnUTsylRiIgpDMM5jdVVMrl0yfNVycSJ\nMG6c6ib+pEQhIgHt4sWu6yZnzzqThaeprgkTYMgQs48mOAVUonA4HNhsNlpaWigoKGDFihUdtnni\niSfYunUro0aNYsuWLSQkJAAQGxvLtddey8CBAwkLC6O6urpj8EoUIiHp66+7rpucOuVsm9LVVFd4\nuNlHE3gCKlGkpqayfv16YmJiyMnJYdeuXURFRbm+r66uZtWqVZSWllJWVsaWLVv44x//CEBcXBz7\n9u0jMjLSffBKFCL91pUrzrqJu6XBba8HDep6qmv06P5VN/H2t3OQvwJpbGwEIDMzE4Ds7GyqqqrI\ny8tzbVNVVcWSJUuIjIxk6dKl/PznP2+3DyUBEXFnwADnst7x42HWrM63MQw4d65jAtm71/k43rbP\nm5o8P9ukrW4yyG+/mIHNb4ddU1PjmkYCSEpKorKysl2iqK6u5p577nG9HzNmDMePH2fy5MlYLBay\nsrKIi4tj2bJlzJ8/31+hikiIslicy3pHjYIbbnC/XVNTx6uSo0fhnXe+TTBnzjhvTvT0wKwJE5x3\nzIcaU/OjYRhurxp2795NdHQ0hw8fJj8/n/T0dMaPH99hu8LCQtdrq9WK1Wr1U7QiEqquuQbi451/\n3Glu7rxusn9/+7rJtdd2XTe59tq+OzYAu92O3W7v8Xi/1SgaGxuxWq3U1tYCsGLFCnJzc9tdURQX\nF9PS0sLKlSsBmDJlCseOHeuwr1WrVpGYmMh9993XPnjVKEQkgFy5Ag0N7uslJ0/CX//qXPrb1VRX\nVJT/6iYBU6OIiIgAnCufrr/+esrLy3nqqafabZORkcGqVav40Y9+RFlZGYmJiQA0NTXR2tpKeHg4\nDQ0NlJWVuZKJiEigGjDAWcsYNw5mzux8G8Nwtpv/biLZvx9KS7/9/MsvPSeTCROcLen7om7i17+i\nqKgIm81Gc3MzBQUFREVFUVJSAoDNZiM9PZ25c+cya9YsIiMj2bx5MwD19fUsXrwYgNGjR7N69Wom\nTZrkz1BFRPqExeJc1jtyJEyf7n67piZnS/qrk8lHH0FFxbefnT4NY8Z4nuqaMAGGDetlzLrhTkQk\nODU3O/twebrf5LPPnPeSXJ1ANmwIkKknERHxr7AwmDTJ+cedK1ecVx5XJxBv6YpCRKSf8fa3U495\nFxERj5QoRETEIyUKERHxSIlCREQ8UqIQERGPlChERMQjJQoREfFIiUJERDxSohAREY+UKERExCMl\nChER8UiJQkREPFKiEBERj5QoRETEI78mCofDQWJiIvHx8RQXF3e6zRNPPMHkyZOZOXMmR44c8Wps\nqOvNw9CDgY4veIXysUHoH5+3/JooHnnkEUpKSti5cyfPP/88p0+fbvd9dXU17777Lnv37uWxxx7j\nscce6/bY/iDU/2fV8QWvUD42CP3j85bfEkVjYyMAmZmZxMTEkJ2dTVVVVbttqqqqWLJkCZGRkSxd\nupTDhw93e6yIiPQNvyWKmpoaEhISXO+TkpKorKxst011dTVJSUmu92PGjOHYsWPdGisiIn3D1Gdm\nG4bR4XGknIzmAAAHCElEQVR8FovFq314u32wWbt2rdkh+JWOL3iF8rFB6B+fN/yWKNLS0vjJT37i\nen/w4EFyc3PbbZORkcGhQ4fIyckBoKGhgcmTJxMZGdnlWEDPyxYR6QN+m3qKiIgAnKuX6urqKC8v\nJyMjo902GRkZbNu2jTNnzvDaa6+RmJgIwMiRI7scKyIifcOvU09FRUXYbDaam5spKCggKiqKkpIS\nAGw2G+np6cydO5dZs2YRGRnJ5s2bPY4VERETGEGooqLCSEhIMKZOnWr8+te/Njscn4uJiTFuvPFG\nIyUlxUhLSzM7nF778Y9/bIwdO9a44YYbXJ+dP3/emD9/vjFp0iRjwYIFxoULF0yMsHc6O76nnnrK\nmDBhgpGSkmKkpKQY//u//2tihD33ySefGFar1UhKSjJuvfVWY8uWLYZhhM75c3d8oXL+vvrqKyM9\nPd1ITk42MjIyjH/7t38zDMP78xeUiSIlJcWoqKgw6urqjGnTphkNDQ1mh+RTsbGxxpkzZ8wOw2cc\nDoexf//+dj+kzz77rPHwww8bly5dMh566CHjV7/6lYkR9k5nx1dYWGg899xzJkblG6dOnTJqa2sN\nwzCMhoYGIy4uzjh//nzInD93xxcq588wDOPixYuGYRjGpUuXjOnTpxtHjx71+vwFXQuP/nKPhRFC\nhfpbbrmFUaNGtfusurqae++9lyFDhrBs2bKgPoedHR+ExjkcP348KSkpAERFRTF9+nRqampC5vy5\nOz4IjfMHcM011wDw5Zdf0tLSwpAhQ7w+f0GXKPrDPRYWi4WsrCwWLlxIaWmp2eH4xdXnMSEhgerq\napMj8r3i4mJmz57Ns88+y4ULF8wOp9c++ugjDh48SHp6ekiev7bja1s4Eyrn78qVKyQnJzNu3Dge\nfvhhrr/+eq/PX9Aliv5g9+7dvP/++/zrv/4rq1ator6+3uyQfC5U/rXmzgMPPMCJEycoKyvj2LFj\nrkUcwerChQvceeed/Pu//zsjRowIufN39fENHz48pM7fgAEDeP/99/noo4/4j//4D2pra70+f0GX\nKNLS0to1Dzx48CCzZ882MSLfi46OBiAxMZH58+fzxhtvmByR76Wlpblathw+fJi0tDSTI/KtsWPH\nYrFYiIiI4KGHHmL79u1mh9Rjzc3N/OAHP+Cee+5hwYIFQGidv86OL5TOX5vY2Fhuv/12qqqqvD5/\nQZcounN/RjBrampyXeY2NDRQVlbW6c2GwS4jI4ONGzfy1VdfsXHjxpBL9qdOnQKgpaWF1157jdtv\nv93kiHrGMAzuvfdebrjhBh599FHX56Fy/twdX6icv9OnT3Pu3DkAzpw5w1tvvcWCBQu8P3/+rLb7\ni91uNxISEowpU6YY69evNzscnzp+/LiRnJxsJCcnG1lZWcbLL79sdki9dtdddxnR0dHG4MGDjYkT\nJxobN24MmeWVhvHt8YWFhRkTJ040Xn75ZeOee+4xbrzxRmPmzJnGypUrg3YV27vvvmtYLBYjOTm5\n3VLRUDl/nR3fm2++GTLn78CBA0ZqaqoxY8YMIzs729i0aZNhGN4vj7UYRohNNoqIiE8F3dSTiIj0\nLSUKERHxSIlCREQ8UqIQERGPlChE3GhtbWXu3LkYhoHdbic/P7/bY6urq3nooYf8GJ1I31GiEHGj\ntLQUq9Xao6copqens2/fvqBu/SDSRolCxI2XXnqJu+++2/X+q6++4q677iIpKYk1a9a4Pj906BD3\n338/ycnJZGRkcPHiRQDy8/P53e9+12G///Vf/8Wdd95JdnY2kydPZtOmTbzwwgvMmDGDpUuXKrlI\nwFGiEHHjwIEDTJs2zfXe4XCwdu1aamtrKS0t5dNPPwXgwQcfZP78+bz//vu8/fbbDB06FHC2YNm/\nf3+n+3Y4HGzevJl33nmHBx54gLNnz3LgwAGGDRvGW2+95f+DE/GCEoVIJ86fP8/AgQMZOHCg67P0\n9HSmTZvGkCFDuPnmm9m9ezf19fV88cUX/P3f/z0AI0aMcI2ZPHkyH374Yaf7/7u/+zvGjh1LTEwM\no0aNYunSpQDMmTOHPXv2+PnoRLyjRCHSCYvF0qHD5tXPnBg8eDCXL1/udLs2hmF0Wt+wWCyu58K3\n7avtfdt+RQKJEoVIJ8LDw2ltbaWlpcXjduPGjWPs2LGuDr8XLlygtbUVgOPHj/O9732vwxhPXXPU\nUUcCkRKFiBszZsxwTR1ZLBa3q59efPFFduzYwY033khOTo7riuDw4cPcdNNNHbb/7r6++7onq6xE\n/ElNAUXc2L59O3v37uWXv/xlj8bPnj2b8vJywsPDfRyZSN/SFYWIGwsWLMBut/doOqi6uppZs2Yp\nSUhI0BWFiIh4pCsKERHxSIlCREQ8UqIQERGPlChERMQjJQoREfFIiUJERDz6/3mzRdiLDrGcAAAA\nAElFTkSuQmCC\n"
}
@@ -359,9 +347,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "#Example 2.7\n",
- "#calculate magnitude and location of force of seawater.\n",
- "#Given\n",
+ "\n",
"sw=64 #lb/ft**3 specific weight of water\n",
"h=10 #ft, depth\n",
"a=3 #ft, distance from horizontal axis\n",
@@ -411,9 +397,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "#Example 2.8\n",
- "#Calculate magnitude and location of resultant force.\n",
- "#Given\n",
+ "\n",
"sg=0.9 # specific gravity of oil\n",
"a=0.6 #m, length of square\n",
"pgage=50 #kPa, gage pressure\n",
@@ -458,9 +442,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "#Example 2.9\n",
- "#calculate The resultant force exerted by the tank \n",
- "#on the fluid and at what distance The force acts .\n",
+ "\n",
"\n",
"#Given\n",
"dia=6.0 #ft, diameter\n",
@@ -514,10 +496,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "#Example 2.10\n",
- "#Calculate The tension in the cable \n",
"\n",
- "#Given\n",
"dia=1.5 #m\n",
"wt=8.5 #kN\n",
"#tension in cable T=bouyant force(Fb)-wt\n",
@@ -558,8 +537,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "#Example 2.11\n",
- "#Calculate the max acceleration that can occur before the fuel level drops below the transducer.\n",
+ "\n",
"sg=0.65 #specific gravity of fuel\n",
"l1=0.75 #ft, horizontal distance\n",
"l2=0.5 #ft verticle distance\n",