summaryrefslogtreecommitdiff
path: root/Fundamentals_Of_Electronic_Devices_by_J._B._Gupta/Ch1.ipynb
diff options
context:
space:
mode:
authorTrupti Kini2016-09-08 23:30:23 +0600
committerTrupti Kini2016-09-08 23:30:23 +0600
commit28bb57cacd0c8bd76a5c86d7e99e3583f02f0b6c (patch)
treedd9b37ba32f2132675139f6d968e042f07e745e6 /Fundamentals_Of_Electronic_Devices_by_J._B._Gupta/Ch1.ipynb
parentf62f4df01e615088cfabe1576df1105aecafe132 (diff)
downloadPython-Textbook-Companions-28bb57cacd0c8bd76a5c86d7e99e3583f02f0b6c.tar.gz
Python-Textbook-Companions-28bb57cacd0c8bd76a5c86d7e99e3583f02f0b6c.tar.bz2
Python-Textbook-Companions-28bb57cacd0c8bd76a5c86d7e99e3583f02f0b6c.zip
Added(A)/Deleted(D) following books
A Fundamentals_Of_Electronic_Devices_by_J._B._Gupta/Ch1.ipynb A Fundamentals_Of_Electronic_Devices_by_J._B._Gupta/Ch2.ipynb A Fundamentals_Of_Electronic_Devices_by_J._B._Gupta/Ch3.ipynb A Fundamentals_Of_Electronic_Devices_by_J._B._Gupta/Ch4.ipynb A Fundamentals_Of_Electronic_Devices_by_J._B._Gupta/Ch5.ipynb A Fundamentals_Of_Electronic_Devices_by_J._B._Gupta/Ch6.ipynb A Fundamentals_Of_Electronic_Devices_by_J._B._Gupta/Ch7.ipynb A Fundamentals_Of_Electronic_Devices_by_J._B._Gupta/Ch8.ipynb A Fundamentals_Of_Electronic_Devices_by_J._B._Gupta/README.txt A Fundamentals_Of_Electronic_Devices_by_J._B._Gupta/screenshots/6.1.png A Fundamentals_Of_Electronic_Devices_by_J._B._Gupta/screenshots/6.png A Fundamentals_Of_Electronic_Devices_by_J._B._Gupta/screenshots/7.png A OpAmps_And_Linear_Integrated_Circuits_by_Gayakwad/Chapter1.ipynb A OpAmps_And_Linear_Integrated_Circuits_by_Gayakwad/Chapter2.ipynb A OpAmps_And_Linear_Integrated_Circuits_by_Gayakwad/Chapter3.ipynb A OpAmps_And_Linear_Integrated_Circuits_by_Gayakwad/Chapter4.ipynb A OpAmps_And_Linear_Integrated_Circuits_by_Gayakwad/Chapter5.ipynb A OpAmps_And_Linear_Integrated_Circuits_by_Gayakwad/Chapter6.ipynb A OpAmps_And_Linear_Integrated_Circuits_by_Gayakwad/Chapter7.ipynb A OpAmps_And_Linear_Integrated_Circuits_by_Gayakwad/Chapter8.ipynb A OpAmps_And_Linear_Integrated_Circuits_by_Gayakwad/Chapter9.ipynb A OpAmps_And_Linear_Integrated_Circuits_by_Gayakwad/README.txt A OpAmps_And_Linear_Integrated_Circuits_by_Gayakwad/screenshots/1.png A OpAmps_And_Linear_Integrated_Circuits_by_Gayakwad/screenshots/2.png A OpAmps_And_Linear_Integrated_Circuits_by_Gayakwad/screenshots/8.png A Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter10_6.ipynb A Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter11_6.ipynb A Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter12_6.ipynb A Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter13_6.ipynb A Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter14_6.ipynb A Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter15_6.ipynb A Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter16_6.ipynb A Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter17_6.ipynb A Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter18_6.ipynb A Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter19_6.ipynb A Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter1_6.ipynb A Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter20_6.ipynb A Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter21_6.ipynb A Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter22_6.ipynb A Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter23_6.ipynb A Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter24_6.ipynb A Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter25_6.ipynb A Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter26_6.ipynb A Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter2_6.ipynb A Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter6_6.ipynb A Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter7_6.ipynb A Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter8_6.ipynb A Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter9_6.ipynb A Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/screenshots/chapter10_ac_load_line_5.png A Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/screenshots/chapter18_clipping_ckt_output_6.png A Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/screenshots/chapter8_dc_load_line_6.png
Diffstat (limited to 'Fundamentals_Of_Electronic_Devices_by_J._B._Gupta/Ch1.ipynb')
-rw-r--r--Fundamentals_Of_Electronic_Devices_by_J._B._Gupta/Ch1.ipynb369
1 files changed, 369 insertions, 0 deletions
diff --git a/Fundamentals_Of_Electronic_Devices_by_J._B._Gupta/Ch1.ipynb b/Fundamentals_Of_Electronic_Devices_by_J._B._Gupta/Ch1.ipynb
new file mode 100644
index 00000000..1956140e
--- /dev/null
+++ b/Fundamentals_Of_Electronic_Devices_by_J._B._Gupta/Ch1.ipynb
@@ -0,0 +1,369 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 1:Semiconductor Marerials and Crystal Properties"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Example 1.1 Page No.23"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Miller indices of the given plane are 3.0 2.0 3.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Example 1.1\n",
+ "#Find the miller indices for a plane.\n",
+ "\n",
+ "#Given\n",
+ "#Length of intercept\n",
+ "l1=2.0\n",
+ "l2=3.0\n",
+ "l3=2.0\n",
+ "\n",
+ "#Calcuation\n",
+ "#reciprocal of intercept\n",
+ "r1=1/l1\n",
+ "r2=1/l2\n",
+ "r3=1/l3\n",
+ "m1=6*r1\n",
+ "m2=6*r2\n",
+ "m3=6*r3\n",
+ "\n",
+ "#Result\n",
+ "print\"Miller indices of the given plane are\",m1,m2,m3\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Example 1.2 Page No.24"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Miller indices of the given plane are 2.0 1.0 0\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Example 1.2\n",
+ "#Find the miller indices for a plane.\n",
+ "\n",
+ "#Given\n",
+ "#Length of intercept\n",
+ "l1=1.0\n",
+ "l2=2.0\n",
+ "l3=0\n",
+ "\n",
+ "#Calcuation\n",
+ "#reciprocal of intercept\n",
+ "r1=1/l1\n",
+ "r2=1/l2\n",
+ "r3=0\n",
+ "m1=2*r1\n",
+ "m2=2*r2\n",
+ "m3=2*r3\n",
+ "\n",
+ "#Result\n",
+ "print\"Miller indices of the given plane are\",m1,m2,m3\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Example 1.3 Page No.24"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Lattice constant is 3.22 A\n",
+ "radius of simple lattice is 1.61 A\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Example 1.3\n",
+ "#Obtain lattice constant and radius of the atom.\n",
+ "\n",
+ "#Given\n",
+ "V=3*(10**22) #kg/m**3, density of SCC lattice\n",
+ "p=(1/3.0)*10**-22\n",
+ "\n",
+ "#Calculation\n",
+ "n=1 #no. of lattice point \n",
+ "a=(n*p)**(1/3.0) #lattice constant\n",
+ "r=(a*10**8/2)\n",
+ "\n",
+ "#Result\n",
+ "print\"Lattice constant is\",round(a*10**8,2),\"A\"\n",
+ "print\"radius of simple lattice is\",round(r,2),\"A\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Example 1.4 Page no.25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Density of crystal is 8928.8 Kg/m**3\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Exampe 1.4\n",
+ "#Determine the density of crystal\n",
+ "\n",
+ "#given data\n",
+ "import math\n",
+ "r=1.278 #in Angstrum\n",
+ "AtomicWeight=63.5 #constant\n",
+ "AvogadroNo=6.023*10**23 #constant\n",
+ "\n",
+ "#Calculation\n",
+ "#For FCC structure a=4*r/math.sqrt(2)\n",
+ "a=4*r*10**-10/math.sqrt(2) #in meter\n",
+ "V=a**3 #in meter**3\n",
+ "#mass of one atom = m\n",
+ "m=AtomicWeight/AvogadroNo #in gm\n",
+ "m=m/1000 #in Kg\n",
+ "n=4 # no. of atoms per unit cell for FCC structure\n",
+ "rho=m*n/V #in Kg/m**3\n",
+ "\n",
+ "#Result\n",
+ "print \"Density of crystal is\",round(rho,2),\"Kg/m**3\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Example 1.5 Page no.26"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Density of silicon crystal is 1249.0 Kg/m**3\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Example 1.5\n",
+ "#What is Density of silicon crystal .\n",
+ "\n",
+ "#given data\n",
+ "n=4 # no. of atoms per unit cell of silicon\n",
+ "AtomicWeight=28 #constant\n",
+ "AvogadroNo=6.021*10**23 #constant\n",
+ "\n",
+ "#calculation\n",
+ "m=AtomicWeight/AvogadroNo #in gm\n",
+ "m=m/1000 #in Kg\n",
+ "a=5.3 #lattice constant in Angstrum\n",
+ "a=a*10**-10 #in meter\n",
+ "V=a**3 #in meter**3\n",
+ "rho=m*n/V #in Kg/m**3\n",
+ "\n",
+ "#result\n",
+ "print\"Density of silicon crystal is\",round(rho,0),\"Kg/m**3\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Example 1.6 Page no.26"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Surface density in FCC on (111)Plane is %.e 1.02382271468e+13 atoms/mm**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Example 1.5\n",
+ "#What is Surface density in FCC .\n",
+ "\n",
+ "#given data\n",
+ "a=4.75 #lattice constant in Angstrum\n",
+ "a=a*10**-10 #in meter\n",
+ "\n",
+ "#Calculation\n",
+ "dp=2.31/a**2 #in atom/m**2\n",
+ "dp=dp/10**6 #in atom/mm**2\n",
+ "\n",
+ "#Result\n",
+ "print \"Surface density in FCC on (111)Plane is %.e\",dp,\"atoms/mm**2\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Example 1.7 Page no. 28"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Interpolar distance in Angstrum 2.01 A\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Example 1.7\n",
+ "#find the Interpolar distance\n",
+ "\n",
+ "#given data\n",
+ "import math\n",
+ "l=1.539 #in Angstrum\n",
+ "theta=22.5 #in degree\n",
+ "n=1 #order unitless\n",
+ "\n",
+ "#Calculation\n",
+ "d=n*l/(2*math.sin(theta*math.pi/180)) #in Angstrum\n",
+ "\n",
+ "#result\n",
+ "print \"Interpolar distance in Angstrum \",round(d,2),\"A\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Example 1.8 Page no. 28"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wavelength of X-rays in Angstrum 0.584 A\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Example 1.8\n",
+ "#Find the wavelength of X-rays \n",
+ "\n",
+ "#given data\n",
+ "import math\n",
+ "\n",
+ "theta=16.8/2.0 #in degree\n",
+ "n=2.0 #order unitless\n",
+ "d=0.4 #in nm\n",
+ "\n",
+ "#Calculation\n",
+ "l=(2*d*10**-9*sin(theta*math.pi/180.0))/n #in Angstrum\n",
+ "\n",
+ "#result\n",
+ "print \"wavelength of X-rays in Angstrum \",round(l*10**10,3),\"A\"\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}