diff options
author | nice | 2014-10-09 18:07:00 +0530 |
---|---|---|
committer | nice | 2014-10-09 18:07:00 +0530 |
commit | 8048392490bd2efe0fdfa001945f663cba969841 (patch) | |
tree | c298682dfb22073b17d86791c5e7a756f4aa1a92 /Fundamental_of_internal_combustion_engines/chap15.ipynb | |
parent | b9ebc3adfe1cd0b17f061dd639a5c76329e09afa (diff) | |
download | Python-Textbook-Companions-8048392490bd2efe0fdfa001945f663cba969841.tar.gz Python-Textbook-Companions-8048392490bd2efe0fdfa001945f663cba969841.tar.bz2 Python-Textbook-Companions-8048392490bd2efe0fdfa001945f663cba969841.zip |
updated books
Diffstat (limited to 'Fundamental_of_internal_combustion_engines/chap15.ipynb')
-rwxr-xr-x | Fundamental_of_internal_combustion_engines/chap15.ipynb | 434 |
1 files changed, 434 insertions, 0 deletions
diff --git a/Fundamental_of_internal_combustion_engines/chap15.ipynb b/Fundamental_of_internal_combustion_engines/chap15.ipynb new file mode 100755 index 00000000..8df611a8 --- /dev/null +++ b/Fundamental_of_internal_combustion_engines/chap15.ipynb @@ -0,0 +1,434 @@ +{
+ "metadata": {
+ "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter15:Air Capacity and SuperCharging"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 15.1 page no: 474"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Input data\n",
+ "Vs=0.0028 #Swept volume in m**3\n",
+ "N=3000 #Speed of the engine in rpm\n",
+ "ip=12.5 #The average indicated power developed in kW/m**3\n",
+ "nv=85 #Volumetric efficiency in percent\n",
+ "p1=1.013 #The atmospheric pressure in bar\n",
+ "T1=288 #The atmospheric temperature in K\n",
+ "ni=74 #Isentropic efficiency in percent\n",
+ "pr=1.6 #The pressure ratio\n",
+ "nm=78 #All mechanical efficiencies in percent\n",
+ "g=1.4 #Adiabatic index\n",
+ "R=287 #Real gas constant in J/kgK\n",
+ "Cp=1.005 #The specific heat of gas in kJ/kgK\n",
+ "\n",
+ "#Calculations\n",
+ "Vs1=(Vs*(N/2.0)) #Volume swept by the piston per minute in m**3/min\n",
+ "Vi=(nv/100.0)*Vs1 #Unsupercharged induced volume in m**3/min\n",
+ "p2=pr*p1 #Blower delivery pressure in bar\n",
+ "T21=T1*(p2/p1)**((g-1)/g) #Temperature after isentropic compression in K\n",
+ "T2=T1+((T21-T1)/((ni/100.0))) #Blower delivery temperature in K\n",
+ "Ve=(Vs1*p2*T1)/(T2*p1) #Equivalent volume at 1.013 bar and 15 degree centigrade in m**3/min\n",
+ "nv1=(Ve/Vs1)*100 #Volumetric efficiency of supercharged engine in percent\n",
+ "Vii=Ve-Vi #Increase in induced volume in m**3/min\n",
+ "ipa=ip*Vii #Increase in ip from air induced in kW\n",
+ "ipi=((p2-p1)*10**5*Vs1)/(60*1000) #Increase in ip due to increased induction pressure in kW\n",
+ "ipt=ipa+ipi #Total increase in ip in kW\n",
+ "bp=ipt*(nm/100.0) #Increase in engine bp in kW\n",
+ "ma=(p2*(Vs1/60.0)*10**5)/(R*T2) #Mass of air delivered per second by blower in kg/s\n",
+ "P=ma*Cp*(T2-T1) #Power input to blower in kW\n",
+ "Pd=P/(nm/100.0) #Power required to drive the blower in kW\n",
+ "bpn=bp-Pd #Net increase in bp in kW\n",
+ "bpu=ip*Vi*(80/100.0) #The bp of unsupercharged engine in kW\n",
+ "bpp=(bpn/(bpu))*100 #Percentage increase in bp in percent\n",
+ "\n",
+ "#Output\n",
+ "print\"The volumetric efficiency of supercharged engine = \",round(nv1,0),\"percent\"\n",
+ "print\"The increase in brake power by supercharging = \",round(bpn,1),\" kW \"\n",
+ "print\"The percentage increase in brake power = \",round(bpp,1),\" percent \"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The volumetric efficiency of supercharged engine = 134.0 percent\n",
+ "The increase in brake power by supercharging = 15.1 kW \n",
+ "The percentage increase in brake power = 42.3 percent \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 15.2 page no: 477"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Input data\n",
+ "p=1.013 #The pressure at the sea level in bar\n",
+ "T=283 #The temperature at the sea level in K\n",
+ "bp=275.0 #Brake power in kW\n",
+ "N=1800.0 #The speed of the engine in rpm\n",
+ "a=20 #Air fuel ratio \n",
+ "R=287 #The real gas constant in J/kgK\n",
+ "bsfc=0.24 #Brake specific fuel consumption in kg/kWh\n",
+ "nv=80 #Volumetric efficiency in percent\n",
+ "p2=0.75 #The atmospheric pressure at altitude in bar\n",
+ "P=9 #The power consumed by supercharger of the total power produced by the engine in percent\n",
+ "T2=303 #The temperature of air leaving the supercharger in K\n",
+ "\n",
+ "#Calculations\n",
+ "mf=(bsfc*bp)/60.0 \n",
+ "ma1=mf*a \n",
+ "ma=(2/N)*ma1 \n",
+ "dai=(p*10**5)/(R*T) \n",
+ "Vd=(ma/(dai*(nv/100.0))) \n",
+ "pmb=(bp*2*60*1000)/(Vd*N*10**5) \n",
+ "GP=bp/(1-0.09) \n",
+ "ma2=(ma1/bp)*GP \n",
+ "ma1=(ma2*2)/N \n",
+ "p21=((R*T2*ma1)/((nv/100.0)*Vd))/10.0**5 \n",
+ "pi=p21-p2 \n",
+ "\n",
+ "#Output\n",
+ "print\"(a) The engine capacity Vd = \",round(Vd,3),\"m**3\" \n",
+ "print\"The bmep of the unsupercharged engine = \",round(pmb,3),\"bar\" \n",
+ "print\"(b) Increase in air pressure required in the supercharged = \",round(pi,3),\"bar\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(a) The engine capacity Vd = 0.024 m**3\n",
+ "The bmep of the unsupercharged engine = 7.483 bar\n",
+ "(b) Increase in air pressure required in the supercharged = 0.442 bar\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 15.3 page no: 479"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Input data\n",
+ "Vs=0.003 #Swept volume in m**3\n",
+ "bmep=9 #Brake mean effective pressure in bar\n",
+ "N=4000 #The speed of the engine in rpm\n",
+ "ni=30.0 #Indicated thermal efficiency in percent\n",
+ "nm=90 #Mechanical efficiency in percent\n",
+ "bmep1=12 #The brake mean effective pressure of other engine in bar\n",
+ "N1=4000 #The speed of other engine in rpm\n",
+ "ni1=25 #The indicated thermal efficiency of other engine in percent\n",
+ "nm1=91 #The mechanical efficiency of other engine in percent\n",
+ "m=200 #The mass of naturally aspired engine in kg\n",
+ "m1=220 #The mass of supercharged engine in kg\n",
+ "CV=44000 #The calorific value of the fuel in kJ/kg\n",
+ "\n",
+ "#Calculations\n",
+ "bp=(bmep*10**5*Vs*N)/(2.0*60.0*1000) \n",
+ "ip=bp/(nm/100.0) \n",
+ "mf=(ip)/((ni/100.0)*CV) \n",
+ "bp1=(bmep1*10**5*Vs*N1)/(2.0*60.0*1000) \n",
+ "ip1=bp1/(nm1/100.0) \n",
+ "mf1=ip1/((ni1/100.0)*CV) \n",
+ "mf2=mf*3600 \n",
+ "mf3=mf1*3600 \n",
+ "x=((200/90.0)-(220/120.0))/((43.2/120.0)-(27.27/90.0)) \n",
+ "\n",
+ "#Output\n",
+ "print\"The maximum hours required for supply of sufficient fuel = \",round(x,3),\"hr\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The maximum hours required for supply of sufficient fuel = 6.823 hr\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 15.4 Page no 480"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Input data\n",
+ "d=0.1 #The diameter of the bore in m\n",
+ "L=0.12 #The length of the stroke in m\n",
+ "N=3000 #The speed of the engine in rpm\n",
+ "n=4 #Number of cylinders\n",
+ "R=287 #Real gas constant in J/kgK\n",
+ "t=120 #Output Torque in Nm\n",
+ "nm=85 #The mechanical efficiency of the engine in percent\n",
+ "T1=288 #The inlet temperature of air into compressor in K\n",
+ "p1=1 #The inlet pressure of air into compressor in bar\n",
+ "Q=1200 #Heat rejected rate in kJ/min\n",
+ "T=328 #The outlet temperature of air in K\n",
+ "p=1.7 #The outlet pressure of air in bar\n",
+ "nv=90 #Volumetric efficiency in percent\n",
+ "Cp=1.005 #Specific heat of gas in kJ/kg\n",
+ "\n",
+ "#Calculations\n",
+ "import math\n",
+ "bp=(2*math.pi*N*t)/(60.0*1000.0) #The brake power in kW\n",
+ "ip=bp/(nm/100.0) #The indicated power in kW\n",
+ "pmi=((ip*2*60*1000*4)/(L*(math.pi*d**2)*N*n))/10.0**5 #The mean effective pressure in bar\n",
+ "Vs=(math.pi/4.0)*d**2*L #Swept volume in m**3\n",
+ "Vs1=Vs*(N/2.0)*n #Volume swept by the piston per min \n",
+ "V1=(nv/100.0)*Vs1 #Rate of volume flow of air into the engine in m**3/min\n",
+ "me=((p*10**5*V1)/(R*T))*60 #Rate of mass flow of air into the engine in kg/h\n",
+ "E=Q/60.0 #Energy balance in the after cooling in kJ/s\n",
+ "T2=((bp/E)*T-T1)/((bp/E)-1) #The outlet temperature of air in K\n",
+ "mc=((bp)/(Cp*(T2-T1)))*3600 #Mass flow rate in kg/h\n",
+ "maf=mc-me #Rate of air flow available to the consumer in kg/h\n",
+ "\n",
+ "#Output\n",
+ "print\"(a) The imep of the supercharged engine = \",round(pmi,3),\"bar\"\n",
+ "print\"(b) The rate of air consumed by the engine = \",round(me,1),\"kg/h\" \n",
+ "print\"(c) The rate of air flow available to the consumer = \",round(maf,1),\"kg/h\"\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(a) The imep of the supercharged engine = 4.706 bar\n",
+ "(b) The rate of air consumed by the engine = 551.5 kg/h\n",
+ "(c) The rate of air flow available to the consumer = 1033.5 kg/h\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 15.5 page no: 482"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Input data\n",
+ "Vs=0.0045 #Swept volume in m**3\n",
+ "N=4000.0 #The speed of the engine in rpm \n",
+ "nv=150.0 #Overall volumetric efficiency in percent\n",
+ "ni=90.0 #Isentropic efficiency of the compressor in percent\n",
+ "nm=85.0 #Mechanical efficiency in percent\n",
+ "T=330.0 #The temperature of compressed air after cooler in K\n",
+ "p2=1.8 #The pressure of the compressed air in bar\n",
+ "T1=290.0 #The ambient temperature of air in K\n",
+ "p1=1.0 #The pressure of the ambient condition in bar\n",
+ "R=287.0 #The real gas constant in J/kgK\n",
+ "g=1.4 #Adiabatic index\n",
+ "Cp=1.005 #The specific heat of gas in kJ/kgK\n",
+ "\n",
+ "#Calculations\n",
+ "T21=T1*(p2/p1)**((g-1)/g) \n",
+ "T2=T1+((T21-T1)/(ni/100.0)) \n",
+ "Vs1=Vs*(N/(2*60)) # m**3/s\n",
+ "Va=(nv/100)*Vs1 \n",
+ "d=(p1*10**5)/(R*T1) # kg/m**3\n",
+ "ma=d*Va # kg/s\n",
+ "Q=ma*Cp*(T2-T) # kJ/s\n",
+ "P=ma*Cp*(T2-T1) # kW\n",
+ "Pa=P/(nm/100.0) \n",
+ "\n",
+ "#Output\n",
+ "print \"(a) The rate of heat rejected from the engine after cooler = \",round(Q,2),\"kJ/s\" \n",
+ "print\"(b) The power absorbed by the supercharger from the engine = \",round(Pa,1),\"kW\" \n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(a) The rate of heat rejected from the engine after cooler = 5.14 kJ/s\n",
+ "(b) The power absorbed by the supercharger from the engine = 18.8 kW\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 15.6 page no: 483"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Input data\n",
+ "p1=0.98 #The inlet pressure of air in bar\n",
+ "T1=290.0 #The inlet temperature of air in K\n",
+ "p2=1.8 #The pressure of air delivered to the engine in bar\n",
+ "a=20.0 #The air fuel ratio \n",
+ "T3=850.0 #The temperature of the exhaust gases leaving the engine in K\n",
+ "p3=1.6 #The pressure of the exhaust gases leaving the engine in bar\n",
+ "p4=1.03 #The turbine exhaust pressure in bar\n",
+ "nc=80.0 #The isentropic efficiency of compressor in percent\n",
+ "nt=85.0 #The isentropic efficiency of turbine in percent\n",
+ "Cpa=1.005 #The specific heat of air in kJ/kgK\n",
+ "Cpg=1.15 #The specific heat of gas in kJ/kgK\n",
+ "g=1.33 #isentropic index\n",
+ "h=1.0 #Adiabatic index\n",
+ "\n",
+ "#Calculations\n",
+ "T21=T1*(p2/p1)**(0.286) #value taken in book (g-1/g)=0.286 \n",
+ "T2=T1+((T21-T1)/(nc/100.0)) \n",
+ "T22=T2-273 \n",
+ "T41=T3*(p4/p3)**((g-1)/g) \n",
+ "T4=T3-((nt/100.0)*(T3-T41)) \n",
+ "T44=T4-273 \n",
+ "mf=1.0 # kg/s\n",
+ "ma=mf*a # kg/s\n",
+ "Wc=ma*Cpa*(T2-T1) # kW\n",
+ "mg=ma+mf #Mass flow rate of gas in kg/s\n",
+ "Wt=mg*Cpg*(T3-T4) \n",
+ "Pt=(Wc/Wt)*100 \n",
+ "\n",
+ "#Output\n",
+ "print\"(a) The temperature of the air leaving the compressor = \",round(T22,0),\"degree centigrade\" \n",
+ "print\"(b) The temperature of gases leaving the turbine = \",round(T44,0),\"degree centigrade\" \n",
+ "print\"(c) The mechanical power used to run the turbocharger = \",round(Pt,1),\"percent\" \n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(a) The temperature of the air leaving the compressor = 86.0 degree centigrade\n",
+ "(b) The temperature of gases leaving the turbine = 502.0 degree centigrade\n",
+ "(c) The mechanical power used to run the turbocharger = 76.6 percent\n"
+ ]
+ }
+ ],
+ "prompt_number": 22
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 15.7 page no: 485"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Input data\n",
+ "a=14.0 #Air fuel ratio \n",
+ "T1=288 #The ambient temperature of air in K\n",
+ "T2=(288-23) #The evaporation of fuel cause 23 degree C drop in mixture temperature in K\n",
+ "p=1.3 #Pressure ratio \n",
+ "nc=75 #The isentropic efficiency of the compressor in percent\n",
+ "Cpm=1.05 #The specific heat of the mixture in kJ/kgK\n",
+ "Cpa=1.005 #The specific heat of air in kJ/kgK\n",
+ "g=1.33 #Adiabatic index\n",
+ "h=1.4 #Isentropic index\n",
+ "ma=1 #Mass flow rate of air in kg/s\n",
+ "\n",
+ "#Calculations\n",
+ "T31=T2*p**((g-1)/g) \n",
+ "T3=T2+((T31-T2)/(nc/100.0))\n",
+ "mm=1+(1/a)\n",
+ "Wc1=mm*Cpm*(T3-T2)\n",
+ "T21=T1*p**((h-1)/h)\n",
+ "T4=T1+((T21-T1)/(nc/100.0))\n",
+ "T4_=317 #approx value taken in book of T4=317\n",
+ "Wc2=ma*Cpa*(T4_-T1) \n",
+ "T5=T4-23\n",
+ "Ps=((Wc2-round(Wc1,0))*100)/Wc2\n",
+ "\n",
+ "#Output\n",
+ "print\"(a) The power required by the compressor before the supercharger = \",round(Wc1,0),\"kW/kg of air per second\"\n",
+ "print\"(b) The power required by the compressor after the supercharger = \",round(Wc2,1),\"kW/kg of air per second\" \n",
+ "print\"Percentage of turbine power used to run the compressor = \",round(Ps,3),\"percent\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(a) The power required by the compressor before the supercharger = 27.0 kW/kg of air per second\n",
+ "(b) The power required by the compressor after the supercharger = 29.1 kW/kg of air per second\n",
+ "Percentage of turbine power used to run the compressor = 7.36 percent\n"
+ ]
+ }
+ ],
+ "prompt_number": 34
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file |